Sign In to Follow Application
View All Documents & Correspondence

Exhaust Gas Measurement System

Abstract: In order to surely remove deposits attached on the inner wall of an exhaust gas pipe 10, an exhaust gas measurement system 100 that measures components contained in the exhaust gas of an internal combustion engine is adapted to include: an exhaust gas piping member 10 into which the exhaust gas is introduced; a purge gas supply mechanism 50 adapted to supply purge gas to the exhaust gas piping member 10; a heating mechanism 60 adapted to heat the exhaust gas piping member 10; and a control mechanism 70 adapted to, after the heating mechanism 60 has heated the exhaust gas piping member 10 or the exhaust gas flowing through the exhaust gas piping member 10 to a predetermined temperature, control the purge gas supply mechanism 50 to start supplying the purge gas.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
15 April 2016
Publication Number
45/2016
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
gipindia.ipr@gmail.com
Parent Application

Applicants

HORIBA, Ltd.
2, Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto-shi, Kyoto 601-8510, Japan

Inventors

1. OTSUKI, Yoshinori
c/o HORIBA, Ltd., 2, Miyanohigashi-cho, Kisshoin, Minami-ku, Kyoto-shi, Kyoto 601-8510, Japan

Specification

Technical Field
[0001]
The present invention relates to an exhaust gas measurement system adapted to
measure components contained in the exhaust gas of an internal combustion engine.
5
Description of the Related Art
[0002]
As a method for measuring the mass of particulate matter (hereinafter also referred to
as PM) contained in exhaust gas, for example, as disclosed in Patent Literature 1, there is
10 known a so-called filter weighing method that collects PM by providing a filter in an exhaust
gas pipe through which exhaust gas flows, and then weighs the mass of the collected PM.
[0003]
When measuring exhaust gas components using some method such as the
above-described filter weighing method, if there are deposits on the inner wall of the exhaust
15 gas pipe, the deposits may peel off to cause a measurement error, and therefore it is adapted
to remove the deposits before the measurement by flowing purge gas through the exhaust gas
pipe.
[0004]
When doing this, if substances such as gaseous components contained in the exhaust
20 gas are condensed and attached on the inner wall, such deposits are difficult to remove only
by flowing the purge gas, and therefore it is adapted to peel and remove the condensed
substances such as the condensed gaseous components from the inner wall by heating the
exhaust gas pipe while flowing the purge gas.
[0005]
25 However, since this method heats the exhaust gas pipe while supplying the purge gas,
it is impossible to sufficiently raise the temperature of the exhaust gas pipe, and surely
2
remove the deposits.
[0006]
In addition, apart from the above-described method, there is a possible method that
heats the purge gas to high temperature and then flows the purge gas through the exhaust gas
5 pipe. However, this method separately requires equipment for heating the purge gas, and
consequently the system becomes large-scale as a whole.
Citation List
Patent Literature
10 [0007]
Patent Literature 1: JP-A2012-26892
Summary of Invention
Technical Problem
15 [0008]
Therefore, the present invention is made in order to solve the above-described
problems, and a main object thereof is to surely remove deposits attached on the inner wall of
an exhaust gas pipe.
20 Solution to Problem
[0009]
That is, an exhaust gas measurement system according to the present invention is one
that measures a component contained in exhaust gas of an internal combustion engine, and
includes: an exhaust gas piping member into which the exhaust gas is introduced; a purge gas
25 supply mechanism adapted to supply purge gas to the exhaust gas piping member; a heating
mechanism adapted to heat the exhaust gas piping member; and a control mechanism adapted
3
to, after the heating mechanism has heated the exhaust gas piping member or the exhaust gas
flowing through the exhaust gas piping member to a predetermined temperature, control the
purge gas supply mechanism to start supplying the purge gas.
[0010]
5 The exhaust gas measurement system as described above heats the exhaust gas piping
member or the exhaust gas flowing through the exhaust gas piping member to the
predetermined temperature to bring deposits attached on the inner wall of the exhaust gas
piping member into a peelable state, and then makes the control mechanism start supplying
the purge gas, and can therefore surely remove the deposits.
10 Also, it is not necessary to separately provide equipment for heating the purge gas,
and therefore it is also not necessary to make the system large-scale as a whole.
