Sign In to Follow Application
View All Documents & Correspondence

A Method For Improving Yield Strength Of A Workpiece, An Apparatus And A Workpiece Thereof

Abstract: The present disclosure discloses a method for improving yield strength of one or more workpieces. The method includes positioning the one or more workpieces in a punch and die assembly and operating the punch and die assembly such that, a plurality of surface protrusions are formed on the one or more workpieces. The plurality of surface protrusions are formed by plastic deformation on the one or more workpieces, to improve yield strength of the one or more workpieces. The present disclosure also provides an apparatus to improve yield strength of the one or more workpieces. The present disclosure is configured to improve yield strength of the one or more workpieces, without altering its mechanical characteristics. Figures 1 and 6

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
14 December 2017
Publication Number
02/2018
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
Parent Application
Patent Number
Legal Status
Grant Date
2019-02-14
Renewal Date

Applicants

TATA STEEL LIMITED
Jamshedpur – 831 001, Jharkhand, India

Inventors

1. SUMAN GUHA
C/o., TATA STEEL LIMITED, Jamshedpur – 831 001, Jharkhand, India
2. SHAIK SHAMSHODDIN
C/o., TATA STEEL LIMITED, Jamshedpur – 831 001, Jharkhand, India
3. RAHUL KUMAR VERMA
C/o., TATA STEEL LIMITED, Jamshedpur – 831 001, Jharkhand, India
4. RUDRA BUBAI SARKAR
C/o., TATA STEEL LIMITED, Jamshedpur – 831 001, Jharkhand, India

Specification

TECHNICAL FIELD
Present disclosure generally relates to a field of manufacturing technology. Particularly, but
not exclusively the present disclosure relates to a method for improving yield strength of one
or more workpiece. Further, embodiments of the present disclosure disclose an apparatus for
improving yield strength of the one or more workpiece.
BACKGROUND OF THE DISCLOSURE
Generally, in manufacturing industries, workpieces such as, but not limiting to, ingots, sheet
materials and the like are used for manufacturing a product of desired dimensions.
Manufacturing such a desired product may include use of single or multiple processes such as,
but not limiting to, forming, stamping, blanking and like.
Over the decades, the realization to conserve energy resources has been paramount in the
manufacturing sector. To cater to such requirements, manufacturing industries have shifted
focus on utilising cutting-edge technology, which is energy efficient for manufacturing the
desired product, while maintaining quality. Particularly, in automotive industries,
everchanging safety regulations and stringent emission norms needs to be catered in order to
stay ahead of competition. Automobile manufacturers utilise cutting edge techniques to obtain
materials for automotive parts with high-strength to weight ratio. In other words,
manufacturing lightweight components helps in weight reduction of the entire automobile,
which inherently improves fuel economy and performance of the automobile.
Several conventional techniques are employed to obtain automotive parts and workpieces with
high-strength to weight ratio. One such method being employed is heat treatment of the
workpiece. Heat treatment includes heating material of the workpiece above its
recrystallization temperature and cooling the heated material workpiece at a predetermined
rate, to obtain desired material properties [i.e. microstructural changes or hardening or
improving ductility of the workpiece]. This process ensures that the resultant workpiece is
configured with a high strength to weight ratio. However, it is usually observed that, ductility
of the workpiece gradually declines as the strength of the workpiece increases. Also, the heat
treatment technique necessitates large amount of energy and time, which is undesirable.
Other common industrial practices, for enhancing mechanical properties of the workpieces
include cold working (e.g. cold rolling, drawing, extrusions below recrystallization temperature
of the workpiece), which exploits strain hardening phenomenon. These processes induce strain

hardening on workpiece, and improve the yield strength. Sometimes micron sized
features/structures on metallic surfaces exhibit strong response individually due to the size
effect. Size effect is commonly referred to as increase in strength of the workpiece, when it
undergoes deformation in small volume, usually in the range of few microns and below. Many
techniques are widely used to create such micron sized features which induces strain hardening
and/or size effect. One such technique is laser surface texturing process. The laser surface
texturing process produces micron sized dimples on the surface of the workpiece. However,
this process of forming micro-texture on the workpiece becomes expensive due to utilization
of precision instruments such as laser engraving machines and tool-room conditions.
To overcome the drawbacks in the laser surface texturing process, mechanical surface texturing
methods were employed. This method includes rolling a textured roll on sheet materials of size
500 microns, resulting in micro-channels of depths ranging from about 5 microns to about 50
microns.
The present disclosure is directed to address one or more problems as discussed above.
The information disclosed in this background of the disclosure section is only for enhancement
of understanding of the general background of the invention and should not be taken as an
acknowledgement or any form of suggestion that this information forms the prior art already
known to a person skilled in the art.
SUMMARY OF THE DISCLOSURE
One or more drawbacks of conventional systems and process for a method for improving yield
strength of a workpiece and an apparatus are overcome, and additional advantages are provided
through the apparatus and a method as claimed in the present disclosure. Additional features
and advantages are realized through the technicalities of the present disclosure. Other
embodiments and aspects of the disclosure are described in detail herein and are considered to
be a part of the claimed disclosure.
In one non-limiting embodiment of the present disclosure, a method for improving yield
strength of one or more workpieces is disclosed. The method includes positioning the one or
more workpieces in a punch and die assembly and operating the punch and die assembly such
that, a plurality of surface protrusions is formed on the one or more workpieces. The plurality

