Abstract: The present invention enables continuous measurement of engine exhaust gas while substantially eliminating the user"s need to move a test chamber in which an engine is installed and replace a filter. According to the present invention, there are provided a first filter flow path (41) provided with a first filter (5), a second filter flow path (42) provided with a second filter (7), an exhaust gas analyzing part (3) for analyzing exhaust gas passing through the first filter (5) or the second filter (7), a flow path switching mechanism (9) for a switching between the first filter flow path (41) and the second filter flow path (42), and a pulse purge mechanisms (10) for supplying purge gas to the filters (5, 7) in the filter flow paths (41, 42) in a pulsed manner, and in the case where a pressure difference between an upstream side and a downstream side of the filter provided in one filter flow path in which the exhaust gas flows becomes equal to or larger than a predetermined value, the one filter flow path is switched to the other filter flow path, and purge gas is supplied to the filter provided in the one filter flow path in the pulsed manner. Fig. 1
Technical Field
The present invention relates to an exhaust gas analyzing apparatus for analyzing
exhaust gas discharged from internal combustion engines of vehicles and the like or external
combustion engines of steam turbines and the like.
Background Art
As described in Patent Literature 1, in a conventional exhaust gas analyzing
apparatus, an introduction path for introducing exhaust gas discharged from an engine
e 10 installed in a test chamber is equipped with a dust filter for removing dusts and soot in the
exhaust gas. The dust filter is clogged with adhered dusts and soot and thus, needs to be
replaced periodically (for example, every eight hours).
However, since the dust filter is often arranged in the test chamber, a user need to
15 enter the test chamber to replace the dust filter. The test chamber is under high temperatures
due to activation of the engine of the vehicle or the like, and moreover, the dust filter is
arranged in the vicinity of the engine or the exhaust pipe under high temperatures.
Accordingly, the user has to replace the dust filter in a high-temperature environment and
bear an enormous load. Moreover, the operation of replacing the dust filter is performed in
20 the vicinity of the engine or the exhaust pipe under high temperatures, which is dangerous.
The operation of replacing the dust filter can be performed after the engine or the exhaust
pipe is cooled. In this case, however, it takes a long time to start next measurement of the
exhaust gas.
25 In recent years, continuous measurement (for example, 24-hour continuous
measurement and 48-hour continuous measurement) of the engine of the vehicles and the like
2
has been demanded. However, as described above, continuous measurement needs to be
stopped to replace the dust filter. Therefore, it is difficult to make desired continuous
measurement.
Citation List
Patent Literature
Patent Literature 1 : JPA 2006-1 53746
Summary of Invention
Technical Problem
The present invention is conceived to solve all of the above-mentioned problems,
and its object is to substantially eliminate an operation of replacing a filter by a user moving
to a place where the filter is installed, such as a test chamber in which an engine is placed,
thereby enabling continuous measurement of exhaust gas discharged from the engine.
Solution to Problem
An exhaust gas analyzing apparatus for analyzing exhaust gas according to the
present invention includes a first filter flow path provided with a first filter for passing the
exhaust gas therethrough and a first sensor for detecting clogging of the first filter; a second
filter flow path provided with a second filter for passing the exhaust gas therethrough and a
second sensor for detecting clogging of the second filter; an exhaust gas analyzing part for
analyzing the exhaust gas passing through the first filter or the second filter; a flow path
'I
switching mechanism for selectively passing the exhaust gas to the first filter flow path or the
second filter flow path; and a pulse purge mechanism provided in each of the filter flow paths,
3
the mechanism supplying purge gas to each of the filters in a pulsed manner, and in the case
where an output value of the sensor provided in one filter flow path, to which the flow path
switching mechanism passes the exhaust gas, falls outside a predetermined range, the one
filter flow path, to which the flow path switching mechanism passes the exhaust gas, is
5 switched to the other filter flow path, and the pulse purge mechanism supplies the purge gas
to the filter provided in the one filter flow path in a pulsed manner.