[0011]
Preferably, before the control mechanism finishes supplying the purge gas, the
heating mechanism finishes heating the exhaust gas piping member.
15 Such a configuration makes it possible to sufficiently cool the exhaust gas piping
member using the purge gas, and therefore safely make the exhaust gas component
measurement, preparation for the measurement, and the like after the purge.
[0012]
Preferably, the exhaust gas measurement system further includes a temperature
20 sensor provided in the exhaust gas piping member, and the control mechanism is configured
to obtain a temperature detection signal from the temperature sensor, and also after a value
indicated by the temperature detection signal has reached the predetermined temperature,
start supplying the purge gas.
Such a configuration makes it possible to, after surely heating the exhaust gas piping
25 member or the exhaust gas flowing through the exhaust gas piping member to the
predetermined temperature, supply the purge gas, and therefore more surely remove the
4
deposits.
[0013]
Configurations adapted to eliminate the need for the above-described temperature
sensor to simplify the system include one in which after a predetermined time has passed
5 since the heating mechanism started heating the exhaust gas piping member, the control
mechanism starts supplying the purge gas.
[0014]
Preferably, the exhaust gas piping member is provided with a filter adapted to collect
particulate matter in the exhaust gas.
10 In such a configuration, since deposits peeled from the inner wall are collected by the
filter, by measuring the amount of the collected deposits, the degree of soiling inside the
exhaust gas piping member can be compared with, for example, the degree of soiling at the
normal time, and thereby it can be known whether or not a test was normally done.
[0015]
15 A specific embodiment may be such that the exhaust gas measurement system is
configured to further include a diluent gas piping member that is connected to the exhaust gas
piping member and adapted to conduct diluent gas for diluting the exhaust gas to the exhaust
gas piping member, in which the purge gas supply mechanism flows the purge gas to the
diluent gas piping member to supply the purge gas to the exhaust gas piping member.
20 In such a configuration, it is not necessary to take the trouble to provide a dedicated
piping member for supplying the purge gas to the exhaust gas piping member, and the purge
gas can be supplied to the exhaust gas piping member using the existing piping member.
[0016]
If the purge gas is the diluent gas, the diluent gas can also be used as the purge gas.
25 [0017]
Also, an exhaust gas measuring method according to the present invention is a
5
method that measures a component contained in exhaust gas of an internal combustion engine,
and after heating an exhaust gas piping member into which the exhaust gas is introduced or
the exhaust gas flowing through the exhaust gas piping member to a predetermined
temperature, starts supplying purge gas to the exhaust gas piping member.
5 Such a method can produce the same working effect as that of the above-described
exhaust gas measurement system.
Advantageous Effects of Invention
[0018]
10 According to the present invention configured as described above, without making
the system large-scale as a whole, the deposits on the inner wall of the exhaust gas piping
member can be surely removed, and thereby the exhaust gas component can be accurately
measured.
15 Brief Description of Drawings
[0019]
FIG. 1 is a diagram schematically illustrating the configuration of an exhaust gas
measurement system of the present embodiment;
FIG. 2 is a functional block diagram illustrating functions of a control mechanism in
20 the same embodiment;
FIG. 3 is a graph for explaining the actions of the control mechanism in the same
embodiment;
FIG. 4 is a functional block diagram illustrating functions of a control mechanism in a
variation;
25 FIG. 5 is a diagram schematically illustrating the configuration of an exhaust gas
measurement system of another variation; and
6
FIG. 6 is a diagram schematically illustrating the configuration of an exhaust gas
measurement system of still another variation.
Description of Embodiments
5 [0020]
One embodiment of the exhaust gas measurement system according to the present
invention will be described below.
[0021]
An exhaust gas measurement system 100 of the present embodiment is one adapted
10 to measure particulate matter (hereinafter also referred to as PM) contained in the exhaust gas
of an unillustrated internal combustion engine, and here configured to collect and dilute part
of the exhaust gas discharged from the internal combustion engine, and then conduct the total
amount of the collected and diluted exhaust gas to an exhaust gas component measuring
device 30.
