A Method, A System, A Medical Diagnostic Apparatus, A Computer Program And A Graphic User Interface For Diagnostic Workflow Management


Updated about 2 years ago

Abstract

According to the method of a workflow management according to the invention, at step 2 an available time for executing a sequence of handlings is accessed. At step 4 the template comprising the sequence of handlings 4a is accessed, whereby each handling is assigned its corresponding duration 4b. At step 6 a difference between the available time span and a sum of said corresponding durations is calculated, whereas at step 8 an allowable duration for executing the sequence is assigned based on said difference. At step 14 of the method the sequence 4a is adjusted yielding the adjusted sequence 14a, which integral duration 14b fits into the available time span, as given at step 2. Preferably, the step of adjusting the sequence 14 is performed using a suitable optimization routine which is arranged to optimize a parameter "scan time" while keeping other parameters within acceptable level Examples of such parameters are spatial or temporal resolution, expected image contrast, signal to noise ratio, artifact sensitivity, etc. For circumstances when it is not desirable to adjust every handling within the selected sequence, the method according to the invention after step 8 proceeds to step 16, whereat unalterable sub-sequence 16a" within said sequence 16a is detected. The respective duration 16b" of the unalterable handling 16a" is detected as well. Furtheron at step 13, the duration 16b" is subtracted from the allowable duration yielding further allowable duration and the remaining sub-sequence 16a" is adjusted at step 15 so that it"s cumulative duration 16b" fits into the further allowable duration. As a result, the corresponding sub-sequences 16a" and 16a" are combined at step 17 yielding thus adjusted sequence 16a at step 18 fitting into the allowable duration as determined at step 8. Preferably, the unalterable handling is identified at step 12a by automatic means. Alternatively, it can be assigned as such by the user interactively at step 12b. Still preferably, at step 11 the user is prompted on the assignment of the unalterable handling for quality control purposes. Still preferably the adjusted sequence is executed at step 19. The invention further relates to a system, a computer program and a graphic user interface.FIG. 1

Information

Application ID 2040/CHENP/2008
Invention Field BIO-MEDICAL ENGINEERING
Date of Application 2008-04-24
Publication Number 09/2009

Applicants

Name Address Country Nationality
KONINKLIJKE PHILIPS ELECTRONICS N.V GROENEWOUDSEWEG 1 NL-5621 BA EINDHOVEN Netherlands Netherlands

Inventors

Name Address Country Nationality
SPRINGORUM, RUDOLF, T C/O PROF HOLSTLAAN 6 NL-5656 AA EINDHOVEN Netherlands Netherlands
VISSER, FREDERIK C/O PROF HOLSTLAAN 6 NL-5656 AA EINDHOVEN Netherlands Netherlands
SMINK, JOUKE C/O PROF HOLSTLAAN 6 NL-5656 AA EINDHOVEN Netherlands Netherlands
MOLLEVANGER, LEONARDUS, C, P. J C/O PROF HOLSTLAAN 6 NL-5656 AA EINDHOVEN Netherlands Netherlands

Specification

A method, a system, a medical diagnostic apparatus, a computer program and a graphic user interface for diagnostic workflow management
The invention relates to method for diagnostic workflow management, said method comprising the step of accessing a template comprising a sequence of handlings with their corresponding durations.
The invention further relates to system for diagnostic workflow management, said system comprising an input for accessing a template comprising sequence of handlings with their corresponding durations and for accessing available time span for executing said sequence.
The invention still further relates to a medical diagnostic apparatus arranged to carry out a sequence of handlings.
The invention still further relates to a computer program for enabling a diagnostic workflow management, said method comprising instructions for causing a processor to carry out the steps of accessing a template comprising a sequence of handlings with their corresponding durations.
The invention still further relates to graphic user interface for enabling a diagnostic workflow management, said workflow comprising a sequence of handlings.
An embodiment of the method as is set forth in the opening paragraph is known from US2004/0267575. The known method is arranged to monitor a sequence of diagnostic handlings, whereby time data for the sequence is established, comprising starting point of the sequence, duration of a planned work process, estimated remaining time for the work process, end time of the work process. In particular, a personal time lapse plan assigned to a patient in question is determined based on available time data and can be projected using a suitable graphic user interface. Thus, the known method is arranged to monitor a workflow and to provide an update on the progress within selected working process. The known method operates with estimates of the time necessary for each handling within the sequence. With this respect the known method uses a learning system which estimates an average time spent by a patient on a modality, like CT or MRI, based on a plurality of similar studies, presenting a most statistically probable value.
It is a disadvantage of the known method that it is not suitable for coping with a sudden variation of the time span available for implementing pre-planned sequences. For