With such configuration, in the case where the output value of the sensor falls
outside the predetermined range due to clogging of the filter provided in one filter flow path
in which the exhaust gas flows, the filter flow path in which the exhaust gas flows is switched
to the other filter flow path, enabling continuous measurement of the exhaust gas. Further,
following switching to the other filter, the purge gas is supplied in the pulsed manner to one
filter that has clogging and requires washing and therefore, the one filter can be washed and
recycled without being replaced. By sequentially switching between the first filter and the
second filter in this manner, the need to suspend measurement for filter replacement is
eliminated, enabling continuous measurement. Furthermore, since the pulse purge
mechanism supplies the purge gas in the pulsed manner, the high-pressure gas can be
efficiently supplied to the filter without increasing a capacity of a compressor of the pulse
purge mechanism.
Examples of the sensor (the first sensor, the second sensor) provided in the filter
flow path (the first filter flow path, the second filter flow path) include (1) a pressure sensor
for detecting a pressure difference between the upstream side and the downstream side of the
filter, (2) a pressure sensor for detecting the pressure of either an upstream side or a
downstream side of the filter, (3) a flow rate sensor for detecting the flow rate in the filter,
and (4) a combination of the pressure sensor for detecting the pressure of either the upstream
4
side or the downstream side of the filter and the flow rate sensor for detecting the flow rate in
the filter. At this time, the output value of the sensor falling outside the predetermined range
means that the pressure difference acquired by the pressure sensor becomes equal to or larger
than a predetermined value in the case of (I), the pressure on the upstream side of the filter,
5 which is acquired by the pressure sensor, becomes equal to or larger than a predetermined
value or the pressure on the downstream side of the filter, which is acquired by the pressure
sensor, becomes equal to or smaller than the predetermined value in the case of (2), the flow
rate acquired by the flow rate sensor becomes equal to or smaller than a predetermined value
in the case of (3), and the flow rate acquired by the flow rate sensor becomes equal to or
10 smaller than a predetermined value with respect to the pressure acquired by the pressure
sensor in the case of (4).
In the case where the flow path switching mechanism switches the flow path
between the first filter flow path and the second filter flow path, since the purge gas remains
15 in the filter as a destination, the exhaust gas is diluted with the purge gas, and the
concentration of components in the exhaust gas measured by the exhaust gas analyzing part
temporarily lowers. For this reason, when the flow path is automatically switched while
focusing on variation in the component concentration with time, the usability deteriorates
instead. To solve this problem, it is preferred that the flow path switching mechanism can
e 20 select the switching timing from an automatic mode of automatically performing switching in
the case where the output value of the sensor falls outside the predetermined range and a
manual mode of manually performing switching by the user. Since the automatic mode or
the manual mode can be selected, by selecting the manual mode when focusing on variation
in the component concentration with time, it is possible to prevent the flow path from being
25 automatically switched to temporarily lower the component concentration.
In the case where the one filter flow path is switched to the other filter flow path,
when the other filter as the switching destination is under low temperatures, the measured
components in the exhaust gas are aggregated, exerting a negative effect on a measurement
result. Thus, it is desired that, before the flow path switching mechanism switches the filter
5 flow path in which the exhaust gas flows to the other filter flow path, the filter provided in
the other filter flow path is heated in advance.
It is desired that, in the case where the pulse purge mechanism supplies the purge gas
in the pulsed manner, the purge gas supplied in the pulsed manner heats the filter. By
supplying the purge gas to the heated filter, a filtrated material adhered to the filter can be
easily removed.
Advantageous Effects of Invention
According to the present invention thus configured, for example, the operation of
moving to a filter installation site such as a test chamber in which the engine is installed and
replacing the filter is substantially eliminated, enabling continuous measurement of the
exhaust gas discharged from the engine.
Brief Description of Drawings
Fig. 1 is a diagram schematically showing a configuration of an exhaust gas
analyzing apparatus in the present embodiment;
Fig. 2 is a diagram showing a state where the exhaust gas flows in a first filter flow
25 path;
Fig. 3 is a diagram showing a state immediately after switching from the first filter
6
flow path to a second filter flow path; and
Fig. 4 is a diagram showing variation in the pressure difference between an upstream
side and a downstream side of a filter, which is caused by pulsed purge.
Description of Embodiments
An embodiment of an exhaust gas analyzing apparatus according to the present
invention will be described below referring to figures.