15 [0022]
Specifically, as illustrated in FIG. 1, the exhaust gas measurement system 100 is one
including: an exhaust gas piping member 10 (hereinafter simply referred to as an exhaust gas
pipe 10) into which the exhaust gas of the internal combustion engine is introduced; a diluent
gas piping member 20 (hereinafter simply referred to as an diluent gas pipe 20) through
20 which diluent gas for diluting the exhaust gas is supplied to the exhaust gas pipe 10, and the
exhaust gas component measuring device 30 adapted to measure the exhaust gas conducted
through the exhaust gas pipe 10.
[0023]
The exhaust gas pipe 10 of which one end is provided, for example, inside an
25 unillustrated exhaust pipe of the internal combustion engine and the other end is connected to
the exhaust gas composition measuring device 30 is one that collects the part of the exhaust
7
gas discharged from the internal combustion engine in a flow separation manner and
conducts the collected exhaust gas to the exhaust gas measuring device 30.
Specifically, the exhaust gas pipe 10 has a dilution tunnel 11 such as a micro tunnel,
and the dilution tunnel 11 is connected with the above-described diluent gas pipe 20. This
5 configuration allows the part of the exhaust gas discharged from the internal combustion
engine to be diluted in the dilution tunnel 11 and then flow into the exhaust gas component
measuring device 30.
Note that the exhaust gas pipe 10 may be one having a so-called full tunnel adapted
to introduce the total amount of the exhaust gas discharged from the internal combustion
10 engine into the dilution tunnel 11.
[0024]
The diluent gas pipe 20 is one that conducts the diluent gas to the dilution tunnel 11,
of which one end is connected to an unillustrated diluent gas source and the other end is
connected to the dilution tunnel 11.
15 The diluent gas pipe 20 in the present embodiment is provided with a diluent gas
flow rate control part 23 having a flowmeter 21 such as a venturi, a flow rate control valve 22,
and the like, and adapted to be able to control the flow rate of the diluent gas to be supplied to
the exhaust gas pipe 10.
In addition, in the present embodiment, the diluent gas is air.
20 [0025]
The exhaust gas component measuring device 30 is one that is provided on the
downstream side of the dilution tunnel 11 and measures various components contained in the
diluted exhaust gas, and here a collection filter adapted to collect the PM contained in the
exhaust gas.
25 The collection filter is connected with an exhaust pipe 40 through which the exhaust
gas having passed through the collection filter flows, and the exhaust pipe 40 is provided
8
with: a suction pump P (e.g., a roots blower) of which suction capability can be varied by
controlling a rotation speed; and a flowmeter FV provided downstream of the suction pump P,
such as a venturi.
In addition, in the present embodiment, the exhaust gas having passed through the
5 collection filter flows through the exhaust pipe 40 and is discharged outside.
[0026]
As illustrated in FIG. 1, the exhaust gas measurement system 100 according to the
present invention is adapted to further include: a purge gas supply mechanism 50 adapted to
supply purge gas to the exhaust gas pipe 10; a heating mechanism 60 adapted to heat the
10 exhaust gas pipe 10; and a control mechanism 70 adapted to control the purge gas supply
mechanism 50.
[0027]
The purge gas supply mechanism 50 includes: an unillustrated purge gas source; a
purge gas piping member 51 (hereinafter simply referred to as a purge gas pipe 51) of which
15 one end is connected to the purge gas source and the other end is connected to the exhaust gas
pipe 10; and a purge gas flow rate control part 54 that is provided in the purge gas pipe 51
and has a flowmeter 52 such as a venturi, a flow rate control valve 53, and the like.
The purge gas supply mechanism 50 here is one adapted to supply the
above-described diluent gas, i.e., air to the exhaust gas pipe 10 as the purge gas, in which the
20 purge gas source is the above-described diluent gas source, and the purge gas pipe 51 is the
above-described diluent gas pipe 20. In other words, the diluent gas source and the diluent
gas pipe 20 in the present embodiment are also used as the purge gas source and the purge
gas pipe 51, respectively. In addition, the flowmeter 21 and the flow rate control valve 22
constituting the diluent gas flow rate control part 23 here are also used as the flowmeter 52
25 and the flow rate control valve 53 of the purge gas flow rate control part 54, respectively.