example, in a typical hospital environment patients are scheduled for the day. Circumstances can lead to changes in the schedule and delays in examinations. The patient may arrive late or the previous examination needs to be extended for a few more scans due to pathology findings. The operators are then forced to manipulate scan parameters in order to cut down the duration of each individual scan to catch up the patient schedule. It is, however, acknowledged that the image quality of a scan is proportional to the scan time. Therefore, the operator tries to balance between available time on one hand and the image quality on the other hand. Manipulating scan parameters can be tedious and not obvious to do as it influences a plurality of scan characteristics. The spatial or temporal resolution might change as well as image contrast, signal to noise ratio or artifact sensitivity. This dependence of the image quality characteristics on acquisition time is particularly important for magnetic resonance imaging.
It is an object of the invention to provide a method for diagnostic workflow management, whereby a user is enabled to change duration of a handling in the sequence in an easy and reliable way, not causing substantial deterioration of the image quality.
The method according to the invention comprises the further steps of:
- accessing available time span for executing said sequence;
- calculating a difference between said available time span and a sum of said corresponding durations;
- assigning an allowable duration for said sequence based on said difference;
- adjusting the sequence yielding adjusted sequence temporally fitting into the allowable duration.
Preferably, the available time span for executing of the exam is loaded electronically, for example, from Radiological Information System (RIS), or, alternatively it may be accessed from any suitable user interface arranged to support data input. It is a usual practice to prepare a template of sequence handlings, like a sequence of data acquisition scan for MR, X-ray or CT acquisitions. Likewise, the sequence handling may be accessed from another source, like a nuclear medicine investigation plan, or an ultra-sound study log. The method according to the invention will be further discussed with reference to a MR scanner, without limiting the scope of possible applications. MRI scanners are used to perform a medical examination of the human body. Such a patient examination consists of several acquisition steps also known as scans. Each of these scans exists of a set of examination parameters. Scan parameter values are stored in a database such that the user can easily select

the desired preset procedures to pertorm the examination, i he precise scans usea ror a clinical examination depend on the clinical application.
By using the template for sequence of handlings the user is allowed to store all preset procedures that belong to a clinical examination in a database. This allows the user to quickly select the entire examination at once directly from a database. Such templates comprise additional information than just the set of preset procedures such as the order with which the scans need to be carried out. Scans that should be performed using the same geometrical planning are identified as such and prevent the user from unnecessary geometrical planning steps.
A typical parameter of a scan is it's duration. The duration of these preset procedures differ from a few seconds up to several minutes or more. A typical generic examination consists of a quick survey scan that takes a few seconds only, followed by three or more high detailed scans that last for three, four or five minutes each. The total examination duration can be calculated by adding all the individual scan durations together. With the implementation of automated planning the duration of automated planning steps can be calculated in real time or beforehand.
Only a small fraction of the total examination time remains uncertain such as iterative processes during preparation phases or patient dependencies such as recovery times in between successive breath-holds or contrast arrival times for perfusion and angiography scans. Not every part of an examination may have a fixed duration. Some procedures such as preparation phases use iterative processes for their optimizations. In those cases the duration of a preparation phase can be estimated beforehand based upon previous preparation experiences. The corresponding data is stored in the template for handling and is used as such. For some preparative handlings time-out parameters are specified which could be used to estimate the maximum duration of an optimization step for a certain handling. For breath-hold scans the duration in between successive breath-hold scans is estimated based on assumptions for breath-hold recovery times. When automated breath-hold commands are given also these times in between scans are known on beforehand. For other patient dependent timings, such as contrast arrival times, the duration is estimated based upon previous experiences in similar templates or based on assumptions,
A suitable user interface can be provided to specify the available time span to carry out the envisaged handling. This feature can be implemented using one of the following options: a) the remaining time available is specified directly; b) total examination duration is specified after which the elapsed time is subtracted resulting in the remaining examination