of surface protrusions is formed by plastic deformation on the one or more workpieces, to
improve yield strength of the one or more workpieces.
In an embodiment, at least one template mesh is provided selectively on at least one surface of
each of the one or more workpieces.
In an embodiment, operating the punch and die assembly includes stamping, for imprinting a
texture of a plurality of troughs over the at least one surface of the one or more workpieces.
In an embodiment, formation of the plurality of troughs induces a plurality of crests adjacent
to the plurality of troughs, to form the plurality of surface protrusions.
In an embodiment, stamping includes imprinting configuration of the at least one template
mesh over the at least one surface of the one or more workpieces.
In an embodiment, the plurality of troughs and the plurality of crests are configured to be at
least one of symmetrical configuration and asymmetrical configuration.
In an embodiment, configuration of the at least one template mesh is defined on a punch.
In an embodiment, configuration of the punch includes at least one of a plurality of protrusions
and a plurality of cavities.
In an embodiment, configuration of the at least one template mesh is defined on a die.
In an embodiment, configuration of the die includes at least one of the plurality of protrusions
and the plurality of cavities.
In an embodiment, stamping of at least one of the plurality of protrusions and the plurality of
cavities on at least one of the punch and the die forms the plurality of surface protrusions on
the one or more workpieces.
In an embodiment, the at least one template mesh is provided between each of the one or more
workpieces.
In an embodiment, operating the punch and the die assembly stamps the one or more
workpieces to form the plurality of troughs, thereby forming the plurality of surface
protrusions.

In an embodiment, providing the at least one template mesh includes, mounting the at least one
template mesh on at least one of the punch and the die to form the plurality of surface
protrusions.
In an embodiment, formation of the plurality of surface protrusions on the one or more
workpieces improves yield strength of the one or more workpieces by at least 10%, in
comparison to the one or more workpieces without the plurality of surface protrusions.
In an embodiment, the one or more workpieces is selected from at least one of a steel sheet, an
aluminium sheet, a stainless-steel sheet or any other sheets thereof.
In an embodiment, the one or more workpieces is selected from at least one of a bare workpiece,
a forming workpiece, a formed workpiece, a heat-treated workpiece or any other workpiece
thereof.
In an embodiment, dimensions of the plurality of surface protrusions varies in the range of
about 5 microns to about 100 microns and pitch of each of the plurality of surface protrusions
varies in the range of about 10 microns to about 1000 microns.
In an embodiment, configuration of the at least one template mesh is selected from at least one
of a square configuration, a triangular configuration, a rectangular configuration or any other
configurations thereof.
In an embodiment, the at least one template mesh is detachable from at least one of the punch
and the die.
In another non-limiting embodiment of the present disclosure, an apparatus for improving yield
strength of the one or more workpieces is disclosed. The apparatus comprises the punch and
die assembly mountable on a press. The punch and die assembly comprises a top bolster
connected to the punch and a bottom bolster connected to the die. The die is configured to
position one or more workpieces, such that the plurality of surface protrusions are formed on
the at least one surface the one or more workpieces upon operating the punch and die assembly.
The plurality of surface protrusions formed by plastic deformation on the at least one surface
of the one or more workpieces improves yield strength of the one or more workpieces.

In another non-limiting embodiment, a workpiece is disclosed. The workpiece comprises a
plurality of surface protrusions formed by plastic deformation induced by operating a punch
and die assembly. The plurality of surface protrusions includes a plurality of troughs wherein
the workpiece is configured with an increased yield strength of at least 10% in comparison to
the workpiece without the plurality of surface protrusions.
It is to be understood that the aspects and embodiments of the disclosure described above may
be used in any combination with each other. Several of the aspects and embodiments may be
combined to form a further embodiment of the disclosure.
The foregoing summary is illustrative only and is not intended to be in any way limiting. In
addition to the illustrative aspects, embodiments, and features described above, further aspects,
embodiments, and features will become apparent by reference to the drawings and the
following detailed description.
BRIEF DESCRIPTION OF THE ACCOMPANYING DRAWINGS
The novel features and characteristics of the disclosure are set forth in the appended
description. The disclosure itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood by reference to the following
detailed description of an illustrative embodiment when read in conjunction with the
accompanying figures. One or more embodiments are now described, by way of example only,
with reference to the accompanying figures wherein like reference numerals represent like
elements and in which:
Figure 1 illustrates an apparatus for forming a plurality of surface protrusions on one or more
workpieces, in accordance with an embodiment of the present disclosure.
Figure 2a illustrates a punch and die assembly connectable to the apparatus of Figure 1, in
accordance with an embodiment of the present disclosure.
Figure 2b illustrates the punch and die assembly connectable to the apparatus of Figure 1, in
accordance with an embodiment of the present disclosure.
Figure 3 illustrates at least one template mesh, in accordance with an embodiment of the present
disclosure.