[0028]
9
The heating mechanism 60 is one adapted to heat the inner wall of the exhaust gas
pipe 10 or heat the exhaust gas flowing through the exhaust gas pipe 10, and configured to
heat a part or whole of the exhaust gas pipe 10.
The heating mechanism 60 in the present embodiment is one that heats the exhaust
5 gas pipe 10 from the one end part to the other end part, i.e., the whole of the exhaust gas pipe
10 using, for example, a heater or the like, and here switches between heating and a stop by
obtaining an externally inputted ON/OFF signal.
[0029]
Further, the control mechanism 70 controls the purge gas supply mechanism 50 to
10 start supplying the purge gas after the heating mechanism 60 have heated the exhaust gas
pipe 10 to a predetermined temperature.
[0030]
Specifically, the control mechanism 70 is one including some components such as a
CPU, a memory, an A/D converter, and a D/A converter. In addition, as illustrated in FIG. 2,
15 the control mechanism 70 is configured to function as a heating time calculation part 71, a
setting time storage part 72, and a purge control part 73 by making the CPU and peripheral
devices cooperate in accordance with a program stored in a predetermined area of the
memory.
In the following, the actions of the control mechanism 70 will be described while
20 describing the respective parts.
[0031]
The heating time calculation part 71 is one that obtains the above-described ON/OFF
signal inputted to the heating mechanism 60 as well as on the basis of the ON/OFF signal,
calculating a heating time during which the heating mechanism 60 keeps heating the exhaust
25 gas pipe 10.
[0032]
10
The setting time storage part 72 is formed in a predetermined area of the memory,
and as a setting time, preliminarily stores a time equal to or more than the time from when the
heating mechanism 60 starts heating the exhaust gas pipe 10 to when the temperature of the
exhaust gas pipe 10 reaches the predetermined temperature (hereinafter also referred to as a
5 preparation temperature). In the present embodiment, a time equal to or more than the time
required for the temperature of the inner wall of the exhaust gas pipe 10 to reach the
preparation temperature is stored as the setting time.
Note that the term “preparation temperature” here refers to a temperature at which
volatile components having high boiling points come out, such as the gaseous components
10 condensed and attached on the inner wall of the exhaust gas pipe 10, and is specifically
approximately 200 °C. Also, the setting time can be appropriately changed by some means
such as the settings of the heating mechanism 60, but is here approximately 1 to 2 hours.
[0033]
The purge control part 73 is one that starts supplying the purge gas after a
15 predetermined time has passed since the heating mechanism 60 started heating the exhaust
gas pipe 10.
The purge control part 73 in the present embodiment is configured to obtain the
heating time and the setting time as well as, as illustrated in FIG. 3, when the heating time
reaches the setting time, transmitting a control signal to the purge gas supply mechanism 50
20 to start supplying the purge gas.
Specifically, the purge control part 73 transmits the control signal to the purge gas
flow rate control part 54 provided in the purge gas pipe 51, and thereby brings the flow rate
control valve 53 into an open state.
[0034]
25 When doing this, in order to purge the whole of the exhaust gas pipe 10, it is adapted
to stop the suction pump P provided in the exhaust pipe 40 and allow the purge gas to reach
11
both of the upstream and downstream sides of the exhaust gas pipe 10 through the purge gas
pipe 51.
In addition, when the supply of the purge gas is started, as illustrated in FIG. 3, the
exhaust gas pipe 10 is cooled by the purge gas to decrease the temperature of the exhaust gas
5 pipe 10 from the preparation temperature to a stable temperature.
[0035]
After that, the purge gas control part 73 may be adapted to, as illustrated in FIG. 3,
finish supplying the purge gas after a predetermined time (hereinafter also referred to as a
cooling time) has passed since the above-described heating mechanism 60 finished heating
10 the exhaust gas pipe 10. In other words, the heating mechanism 60 may be adapted to finish
heating the exhaust gas pipe 10 before the purge control part 73 finishes supplying the purge
gas.
Specifically, the purge control part 73 obtains the ON/OFF signal inputted to the
heating mechanism 60 as well as after the cooling time has passed since the ON/OFF signal
15 was switched from ON to OFF, transmitting the control signal to the purge gas flow rate
control part 54 to bring the flow rate control valve 53 into a close state.