time available c)new end-time for an examination is specified directly, whereby available remaining examination duration is calculated by subtracting the current time from the end-time d) user specifies the amount of scan time reduction as a fraction or percentage.
When both time span and total duration of envisaged handlings are known, a difference between them is calculated. It is noted that although the preferred embodiment of the invention considers a shortage of time available for execution of the handlings, it is also possible that a surplus of time is available. In the former case the allowable duration will be shorter than afore planned and in the latter case the allowable duration will be longer than afore planned. At the final step of the method according to the invention, the sequence is adjusted to fit into a tighter schedule or to expand handlings to use the available time most optimally. Preferably, the step of adjusting the sequence is performed using a suitable optimization routine which optimizes a parameter "scan time" while keeping other parameters, like spatial or temporal resolution, expected image contrast, signal to noise ratio or artifact sensitivity within predetermined acceptable level. Preferably, for sequence shortening procedure, such acceptable level is kept between 85-100% of the expected value for not adjusted sequence.
In an embodiment of the method according to the invention, the step of adjusting the sequence comprises the steps of:
- identifying unalterable sub-sequence within said sequence;
- subtracting duration of the unalterable sub-sequence from the allowable duration yielding further allowable duration;
- adjusting remaining sub-sequence within said sequence yielding adjusted sub-sequence temporally fitting into said further allowable duration;
- combining unalterable sub-sequence with adjusted sub-sequence yielding adjusted sequence.
This technical measure is based on the following insight. For some scans the duration cannot be changed. Therefore, such scans must be recognized automatically. These scans serve a specific feature whereby the reproducibility of these scans is essential for the image quality. Such scans include: SENSE reference scans that are used for coil sensitivity calibration; scout scans to be used for automated planning, elapsed scans, critical contrast enhanced angiography scans or other scans for which changing parameters is prohibited for the user.
According to the present embodiment of the method according to the invention new scan durations are calculated for the remaining scans based upon the remaining

examination time available. Unchangeable scans are recognized as such and remain unchanged. Preparation phases, reconstruction durations (when applicable) breath-hold recovery times in between successive breath-hold scans and other overhead times are preferably included in the calculations and remain unchanged.
In a further embodiment of the method according to the invention the step of identifying unalterable sub-sequence within said sequence is carried out automatically.
For this purpose the method according to the invention may use a suitable computer program arranged to detect a certain inhibitor tag in the handling protocol. This feature can be easily implemented using DICOM protocol, which provides information not only on scan data, like orientation, geometry, duration, but also on a status of the scan (done or in preparation) and the type of the scan (angiography, preparation phase, reconstruction and so on). The computer program identifies the parts of the handling sequence for which the duration can be changed. This feature improves reliability of the adjusting step as it ensures that the user does not overlook important information.
In a still further embodiment of the method according to the invention the method comprises the step of prompting the user for acceptance of the adjusted sequence.
It is particularly advantageous to build a control loop, whereby the user is enabled to accept the proposed adjustment of the sequence of handlings and to alter the scans which adjustment was inhibited or to mark new scans which should also be protected from alteration. Preferably, this feature is implemented as a checkbox-option in a suitable graphic user interface.
In a still further embodiment of the method according to the invention, the method comprises the step of executing the adjusted sequence within the allowable duration. As has been noticed earlier, a variety of suitable sequences of handlings is envisaged, including data acquisition using MR, X-ray or CT apparatus. Likewise, the sequence handling may be implemented on a nuclear medicine investigation unit, or an ultra-sound diagnostic apparatus. Likewise, this procedure may be extended and can be applied across multiple examinations,
A system for diagnostic workflow management according to the invention comprises:
- computing means for calculating a difference between said available time span and a sum of corresponding durations;
- processing means for assigning an allowable duration for said sequence based on said difference;