An exhaust gas analyzing apparatus 1 in the present embodiment is provided in a test
chamber in which an engine of a vehicle not shown to analyze exhaust gas discharged from
the engine. The exhaust gas analyzing apparatus 1 exchanges various data including
analysis data and schedule data with a central manager in a measurement chamber separated
from the test chamber via, for example, LAN.
Specifically, as shown in Fig. 1, the exhaust gas analyzing apparatus 1 includes an
introduction port 2 for introducing exhaust gas discharged from the engine, an exhaust gas
analyzing part 3 for analyzing the exhaust gas introduced from the introduction port 2, and an
introduction path 4 for connecting the introduction port 2 to the exhaust gas analyzing part 3
and guiding the exhaust gas introduced from the introduction port 2 to the exhaust gas
analyzing part 3. The exhaust gas analyzing part includes a plurality of different gas
analyzers having different measurement principles, thereby individually measuring
components contained in the exhaust gas, such as HC, NOx, CO, and COz.
The introduction path 4 includes a first filter flow path 41 provided with a first filter
5 for passing exhaust gas therethrough and a first pressure sensor 6 for detecting a pressure
7
difference between an upstream side and a downstream side of the first filter 5, and a second
filter flow path 42 provided with a second filter 7 for passing the exhaust gas therethrough
and a second pressure sensor 8 for detecting a pressure difference between an upstream side
and a downstream side of the second filter 7. The first filter 5 and the second filter 7 each
are, for example, a filter made of a fibrous material formed of glass wool, or a surface
filtration filter produced by winding a sheet body, into which a linear body made of metal
such as stainless steel is knitted, in a cylindrical fashion. The surface filtration filter can be
easily washed, in the case where pulse purge mechanisms 10 described later supplies purge
gas from the downstream side in a pulsed manner.
The first filter flow path 41 and the second filter flow path 42 are provided between
a branch point 4a of the introduction path 4 on the upstream side and a meeting point 4b of
the introduction path 4 on the downstream side in parallel with each other. On a way to the
exhaust gas analyzing part 3 in the introduction path 4, a hot hose for keeping the temperature
of the exhaust gas at about 130°C and a flow rate control part (for example, regulator) are
attached.
The introduction path 4 is further provided with a flow path switching mechanism 9
for selectively passing the exhaust gas to the first filter flow path 41 or the second filter flow
path 42, and the pulse purge mechanisms 10 that are provided in the respective filter flow
paths 41, 42 and supply the purge gas to the filters 5, 7 from the downstream side in the
pulsed manner. The pulse purge mechanisms 10 constitute filter washing mechanisms for
washing the filters 5, 7.
The flow path switching mechanism 9 has, as shown in Fig. 1, a first upstream side
on-off valve V1 provided on the upstream side of the first filter 5 in the first filter flow path
8
4 1, a second upstream side on-off valve V2 provided on the upstream side of the second filter
7 in the second filter flow path 42, and a switching control part 91 for controlling the first and
second upstream side on-off valves V1, V2. The first upstream side on-off valve VI and the
second upstream side on-off valve V2 each are, for example, an electromagnetic valve. The
5 switching control part 91 controls open/close of the first upstream side on-off valve V1 and
the second upstream side on-off valve V2 to "first upstream side on-off valve V1: open,
second upstream side on-off valve V2: close" or "first upstream side on-off valve V1: close,
second upstream side on-off valve V2: open", thereby selectively passing the exhaust gas to
either the first filter flow path 41 or the second filter flow path 42. Specifically, the
10 switching control part 91 acquires pressure data from the pressure sensors 6, 8 of the filter
flow paths 41, 42 through which the exhaust gas flows, compares a measurement value
(pressure difference) indicated by the pressure data with a pre-input predetermined threshold,
and in the case where the measurement value is larger than the predetermined threshold,
controls the upstream side on-off valves V1, V2 to switch between the filter flow paths 41,42
15 through which the exhaust gas flows. The predetermined threshold is a reference pressure
difference for switching between the filter flow paths 41, 42 and specifically, is a pressure
difference indicating that the filters 5, 7 are clogged.