That is, the purge control part 73 in the present embodiment is configured to keep
supplying the purge gas to the exhaust gas pipe 10 until the cooling time passes after the
heating mechanism 60 has finished the heating.
20 In doing so, the exhaust gas pipe 10 or the exhaust gas flowing through the exhaust
gas pipe 10 is cooled from the stable temperature to ordinary temperature.
[0036]
The exhaust gas measurement system 100 according to the present embodiment
configured as described heats the exhaust gas pipe 10 or the exhaust gas flowing through the
25 exhaust gas pipe 10 to the preparation temperature to bring the gaseous components
condensed and attached on the inner surface of the exhaust gas pipe 10 into a state of coming
12
out, and then makes the purge control part 73 start supplying the purge gas, and can therefore
surely remove the deposits on the inner wall.
Also, it is not necessary to separately provide equipment for heating the purge gas,
and therefore the deposits can be removed without making the system large-scale as a whole.
5 [0037]
In addition, since the purge control part 73 starts supplying the purge gas after the
predetermined time has passed since the heating mechanism 60 started heating the exhaust
gas pipe 10, the exhaust gas pipe 10 is not cooled by the purge gas during the heating, and
therefore the exhaust gas pipe 10 can be made to reach the predetermined temperature faster.
10 Also, the temperature of the exhaust gas pipe 10 can be made higher even with the same
quantity of heat supplied, thus making it possible to save energy.
[0038]
Further, since the purge control part 73 keeps supplying the purge gas to the exhaust
gas pipe 10 until the cooling time passes after the heating mechanism 60 has finished the
15 heating, the exhaust gas pipe 10 can be cooled to the ordinary temperature by the purge gas,
and therefore the exhaust gas measurement, preparation for the measurement, and the like
after the purge can be safely made.
[0039]
In addition, since the exhaust gas pipe 10 is provided with the collection filter as the
20 exhaust gas component measuring device 30, the deposits removed from the inner wall of the
exhaust gas pipe 10 by the purge are collected by the collection filter. After that, by
measuring the amount of the collected deposits, the degree of soiling inside the exhaust gas
pipe 10 can be compared with, for example, the degree of soiling at the normal time, and
thereby it can be known whether or not a test done before the purge was normal.
25 [0040]
In addition, since the diluent gas source and the diluent gas pipe 20 are also used as
13
the purge gas source and the purge gas pipe 51, respectively, it is not necessary to take the
trouble to provide a dedicated gas source and pipe for supplying the purge gas to the exhaust
gas pipe 10, and the purge gas can be supplied to the exhaust gas pipe 10 using the existing
gas source and pipe.
5 [0041]
Note that the present invention is not limited to the above-described embodiment.
[0042]
For example, the above-described embodiment is adapted to make the purge control
part start supplying the purge gas after the predetermined time has passed since the heating
10 mechanism started heating the exhaust gas pipe, but may be adapted to provide a temperature
sensor in the exhaust gas pipe and after a temperature detected by the temperature sensor has
reached the predetermined preparation temperature, make the purge control part start
supplying the purge gas.
In this case, a specific configuration may be such that, as illustrated in FIG. 4, the
15 control mechanism has a temperature obtaining part 74 adapted to obtain a temperature
detection signal from the temperature sensor, and the purge control part 73 starts supplying
the purge gas after a temperature indicated by the temperature detection signal obtained by
the temperature obtaining part 74 has reached the preparation temperature.
Such a configuration makes it possible to start supplying the purge gas after the
20 exhaust gas pipe or the exhaust gas flowing through the exhaust gas pipe has been surely
heated to the preparation temperature, and therefore the deposits attached on the inner wall of
the exhaust gas pipe can be surely removed.
[0043]
Also, the control mechanism in the above-described embodiment is adapted to
25 control the supply of the purge gas using the temperature of the exhaust gas pipe, but may be
adapted to control the supply of the purge gas using the temperature of the exhaust gas
14
flowing through the exhaust gas pipe.
[0044]
Further, it may be adapted to provide the exhaust gas pipe with a concentration sensor
adapted to detect the concentration of a predetermined component, and after the
5 concentration detected by the concentration sensor has reached a predetermined
concentration or more, make the purge control part start supplying the purge gas.