- optimization means for adjusting the sequence to temporally fit into the allowable duration.
Preferably, the system according to the invention is implemented as a control unit with is arranged in electronic communication with a suitable data acquisition unit. The computing means of the system according to the invention is preferably implemented as an electronic calculator for computing a difference between the available time span and a sum of corresponding durations of individual handlings within the selected sequence. Processing means of the system according to the invention is arranged to assign the allowable duration for the sequence based on said difference. The allowable duration may be shorter than initially envisaged due to a lack of time, or, alternatively, it may be longer than the initially envisaged duration due to surplus of available time. Preferably, the system according to the invention further comprises a tagging means arranged to inhibit a sub-sequence from being altered. The tagging means may be implemented as a computer code for searching handling's entries for pre-determined flags, like type of handling, its planned time, its status or the like. Preferably, the handling entries are stored in DICOM format.
The invention still further relates to a medical diagnostic apparatus comprising the system for diagnostic workflow management as is discussed with reference to the foregoing.
A computer program for enabling a diagnostic workflow management according to the invention comprises instructions for causing a processor to carry out the following steps:
- accessing a template comprising a sequence of handlings with their corresponding durations;
- accessing available time span for executing said sequence;
- calculating a difference between said available time span and a sum of corresponding durations;
- assigning an allowable duration for said sequence based on said difference;
- adjusting the sequence yielding adjusted sequence temporally fitting into the allowable duration.
The computer program according to the invention provides automatic means for adjustment of the sequence of handlings, being advantageously sophisticate tool to cope with mismatch between available and planned times for executing said sequence.
Preferably, the computer program according to the invention comprises further instructions of:
- identifying unalterable sub-sequence within said sequence;

- subtracting duration of the unalterable sub-sequence from the allowable duration yielding further allowable duration;
- adjusting remaining sub-sequence within said sequence to temporally fit into said further allowable duration;
- combining unaltered sub-sequence with adjusted sub-sequence yielding adjusted sequence.
Present embodiment of the computer program according to the invention is particularly advantageous for situations where the sequence comprises temporally critical handlings, or handlings which are already executed. Still preferably, for the step of identifying unalterable sub-sequence within said acquisition steps a graphic user interface is used.
The graphic user interface according to the invention comprises:
- a plurality of editable fields arranged to feed back to the user a sequence of handlings together with their respective durations;
- data input means arranged to enable an input of allowable time span for carrying out said sequence;
- first feedback means arranged to display a difference between the time span and the sum of said durations;
- second feedback means arranged to prompt the user for accepting the sequence.
The graphic user interface (GUI) according to the invention provides user means for accurately adjust the sequence of handlings when there is a mismatch between available time span for executing a sequence of handlings and a sum of respective durations of individual handlings. A user interface is preferably provided such that the user can specify the desired total or remaining examination duration or the desired end-time of the examination. This is preferably implemented using a graphical representation of scans on a timeline. When the GUI is connected to a RIS additional information such as time schedules can be retrieved automatically. In this case the end-time is already known and the user doesn't need to specify the desired end-time anymore. The desired end-time is preferably taken over from the RIS by default, still allowing the user to make changes in end-time or remaining examination duration.
In an embodiment of the graphic user interface the second feedback means is further arranged to communicate with a sequence adjustment module and to prompt the user for accepting the adjusted sequence.
For some handlings comprising scans the user may not want a workflow management system to manage it's duration automatically. A user interface is provided such

that the user can protect those scans from shortening strategies. This feature is preferably implemented as a checkbox-option. Optionally, the user interface may be arranged such that the user can make a sub selection of scans for which time shortening will be applied.
These and other features of the invention will be discussed with reference to figures.
Figure 1 presents in a schematic way an embodiment of a flow-chart exemplifying the method according to the invention.
Figure 2 presents in a schematic way an embodiment of a system according to the invention.
Figure 3 presents in a schematic way an embodiment of a flow-chart exemplifying the computer program according to the invention.
Figure 4 presents in a schematic way an embodiment of a graphic user interface according to the invention.
Figure 5 presents in a schematic way an embodiment of a time diagram representing the sequence.
Figure 1 presents in a schematic way an embodiment of a flow-chart exemplifying the method according to the invention. According to the method 1 of the invention, at step 2 an available time for executing a sequence of handlings is accessed. Preferably, the available time span is accessed automatically by electronic means. Alternatively, it may be accessed from an interactive input-output device, like a keyboard. At step 4 the template comprising the sequence of handlings 4a is accessed, whereby each handling is assigned its corresponding duration 4b. At step 6 a difference between the available time span and a sum of said corresponding durations is calculated, whereas at step 8 an allowable duration for executing the sequence is assigned based on said difference. The method according to the invention is suitable for coping with the situation when the available time is smaller than the sum of corresponding durations, or when the available time span is greater than the sum of corresponding durations, both cases being contemplated. At step 14 of the method according to the invention, the sequence 4a is adjusted yielding the adjusted sequence 14a, which integral duration 14b fits into the available time span, as given at step 2, Preferably, the step of adjusting the sequence 14 is performed using a suitable optimization