I In the present embodiment, since the pulse purge mechanisms 10 are provided as
20 described later, first and second downstream side on-off valves V3, V4 are also provided on
the downstream side of the first filter 5 and the downstream side of the second filter 7,
respectively. The first and second downstream side on-off valves V3, V4 each are for
example, an electromagnetic valve. The switching control part 91 sets the operation of the
first downstream side on-off valve V3 to be the same as the operation of the first upstream
25 side on-off valve V I, and the operation of the second downstream side on-off valve V4 to
be the same as the operation of the second upstream side on-off valve V2. That is, the first
9
filter flow path 41 is tightly shut by closing the first upstream side on-off valve V1 and the
first downstream side on-off valve V3. Similarly, the second filter flow path 42 is tightly
shut by closing the second upstream side on-off valve V2 and the second downstream side
on-off valve V4.
As shown in Fig. 1, the pulse purge mechanism 10 provided in each of the filter flow
paths 41, 42 includes a purge gas introduction path 101 connected to the downstream side of
the filters 5, 7 in the filter flow paths 41, 42, a purge gas lead-out path 102 connected to the
upstream side of the filters 5, 7, a purge gas supplying part 103 for supplying the purge gas to
the purge gas introduction path 101, and a gas supply control part 104 for controlling the
operation of the purge gas supplying part 103 to supply the purge gas in the pulsed manner.
The purge gas introduction path 101 is connected to the upstream side of each of the first and
second downstream side on-off valves V3, V4 and is provided with an on-off valve V5. The
purge gas lead-out path 102 is connected to the downstream side of the first and second
upstream side of each of on-off valves V1, V2, and is provided with an on-off valve V6.
The on-off valves V5, V6 each are, for example, an electromagnetic valve, and is controlled
in opening/closing by a valve control part 105. The purge gas supplying part 103 has a
compressor for compressing the purge gas into high-pressure gas.
In the case where the filters 5, 7 are washed, the valve control part 105 opens the
on-off valves V5,, V6 provided in the purge gas introduction paths 101 and the purge gas
lead-out paths 102, and the gas supply control part 104 controls the purge gas supplying parts
103, thereby supplying the high-pressure purge gas from the downstream side of the filters 5,
7, that is, in a direction reverse to the exhaust gas flowing direction one or more times in the
pulsed manner. Supplying in the pulsed manner means that the purge gas is supplied for a
few seconds (for example, one second). The number of times of such pulsed supply varies
10
depending on a type of the engine (type of the exhaust gas). At this time, both of the
upstream side on-off valve (V1 or V2) and the downstream side on-off valve (V3 or V4) in
the filter flow path (41 or 42) supplying the purge gas are closed to prevent the purge gas
from flowing into the filter flow path, through which the exhaust gas is flowing, and diluting
5 the exhaust gas. That is, for example, when the purge gas is supplied to the first filter 5 in
the first filter flow path 41, the purge gas is not flown to the second filter flow path 42.
Control equipment including the switching control part 91 of the flow path switching
mechanism 9, and the gas supply control part 104 and the valve control part 105 of the pulse
10 purge mechanisms 10 may be configured to function as one computer (including, for example,
a CPU, a memory, an inputloutput interface, an AD converter, and a display), or function as a
plurality of physically-separated computers.
Next, the operation of the exhaust gas analyzing apparatus 1 thus configured will be
15 described.
As shown in Fig. 2, in the case where the exhaust gas is passed to the first filter flow
path 4 1 and the exhaust gas flowing in the first filter flow path 41 is analyzed by the exhaust
gas analyzing part 3, the first pressure sensor 6 detects the pressure difference between the
upstream side and the downstream side of the first filter 5, and the pressure data is inputted
20 into the switching control part 91 of the flow path switching mechanism 9.
In the case where the pressure difference indicated by the pressure data falls outside
a predetermined range, that is, becomes equal to or larger than a predetermined value, the
switching control part 91 of the flow path switching mechanism 9 determines that the first
25 filter 5 is clogged, closes the first upstream side on-off valve V1 and the first downstream
side on-off valve V3, and opens the second upstream side on-off valve V2 and the second
11
through which the exhaust gas flows is switched from the first filter flow path 41 to, the
second filter flow path 42. It is preferred that the first filter 5 and the second filter 7 each
includes a filter heating part (not shown), and before the switching, the second filter 7 as a
5 destination is heated to a desired temperature (for example, 1 9 1 OC) in advance.