[0045]
Still further, the exhaust gas component measuring device in the above-described
embodiment is the collection filter. However, as illustrated in FIG. 5, the exhaust gas
10 component measuring device 30 may be one that is provided downstream of the collection
filter F separately from the collection filter F, and specifically, as the exhaust gas component
measuring device 30, a device such as a continuous PM meter adapted to continuously
measure the PM in the exhaust gas or a THC meter adapted to measure hydrocarbons in the
exhaust gas can be cited.
15 In this case, the other end of the exhaust gas pipe 10 is connected to the exhaust gas
component measuring device 30 such as the continuous PM meter or the THC meter, and the
exhaust gas pipe 10 is heated by the heating mechanism 60. That is, the exhaust gas
measurement system 100 in this configuration does not have the exhaust pipe in the
above-described embodiment.
20 [0046]
Further, in the above-described embodiment, the diluent gas source and the diluent
gas pipe are also used as the purge gas source and the purge gas pipe, respectively.
However, the purge gas source and the purge gas pipe may be provided separately from the
diluent gas source and the diluent gas pipe, respectively.
25 In this case, the purge gas pipe 51 is only required to be connected to the exhaust pipe
10, and specific configurations include one such as a configuration in which, as illustrated in
15
FIG. 6, the purge gas pipe 51 is connected on the downstream side of the collection filter as
the exhaust gas component measuring device 30.
[0047]
In addition, the exhaust gas pipe in the above-described embodiment has the one
5 dilution tunnel, but may be configured to have multiple dilution tunnels to dilute the exhaust
gas discharged from the internal combustion engine in a multistep manner.
Note that in the case of using such a multistep dilution configuration, the temperature
of the exhaust gas is relatively high on an upper step side and decreases toward a lower step
side, and therefore in order to save energy and achieve high efficiency, the heating
10 mechanism is preferably configured to heat an exhaust gas pipe in a lower step to higher
temperature than the temperature of an exhaust gas pipe in a higher step.
[0048]
Also, the heating mechanism is not necessarily required to heat the collecting filter,
but may be adapted to heat only the exhaust gas pipe. In addition, the heating mechanism
15 may be adapted to heat the purge gas pipe together with the exhaust gas pipe.
In addition, in the case where a material susceptible to heat is used for the collection
filter, such as resin, it is impossible to heat the collection filter to high temperature, and
therefore it is preferable to provide the heating mechanism with multiple heaters and, for
example, make temperature after the outlet of the dilution tunnel in the exhaust gas pipe
20 lower (e.g., 50 °C) than temperature before the outlet (e.g., 200 °C).
Further, the heating mechanism in the above-described embodiment is one that
obtains the externally inputted ON/OFF signal. However, the control mechanism may be
adapted to transmit an ON/OFF signal to the heating mechanism. That is, the control
mechanism may be configured to control the heating mechanism together with the purge gas
25 supply mechanism.
[0049]
16
In addition, in the above-described embodiment, the time equal to or more than the
time required for the temperature of the exhaust gas pipe or the temperature of the exhaust
gas flowing through the exhaust gas pipe to reach the preparation temperature is defined as
the setting time, but the time to reach the preparation temperature may be defined as the
5 setting time. That is, it may be adapted to start supplying the purge gas simultaneously with
when the temperature of the exhaust gas pipe or the temperature of the exhaust gas flowing
through the exhaust gas pipe reaches the preparation time.
Also, it is not necessarily required to provide the cooling time in the above-described
embodiment. That is, it may be adapted to finish supplying the purge gas simultaneously
10 with when the heating mechanism finishes the heating.
[0050]
In addition, the control mechanism may be configured to control the flow rate control
valve provided in the diluent gas pipe and the suction pump provided in the exhaust pipe so
as to make a flow rate through the diluent gas pipe and a flow rate through the exhaust pipe
15 equal to each other.
In such a configuration, since the flow rate through the diluent gas pipe and the flow
rate through the exhaust pipe can be made equal to each other, even while the internal
combustion engine runs, the exhaust gas from the internal combustion engine does not
theoretically flows into the exhaust gas pipe. In doing so, even in the case of making other
20 exhaust gas analyses while running the internal combustion engine, the exhaust gas pipe can
be purged without affecting these exhaust gas analyses.