routine (not shown) which is arranged to optimize a parameter "scan time" while keeping other parameters within acceptable level. Examples of such parameters are spatial or temporal resolution, expected image contrast, signal to noise ratio, artifact sensitivity, etc.
It is possible that in some circumstances that it is not desirable to adjust every handling within the selected sequence. In this case, the method according to the invention after step 8 proceeds to step 16, whereat unalterable sub-sequence 16a' within said sequence 16a is detected. The respective duration 16b' of the unalterable handling 16a' is detected as well. Furtheron at step 13, the duration 16b' is subtracted from the allowable duration yielding further allowable duration and the remaining sub-sequence 16a" is adjusted at step 15 so that it's cumulative duration 16b" fits into the further allowable duration. As a result, the corresponding sub-sequences 16a' and 16a" are combined at step 17 yielding thus adjusted sequence 16a at step 18 fitting into the allowable duration as determined at step 8. Preferably, the unalterable handling is identified at step 12a by automatic means. Alternatively, it can be assigned as such by the user interactively at step 12b. Still preferably, at step 11 the user is prompted on the assignment of the unalterable handling for quality control purposes. Still preferably the adjusted sequence is executed at step 19.
Figure 2 presents in a schematic way an embodiment of a system 20 according to the invention. The system for diagnostic workflow management according to the invention comprises an input 21 for accessing a template (not shown) comprising a sequence of handlings with their corresponding durations and for accessing available time span ( not shown) for executing said sequence. The system 20 further comprises computing means 23 for calculating a difference between said available time span and a sum of corresponding durations, processing means 25 for assigning an allowable duration for said sequence based on said difference, optimization means 27 for adjusting the sequence to temporally fit into the allowable duration.
Preferably, the system according to the invention is implemented as a control unit with is arranged in electronic communication with a suitable data acquisition unit 32 of a medical apparatus 30. The computing means 23 of the system according to the invention is preferably implemented as an electronic calculator for computing a difference between the available time span and a sum of corresponding durations of individual handlings within the selected sequence. Processing means 5 of the system according to the invention is arranged to assign the allowable duration for the sequence based on said difference. The allowable duration may be shorter than initially envisaged due to a lack of time, or, alternatively, it may be longer than the initially envisaged duration due to surplus of available time. Preferably,

the system 20 according to the invention further comprises a tagging means 28 arranged to inhibit a sub-sequence (not shown) from being altered. The tagging means may be implemented as a computer code 28 for searching handling's entries for pre-determined flags, like type of handling, its planned time, its status or the like. Preferably, the handling entries are stored in DICOM format.
Figure 3 presents in a schematic way an embodiment of a flow-chart exemplifying the computer program according to the invention. The computer program 40 for enabling a diagnostic workflow management according to the invention comprises instructions for causing a processor (not shown) to carry out the following steps: at step 44 a template comprising a sequence of handlings 44a with their respective durations 44b is accessed; at step 42 an available time span for executing said sequence is accessed. At step 46 a difference between said available time span and a sum of corresponding duration is calculated, whereby at step 48 an allowable duration for executing said sequence is assigned based on said difference. At step 54 the sequence is adjusted yielding adjusted sequence 54a with adjusted respective durations 54b by temporally fitting respective handlings thus fitting into said allowable duration. Preferably, the step of adjusting the sequence at step 54 is performed using a suitable optimization routine (not shown) which is arranged to optimize a parameter "scan time" while keeping other parameters within acceptable level. Examples of such parameters are spatial or temporal resolution, expected image contrast, signal to noise ratio, artifact sensitivity, etc.
Preferably, for circumstances when it is not desirable to adjust every handling within the selected sequence, the computer program 40 according to the invention after step 48 proceeds to step 56, whereat unalterable sub-sequence 56a' within said sequence 56a is detected. The respective duration 56b' of the unalterable handling 56a' is detected as well. Furtheron at step 53, the duration 56b' is subtracted from the allowable duration yielding further allowable duration and the remaining sub-sequence 56a" is adjusted at step 55 so that it's cumulative duration 56b" fits into the further allowable duration. As a result, the corresponding sub-sequences 56a' and 56a" are combined at step 57 yielding thus adjusted sequence at step 58 fitting into the allowable duration as determined at step 48, Preferably, the unalterable handling is identified at step 52a by automatic means using suitable subroutines, A suitable example of such subroutine is a tag detector implemented, for example, as a DICOM reader. Alternatively, it can be assigned as such by the user interactively at step 52b. Still preferably, at step 51 the user is prompted using suitable user interface means (not shown) on the assignment of the unalterable handling for quality control