Following this switching, the valve control part 105 of pulse purge mechanism 10
acquires a switching signal representing the switching from the switching control part 91, and
I ~ opens the on-off valve V5 in the purge gas introduction path 101 and the on-off valve V6 in
I 10 the purge gas lead-out path 102, and the gas supply control part 104 controls the ' purge gas supplying part 103 to supply the purge gas to the first filter 5 in the pulsed manner. In this
manner, the first filter 5 can be washed and recycled. Fig. 4 shows relationship between the
I number of times of pulsed supply and the pressure difference between the filter upstream side
and downstream side. In Fig. 4, the filter can be recovered to the state at a start of
15 measurement by supplying the purge gas in the pulsed manner four times. In the present
I embodiment, since the first filter 5 and the second filter 7 are heated by the respective filter
heating parts (not shown) at all times, even when the pulse purge mechanism 10 supplies the
purge gas in the pulsed manner, the first filter 5 is heated. This simplifies removal of a
filtered material adhered to the first filter 5. Further, since the first filter 5 and the second
20 filter 7 are heated at all times, even in the case where the flow path switching mechanism 9
irregularly switches between the first filter 5 and the second filter 7, switching to the heated
filter is possible.
By repeating the above-mentioned operation, in the continuous measurement of the
25 exhaust gas, "flowing of the exhaust gas in the first filter flow path 41", "detection of
contamination of the first filter 5", "switching of the flow path", "flowing of the exhaust gas
12
in the second filter flow path 42 and pulsed purge of the first filter 5", "detection of
contamination of the second filter 7", "switching of the flow path", "flowing of the exhaust
gas in the first filter flow path 41 and pulsed purge of the second filter 7" are sequentially
performed.
In the exhaust gas analyzing apparatus 1, thus configured in the present embodiment,
in the case where the pressure difference between the upstream side and the downstream side
of the filter (first filter 5) provided in one filter flow path (for example, the first filter flow
path 41) through which the exhaust gas flows becomes equal to or larger than the
predetermined value due to clogging or the like, the filter flow path through which the
exhaust gas flows is switched to the other filter flow path .(second filter flow path 42);
enabling continuous measurement of the exhaust gas. After switching to the other filter
(second filter 7), the purge gas is supplied in the pulsed manner to the one filter (first filter 5)
that has clogging or the like and requires washing. Thus, the one filter (first filter 5) can be
washed and recycled without being replaced. By sequentially switching between the first
filter 5 and the second filter 7 in this manner, continuous measurement can be achieved
without suspension due to filter replacement. Further, since the pulse purge mechanism 10
supplies the purge gas in the pulsed manner, the high-pressure gas can be efficiently supplied
to the filters 5, 7 without increasing a capacity of the compressor 103 of the pulse purge
mechanism 10.
The present invention is not limited to the embodiment.
For example, in the embodiment, in the case where the pressure difference acquired
25 by the pressure sensor becomes equal to or larger than the predetermined value, the flow path
switching mechanism automatically switches the filter flow path through which the exhaust
13
gas flows. However, it may be configured that the user can select the automatic mode in
I which the flow path is automatically switched or a manual mode in which the user manually
switches the flow path. In this case, the control equipment may include a mode selection
I signal accepting part for accepting a mode selection signal from the user, and the user may
5 manipulate input means of the control equipment to select the mode. Since the automatic
mode or the manual mode can be selected, by selecting the manual mode when focusing on
variation in the component concentration or the like, it is possible to prevent the flow path
I
I from being automatically switched to temporarily lower the component concentration. Even
when the manual mode is selected, in the case where the pressure difference acquired by the
10 pressure sensor becomes equal to or larger than a predetermined value, for example, an alarm
may be displayed on a display to inform it to the user. Even in the manual mode, this can
prompt the user to switch the filter.
In the embodiment, the pulsed purge of the filter by the pulse purge mechanism is
15 controlled based on the number of times of pulsed supply. However, it may be controlled
based on time taken for the pulsed supply. Alternatively, when the pressure difference
between the upstream side and the downstream side of the filter becomes equal to or smaller
than a predetermined value, pulsed purge of the filter may be finished.