Figure 4 illustrates the one or more workpieces, in accordance with an embodiment of the
present disclosure.
Figure 5 illustrates the one or more workpieces formed with a plurality of surface protrusions,
in accordance with an embodiment of the present disclosure.
Figure 6 illustrates a flow chart of a method for improving yield strength of the one or more
workpieces, in accordance with an embodiment of the present disclosure.
Figure 7 illustrates a microscopic view of a portion of the plurality of surface protrusions
formed on the one or more workpieces, in accordance with an embodiment of the present
disclosure.
Figure 8 illustrates a comparison chart of increase in yield strength of the one or more
workpieces with the plurality of surface protrusions, in accordance with an embodiment of the
present disclosure.
Figure 9 illustrates microscopic view of a portion of the plurality of surface protrusions formed
on the one or more workpieces, in accordance with an embodiment of the present disclosure.
Figure 10 illustrates a microscopic view of a portion of the plurality of surface protrusions
formed on the one or more workpieces, in accordance with an embodiment of the present
disclosure.
Figure 11 illustrates a microscopic view of a portion of the plurality of surface protrusions
formed on the one or more workpieces, in accordance with an embodiment of the present
disclosure.
Figure 12 illustrates a microscopic view of a portion of the plurality of surface protrusions
formed on the one or more workpieces, in accordance with an embodiment of the present
disclosure.
Figure 13 illustrates a graphical representation of the mechanical behaviour of the one or more
workpieces of Figures 9, 10, 11 and 12 upon loading, in accordance with an embodiment of
the present disclosure.

The figures depict embodiments of the disclosure for purposes of illustration only. One skilled
in the art will readily recognize from the following description that alternative embodiments of
the structures and methods illustrated herein may be employed without departing from the
principles of the disclosure described herein.
DETAILED DESCRIPTION OF THE DISCLOSURE
While the embodiments of the disclosure are subject to various modifications and alternative
forms, specific embodiment thereof have been shown by way of example in the figures and
will be described below. It should be understood, however, that it is not intended to limit the
disclosure to the particular forms disclosed, but on the contrary, the disclosure is to cover all
modifications, equivalents, and alternative falling within the scope of the disclosure.
It is to be noted that a person skilled in the art would be motivated from the present disclosure
to arrive at a method for improving yield strength of a workpiece and an apparatus thereof.
Such a method for improving yield strength of a workpiece and the apparatus may vary based
on configuration of one or more workpieces. However, such modifications should be
construed within the scope of the disclosure. Accordingly, the drawings illustrate only those
specific details that are pertinent to understand the embodiments of the present disclosure,
so as not to obscure the disclosure with details that will be clear to those of ordinary skill
in the art having benefit of the description herein.
The terms “comprises”, “comprising”, or any other variations thereof used in the disclosure,
are intended to cover a non-exclusive inclusion, such that a device, system, assembly that
comprises a list of components does not include only those components but may include
other components not expressly listed or inherent to such system, or assembly, or device. In
other words, one or more elements in a system or device proceeded by “comprises… a” does
not, without more constraints, preclude the existence of other elements or additional elements
in the system or device.
The present disclosure provides a method for improving yield strength of one or more
workpieces. The method comprises positioning the one or more workpieces in a punch and die
assembly and operating the punch and die assembly such that, a plurality of surface protrusions
is formed on the one or more workpieces. The plurality of surface protrusions formed by plastic
deformation improves yield strength of the one or more workpieces. The punch and die
assembly imprints a plurality of troughs over at least one surface of the one or more workpieces.