purposes. Still preferably the computer program 40 according to the invention further comprises an instruction for a suitable data acquisition system to execute the adjusted sequence at step 59.
Figure 4 presents in a schematic way an embodiment of a graphic user interface according to the invention. The graphic user interface 60 is arranged for enabling a diagnostic workflow management comprising of a sequence of handlings. For this purpose the graphic user interface 60 is being projected on a suitable display 62. The graphic user interface 60 comprises a plurality of editable fields 70 arranged to feed back to the user a sequence of handlings together with their respective durations 71. Preferably, such sequence is stored in a suitable database 68 and can be loaded using a suitable data input means 69, preferably arranged by a patient name. In addition, the graphic user interface 69 comprises a first feed back means 72 arranged to display a difference between the time span and the sum of said durations. Further, the graphic user interface 60 comprises a second feedback means 76 arranged to prompt the user for accepting the adjusted sequence. The second feedback means 76 is preferably arranged to communicate with a sequence adjustment module 78 and to prompt the user for accepting the adjusted sequence. An example of a suitable sequence adjustment module is a computer code arranged to implement an optimization algorithm for adjusting respective durations of handlings constituting the sequence.
The graphic user interface 60 preferably still further comprises a graphics window 66 whereto next to an image area 67 information on a sequence implementation scheme 65 is given, whereby a diagram of the entire sequence is given, including current progress information 65a, 65b. Details of the sequence diagram are discussed with reference to Figure 5.'
Preferably, the graphic user interface according to the invention further comprises tagging means 73, 74 arranged to select a sub-sequence within current sequence which may not be adjusted. The tagging means 73 may be implemented as a computer program arranged to automatically select the non-adjustable handlings, whereas the tagging means 74 may be arranged to enable a manual selection or de-selection of the handlings. When the handlings which may not me adjusted are selected, the graphic user interface according to the invention preferably prompts the user on confirmation of the selection using second feedback means 76.
Figure 5 presents in a schematic way an embodiment of a time diagram 65 representing the sequence. Preferably, it is possible to switch between the scan time 61 and the real time 81. the switching operation 75 can be enabled by an actuatable button (not

shown) in the graphic user interface 60 of Figure 4. Alternatively, both scan diagram 61 and real time diagram 81 can be shown. The scan diagram 61 is preferably arranged to feed back the information on the respective handlings 66, 68, 63 and time between data acquisitions 67. Preferably, in case when an additional patient manipulation is taking place, like contrast delivery, the corresponding time instant is also presented by means of a suitable indicator, like an icon. Preferably, the real time diagram 81 further comprises a suitable indicator of current time 82 for user's convenience.

WE CLAIM:
1. A method (1) for a workflow management on a diagnostic apparatus, said
method comprising the steps of:
- accessing a template (4) comprising a sequence of handlings (4a) on the diagnostic apparatus with their corresponding durations (4b);
- accessing available time span (2) on the diagnostic apparatus for executing said sequence;
- calculating a difference (6) between said available time span and a sum of said corresponding durations;
* assigning an allowable duration (8) on the diagnostic apparatus for said sequence based on said difference;
- adjusting (14, 16) the sequence yielding adjusted sequence temporally fitting into the
allowable duration on the diagnostic apparatus.
2. A method according to Claim 1, whereby the step of adjusting the sequence
(16) comprises the steps of:
- identifying unalterable sub-sequence (16a') within said sequence (16a);
- subtracting a duration (16b') of the unalterable sub-sequence from the allowable duration (8) yielding further allowable duration;
- adjusting remaining sub-sequence (16a") within said sequence yielding adjusted sub¬sequence temporally fitting into said further allowable duration;
- combining (17) unalterable sub-sequence with adjusted sub-sequence yielding adjusted sequence.

3. A method according to Claim 2, whereby the step (12a) of identifying unalterable sub-sequence within said sequence is carried out automatically.
4. A method according to any one of the preceding Claims, whereby the method further comprises the step (11) of prompting the user for acceptance of the adjusted sequence.