@ XI In the embodiment, in performing pulsed purge of the filter, the filter is heated by
use of the filter heating part. However, the purge gas itself may be heated to high
temperatures (for example, 191°C), and the high-temperature purge gas may be supplied to
the filter in the pulsed manner. This can heat the filter under pulsed purge to promote
removal of the filtrated material. Moreover, the purge gas can heat the filter as the
25 destination.
In the embodiment, the first filter and the second filter are heated at all times.
However, the filters need not be heated at all times. For example, the filter through which
the exhaust gas passes may be heated, the filter as the destination may be previously heated
prior to switching, or the purge gas supplied in the pulsed manner may heat the filter.
5
In addition, the sensor for detecting clogging of the filter may be the pressure sensor
for detecting the pressure difference between the upstream side and the downstream side of
the filter, a pressure sensor for detecting the pressure on either the upstream side or the
downstream side of the filter, or a flow rate sensor for detecting the flow rate in the filter.
10
0 Although the engine exhaust gas is analyzed in the embodiment, the exhaust gas
discharged from the external combustion engine of a steam turbine and the like may be
analyzed.
15 The present invention is not limited to the embodiment, and as a matter of course,
may be variously modified without deviating fiom its subject matter.
Reference Signs List
1: Exhaust gas analyzing apparatus
20 2: Introduction port
3: Exhaust gas analyzing part
4: Introduction path
41 : First filter flow path
42: Second filter flow path
25 5: First filter
6: First pressure sensor (first sensor)
15
7: Second filter
8: Second pressure sensor (second sensor)
9: Flow path switching mechanism
10: Pulse purge mechanism
5
CLAIMS
We Claim :
1. An exhaust gas analyzing apparatus (1) for analyzing exhaust gas, the apparatus
5 comprising:
a first filter flow path (4 1) provided with a first filter (5) for passing the exhaust gas
therethrough and a first sensor (6) for detecting clogging of the first filter;
a second filter flow path (42) provided with a second filter (7) for passing the
exhaust gas therethrough and a second sensor (8) for detecting clogging of the second filter;
10 an exhaust gas analyzing part (3) for analyzing the exhaust gas passing through the
first filter or the second filter;
a flow path switching mechanism (9) for selectively passing the exhaust gas to the
first filter flow path or the second filter flow path; and
a pulse purge mechanism (10) provided in each of the filter flow paths, the pulse
15 purge mechanism supplying purge gas to each of the filters in a pulsed manner, wherein
in the case where an output value of the sensor provided in one filter flow path, to
which the flow path switching mechanism passes the exhaust gas, falls outside a
predetermined range, the one filter flow path, to which the flow path switching mechanism
passes the exhaust gas, is switched to the other filter flow path, and the pulse purge
20 mechanism supplies the purge gas to the filter provided in the one filter flow path in a pulsed
manner.
2. The exhaust gas analyzing apparatus as claimed in claim 1, wherein
the flow path switching mechanism can select a switching timing from an automatic
25 mode of automatically performing switching in the case where the output value of the sensor
falls outside the predetermined range and a manual mode of manually performing switching
17
by a user.
3. The exhaust gas analyzing apparatus as claimed in claim 1, wherein
before the flow path switching mechanism switches the filter flow path in which the
5 exhaust gas flows to the other filter flow path, the filter provided in the other filter flow path
is heated in advance.