[0051]
In further addition, the exhaust gas measurement system may be configured to
include an on/off valve provided on the upstream side of the dilution tunnel in the exhaust
25 gas pipe, and in a state where the on/off valve is closed, make the heating mechanism heat the
exhaust gas pipe as well as activating the suction pump provided in the exhaust pipe.
17
In doing so, since the exhaust gas pipe is heated while being evacuated, the deposits
attached on the inner surface of the exhaust gas pipe can be made more peelable.
Note that after the end of the evacuation and heating, it is preferable to flow the purge
gas through the exhaust gas pipe in order to discharge the peeled deposits.
5 [0052]
In the above-described embodiment, the piping members are described as the pipes,
respectively. However, a piping member may be, for example, a block body (a so-called
manifold block) inside which a flow path is provided.
In this case, by connecting multiple block bodies consecutively, a flow path through
10 which the exhaust gas or the like flows can be formed.
[0053]
Also, the above-described embodiment is adapted such that the control mechanism
determines the timing to start or finish supplying the purge gas, but may be adapted such that,
for example, an operator starts or finishes supplying the purge gas while checking a
15 temperature sensor attached to the exhaust gas pipe.
[0054]
Besides, it goes without saying that the present invention is not limited to any of the
above-described embodiment and variations, but can be variously modified without departing
from the scope thereof.
20
Reference Signs List
[0055]
100: Exhaust gas measurement system
10: Exhaust gas pipe
25 11: Dilution tunnel
20: Diluent gas pipe
18
30: Exhaust gas component measuring device
50: Purge gas supply mechanism
51: Purge gas pipe
60: Heating mechanism
5 70: Control mechanism
19

We claim:
1. An exhaust gas measurement system that measures a component contained in
exhaust gas of an internal combustion engine, the exhaust gas measuring system comprising:
an exhaust gas piping member into which the exhaust gas is introduced;
5 a purge gas supply mechanism adapted to supply purge gas to the exhaust gas piping
member;
a heating mechanism adapted to heat the exhaust gas piping member; and
a control mechanism adapted to, after the heating mechanism has heated the exhaust
gas piping member or the exhaust gas flowing through the exhaust gas piping member to a
10 predetermined temperature, control the purge gas supply mechanism to start supplying the
purge gas.
2. The exhaust gas measurement system as claimed in claim 1, wherein
before the control mechanism finishes supplying the purge gas, the heating
15 mechanism finishes heating the exhaust gas piping member.
3. The exhaust gas measurement system as claimed in claim 1 or 2, further
comprising
a temperature sensor provided in the exhaust gas piping member, wherein
20 the control mechanism is configured to obtain a temperature detection signal from the
temperature sensor, and also after a value indicated by the temperature detection signal has
reached the predetermined temperature, start supplying the purge gas.
4. The exhaust gas measurement system as claimed in claim 1 or 2, configured such
25 that after a predetermined time has passed since the heating mechanism started heating the
exhaust gas piping member, the control mechanism starts supplying the purge gas.
20
5. The exhaust gas measurement system as claimed in any one of claims 1 to 4,
wherein
the exhaust gas piping member is provided with a filter adapted to collect particulate
5 matter in the exhaust gas.
6. The exhaust gas measurement system as claimed in any one of claims 1 to 5,
further comprising
a diluent gas piping member that is connected to the exhaust gas piping member and
10 adapted to conduct diluent gas for diluting the exhaust gas to the exhaust gas piping member,
wherein
the purge gas supply mechanism flows the purge gas to the diluent gas piping
member to supply the purge gas to the exhaust gas piping member.
15 7. The exhaust gas measurement system as claimed in claim 6, wherein
the purge gas is the diluent gas.
8. An exhaust gas measuring method that measures a component contained in exhaust
gas of an internal combustion engine, the method
20 after heating an exhaust gas piping member into which the exhaust gas is introduced
or the exhaust gas flowing through the exhaust gas piping member to a predetermined
temperature, starting supplying purge gas to the exhaust gas piping member.

Documents