5. A method according to any one of the preceding Claims, whereby the method further comprises the step (19) of executing the adjusted sequence within the allowable duration.
6. A method according to any preceding claim, wherein for the step of adjusting an optimization routine is used for optimizing a duration of a sub-sequence while preserving other parameters of the sub-sequence within acceptable level.
7. A method according to claim 6, wherein said other parameters are selectable from a group comprising spatial or temporal resolution, image contrast, signal to noise ratio, or artifact sensitivity.
8. A system (20) for a workflow management of a diagnostic apparatus, said system comprising:

- an input (21) for accessing a template comprising sequence of handlings on the diagnostic apparatus with their corresponding durations and for accessing available time span on the diagnostic apparatus for executing said sequence;
- computing means (23) for calculating a difference between said available time span and a sum of corresponding durations;
- processing means (25) for assigning an allowable duration for said sequence based on said difference;
- optimization means (27) for adjusting the sequence to temporally fit into the allowable duration on the diagnostic apparatus.

9. A system according to Claim 8, whereby the system further comprises a tagging means (28) arranged to inhibit a sub-sequence from being adjusted.
10. A system according to Claim 9, whereby the tagging means (28) comprises a computer program (29).
11. A system according to any preceding claim 8-10 further comprising a medical diagnostic apparatus (30) arranged to carry out a sequence of handlings.

12. A computer program (40) for enabling a workflow management of a
diagnostic apparatus, said method comprising instructions for causing a processor to carry
out the following steps:
- accessing (44) a template comprising a sequence of handlings on the diagnostic apparatus with their corresponding durations;
- accessing (42) available time span on the diagnostic apparatus for executing said sequence;
- calculating (46) a difference between said available time span and a sum of corresponding durations;
- assigning (48) an allowable duration for said sequence on the diagnostic apparatus based on said difference;
- adjusting (54) the sequence yielding adjusted sequence temporally fitting into the allowable duration on the diagnostic apparatus.
13. A computer program (40) according to Claim 12, whereby the computer
program comprises further instructions of:
- identifying (52a, 52b) unalterable sub-sequence (56a') within said sequence (56a);
- subtracting duration (56b') of the unalterable sub-sequence (56a') from the allowable duration (48) yielding further allowable duration;
- adjusting (55) remaining sub-sequence within said sequence to temporally fit into said further allowable duration;
- combining (57) unaltered sub-sequence with adjusted sub-sequence yielding adjusted sequence.

14. A computer program (40) according to Claim 13, whereby for the step (52b) of identifying unalterable sub-sequence within said acquisition steps a graphic user interface (60) is used.
15. A computer program according to any preceding claim 12-14, further comprising a graphic user interface (60) for enabling a workflow management on a diagnostic apparatus, said workflow comprising a sequence of handlings on the diagnostic apparatus, said graphic user interface comprising:

- a plurality of editable fields (70) arranged to feed back to the user a sequence of handlings together with their respective durations (71);
- data input means (69) arranged to enable an input of allowable time span on the diagnostic

apparatus for carrying out said sequence;
- first feedback means (72) arranged to display a difference between the time span and the sum of said durations;
- means for adjusting the sequence yielding an adjusted sequence fitting into allowable time span on the diagnostic apparatus;
- second feedback means (76) arranged to prompt the user for accepting the adjusted sequence.

Documents

Name Date
2040-CHENP-2008 FORM-18-26-08-2009.pdf 2009-08-26
2040-chenp-2008-form 5.pdf 2011-09-04
abs-2040-chenp-2008.jpg 2011-09-04
2040-chenp-2008-form 3.pdf 2011-09-04
2040-chenp-2008-form 26.pdf 2011-09-04
2040-chenp-2008-pct.pdf 2011-09-04
2040-chenp-2008-form 1.pdf 2011-09-04
2040-chenp-2008-correspondnece-others.pdf 2011-09-04
2040-chenp-2008-drawings.pdf 2011-09-04
2040-chenp-2008-abstract.pdf 2011-09-04
2040-chenp-2008-claims.pdf 2011-09-04
2040-CHENP-2008_EXAMREPORT.pdf 2016-07-02
2040-chenp-2008-description(complete).pdf 2011-09-04

Orders

Applicant Section Controller Decision Date URL