4. The exhaust gas analyzing apparatus as claimed in claim 1, wherein
in the case where the pulse purge mechanism supplies the purge gas in the pulsed
manner, the purge gas supplied in the pulsed
| # | Name | Date |
|---|---|---|
| 1 | 1530-del-2013-Form-3-(02-08-2013).pdf | 2013-08-02 |
| 1 | 1530-DEL-2013-IntimationOfGrant25-01-2024.pdf | 2024-01-25 |
| 2 | 1530-del-2013-Form-1-(02-08-2013).pdf | 2013-08-02 |
| 2 | 1530-DEL-2013-PatentCertificate25-01-2024.pdf | 2024-01-25 |
| 3 | 1530-DEL-2013-Written submissions and relevant documents [23-01-2024(online)].pdf | 2024-01-23 |
| 3 | 1530-del-2013-Correspondence-Others-(02-08-2013).pdf | 2013-08-02 |
| 4 | 1530-DEL-2013-FORM 3 [09-01-2024(online)].pdf | 2024-01-09 |
| 4 | 1530-del-2013-Correspondence Others-(09-12-2013).pdf | 2013-12-09 |
| 5 | 1530-del-2013-GPA.pdf | 2014-01-02 |
| 5 | 1530-DEL-2013-FORM-26 [05-01-2024(online)].pdf | 2024-01-05 |
| 6 | 1530-del-2013-Form-5.pdf | 2014-01-02 |
| 6 | 1530-DEL-2013-Correspondence to notify the Controller [02-01-2024(online)].pdf | 2024-01-02 |
| 7 | 1530-DEL-2013-US(14)-HearingNotice-(HearingDate-09-01-2024).pdf | 2023-11-28 |
| 7 | 1530-del-2013-Form-3.pdf | 2014-01-02 |
| 8 | 1530-DEL-2013-Response to office action [14-03-2023(online)].pdf | 2023-03-14 |
| 8 | 1530-del-2013-Form-2.pdf | 2014-01-02 |
| 9 | 1530-del-2013-Form-1.pdf | 2014-01-02 |
| 9 | 1530-DEL-2013-Response to office action [11-05-2020(online)].pdf | 2020-05-11 |
| 10 | 1530-del-2013-Drawings.pdf | 2014-01-02 |
| 10 | 1530-DEL-2013-OTHERS-020419-.pdf | 2019-04-13 |
| 11 | 1530-DEL-2013-Correspondence-020419.pdf | 2019-04-09 |
| 11 | 1530-del-2013-Description (Complete).pdf | 2014-01-02 |
| 12 | 1530-del-2013-Correspondence-others.pdf | 2014-01-02 |
| 12 | 1530-DEL-2013-OTHERS-020419.pdf | 2019-04-09 |
| 13 | 1530-del-2013-Claims.pdf | 2014-01-02 |
| 13 | 1530-DEL-2013-Power of Attorney-020419.pdf | 2019-04-09 |
| 14 | 1530-DEL-2013-2. Marked Copy under Rule 14(2) (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 14 | 1530-del-2013-Abstract.pdf | 2014-01-02 |
| 15 | 1530-DEL-2013-ABSTRACT [29-03-2019(online)].pdf | 2019-03-29 |
| 15 | 1530-del-2013-Correspondence Others-(26-12-2014).pdf | 2014-12-26 |
| 16 | 1530-DEL-2013-Certified Copy of Priority Document (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 16 | 1530-DEL-2013-FORM3 [30-04-2018(online)].pdf | 2018-04-30 |
| 17 | 1530-DEL-2013-FER.pdf | 2018-10-04 |
| 17 | 1530-DEL-2013-CLAIMS [29-03-2019(online)].pdf | 2019-03-29 |
| 18 | 1530-DEL-2013-COMPLETE SPECIFICATION [29-03-2019(online)].pdf | 2019-03-29 |
| 18 | 1530-DEL-2013-Verified English translation (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 19 | 1530-DEL-2013-DRAWING [29-03-2019(online)].pdf | 2019-03-29 |
| 19 | 1530-DEL-2013-Retyped Pages under Rule 14(1) (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 20 | 1530-DEL-2013-FER_SER_REPLY [29-03-2019(online)].pdf | 2019-03-29 |
| 20 | 1530-DEL-2013-OTHERS [29-03-2019(online)].pdf | 2019-03-29 |
| 21 | 1530-DEL-2013-FORM 3 [29-03-2019(online)].pdf | 2019-03-29 |
| 21 | 1530-DEL-2013-Information under section 8(2) (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 22 | 1530-DEL-2013-FORM-26 [29-03-2019(online)].pdf | 2019-03-29 |
| 23 | 1530-DEL-2013-FORM 3 [29-03-2019(online)].pdf | 2019-03-29 |
| 23 | 1530-DEL-2013-Information under section 8(2) (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 24 | 1530-DEL-2013-OTHERS [29-03-2019(online)].pdf | 2019-03-29 |
| 24 | 1530-DEL-2013-FER_SER_REPLY [29-03-2019(online)].pdf | 2019-03-29 |
| 25 | 1530-DEL-2013-Retyped Pages under Rule 14(1) (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 25 | 1530-DEL-2013-DRAWING [29-03-2019(online)].pdf | 2019-03-29 |
| 26 | 1530-DEL-2013-COMPLETE SPECIFICATION [29-03-2019(online)].pdf | 2019-03-29 |
| 26 | 1530-DEL-2013-Verified English translation (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 27 | 1530-DEL-2013-CLAIMS [29-03-2019(online)].pdf | 2019-03-29 |
| 27 | 1530-DEL-2013-FER.pdf | 2018-10-04 |
| 28 | 1530-DEL-2013-Certified Copy of Priority Document (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 28 | 1530-DEL-2013-FORM3 [30-04-2018(online)].pdf | 2018-04-30 |
| 29 | 1530-DEL-2013-ABSTRACT [29-03-2019(online)].pdf | 2019-03-29 |
| 29 | 1530-del-2013-Correspondence Others-(26-12-2014).pdf | 2014-12-26 |
| 30 | 1530-DEL-2013-2. Marked Copy under Rule 14(2) (MANDATORY) [29-03-2019(online)].pdf | 2019-03-29 |
| 30 | 1530-del-2013-Abstract.pdf | 2014-01-02 |
| 31 | 1530-del-2013-Claims.pdf | 2014-01-02 |
| 31 | 1530-DEL-2013-Power of Attorney-020419.pdf | 2019-04-09 |
| 32 | 1530-del-2013-Correspondence-others.pdf | 2014-01-02 |
| 32 | 1530-DEL-2013-OTHERS-020419.pdf | 2019-04-09 |
| 33 | 1530-DEL-2013-Correspondence-020419.pdf | 2019-04-09 |
| 33 | 1530-del-2013-Description (Complete).pdf | 2014-01-02 |
| 34 | 1530-del-2013-Drawings.pdf | 2014-01-02 |
| 34 | 1530-DEL-2013-OTHERS-020419-.pdf | 2019-04-13 |
| 35 | 1530-del-2013-Form-1.pdf | 2014-01-02 |
| 35 | 1530-DEL-2013-Response to office action [11-05-2020(online)].pdf | 2020-05-11 |
| 36 | 1530-DEL-2013-Response to office action [14-03-2023(online)].pdf | 2023-03-14 |
| 36 | 1530-del-2013-Form-2.pdf | 2014-01-02 |
| 37 | 1530-DEL-2013-US(14)-HearingNotice-(HearingDate-09-01-2024).pdf | 2023-11-28 |
| 37 | 1530-del-2013-Form-3.pdf | 2014-01-02 |
| 38 | 1530-del-2013-Form-5.pdf | 2014-01-02 |
| 38 | 1530-DEL-2013-Correspondence to notify the Controller [02-01-2024(online)].pdf | 2024-01-02 |
| 39 | 1530-del-2013-GPA.pdf | 2014-01-02 |
| 39 | 1530-DEL-2013-FORM-26 [05-01-2024(online)].pdf | 2024-01-05 |
| 40 | 1530-DEL-2013-FORM 3 [09-01-2024(online)].pdf | 2024-01-09 |
| 40 | 1530-del-2013-Correspondence Others-(09-12-2013).pdf | 2013-12-09 |
| 41 | 1530-DEL-2013-Written submissions and relevant documents [23-01-2024(online)].pdf | 2024-01-23 |
| 41 | 1530-del-2013-Correspondence-Others-(02-08-2013).pdf | 2013-08-02 |
| 42 | 1530-del-2013-Form-1-(02-08-2013).pdf | 2013-08-02 |
| 42 | 1530-DEL-2013-PatentCertificate25-01-2024.pdf | 2024-01-25 |
| 43 | 1530-del-2013-Form-3-(02-08-2013).pdf | 2013-08-02 |
| 43 | 1530-DEL-2013-IntimationOfGrant25-01-2024.pdf | 2024-01-25 |
| 1 | search_06-03-2018.pdf |