The plurality of troughs hence formed leaves behind a plurality of crests on the at least one
surface of the one or more workpieces to form the plurality of surface protrusions. At least one
template mesh may be provided selectively on the at least one surface of the one or more
workpieces, so that the plurality of surface protrusions is formed corresponding to the
configuration of the at least one template mesh. In an embodiment, the at least one template
mesh may be mountable to the punch and die assembly, to form the plurality of surface
protrusions on the one or more workpieces.
The present disclosure also provides an apparatus for improving yield strength of the one or
more workpieces. The apparatus comprises the punch and die assembly mountable on a press.
The punch and die assembly comprises a top bolster connected to the punch and a bottom
bolster connected to the die. The die is configured to position the one or more workpieces, so
that the plurality of surface protrusions are formed on the one or more workpieces, upon
operation of the punch and die assembly. The plurality of surface protrusions are formed due
to plastic deformation, thereby improving the yield strength of the one or more workpieces.
The at least one template mesh is mountable on at least one of the punch and the die, to form
the plurality of protrusions. In an embodiment, the punch and the die may include configuration
of the at least one template mesh to form the plurality of surface protrusions, without utilizing
the at least one template mesh. The punch and the die may include a configuration having a
plurality of protrusions and a plurality of cavities to form the plurality of surface protrusions.
This configuration of the apparatus upon operation forms the plurality of surface protrusions,
which increases yield strength of the one or more workpieces by at least 10% in comparison to
the yield strength of the one or more workpieces without the plurality of surface protrusions.
Further, the present disclosure also discloses one or more workpieces, having the plurality of
surface protrusions formed by plastic deformation induced by operating the punch and die
assembly. The plurality of surface protrusions includes the plurality of troughs, wherein the
one or more workpieces is configured with increased yield strength of at least 10% in
comparison to the yield strength of the workpieces without the plurality of surface protrusions.
The present disclosure is configured to improve yield strength of the one more workpieces by
imprinting plurality of surface protrusions. This method for manufacturing enables to imprint
plurality of protrusions on any portion of any surface of the one or more workpieces, and is
therefore versatile, while being time efficient and economical. The method for the present

disclosure also eliminates the need for expensive equipment for forming the plurality of surface
protrusions.
The following paragraphs describe the present disclosure with reference to figures 1 to 13. In
the figures, the same element or elements which have similar functions are indicated by the
same reference signs.
Figure 1 is an exemplary embodiment of the present disclosure which illustrates a perspective
view of an apparatus (100) for forming plurality of surface protrusions (2) which improves
yield strength of one or more workpieces (1).
The apparatus (100) comprises a punch and die assembly (102) [as shown in figures 2a and 2b]
configured to be mountable on a press (101) such as a hydraulic press or a pneumatic press.
The punch and the die assembly (102) comprises a top bolster (101a) connectable to a punch
(3) and a bottom bolster (101b) connectable to a die (4). The die (4) is configured to receive
and position the one or more workpieces (1) in the punch and die assembly (102). This
configuration enables to form a plurality of surface protrusions (2) on the one or more
workpieces (1) upon operation of the punch and die assembly (102). The plurality of surface
protrusions (2) are formed by plastic deformation of the one or more workpieces (1), to improve
yield strength.
The apparatus (100) includes at least one template mesh (6) [as shown in figures 2a and 2b] is
selectively provided on at least one surface (1a) of the one or more workpieces (1) to form the
plurality of surface protrusions (2). The at least one surface (1a) may refer to any surface on
the one or more workpieces (1) feasible for forming the plurality of surface protrusions (1),
based on cross-section of the one or more workpieces (1). As an illustration, the at least one
surface (1a) in figures 2a and 2b refers to top surfaces of the one or more workpieces (1). In an
embodiment, the at least one template mesh (6) may be provided above the one or more
workpieces (1) for forming the plurality of surface protrusions (2) [shown in figure 2a].
Referring to Figure 3, an enlarged view of the at least one template mesh (6) is illustrated. The
at least one template mesh (6) includes a plurality of wires (6a) interconnected to one another.
The plurality of wires (6a) may be interconnected in a criss-cross configuration to form the at
least one template mesh (6). In an embodiment, the criss-cross configuration may be obtained
by weaving or welding the plurality of wires (6a) in-straight intersecting lines to form the at

least one template mesh (6). Since the plurality of wires (6a) are woven or welded in-straight
intersecting lines, a plurality of voids (6b) are formed between each interconnection of the
plurality of wires (6a). The plurality of voids (6b) allows the surface of the one or more
workpieces (1) to protrude, while the interconnected edges of the plurality of wires (6a) may
act as a means for creating depressions or plurality of troughs by plastic deformation on the
one or more workpieces (1). This configuration therefore, ensures that the plurality of surface
protrusions (2) are formed having a plurality of troughs (2a) and a plurality of crests (2b)
[shown in Figure 7].
In an exemplary embodiment, a hat profiled workpiece [as shown in Figure 4] is disclosed. The
at least one template mesh (6) may be provided on an inner surface of the one or more
workpieces (1) to form the plurality of surface protrusions (2) on the inner surface of the one
or more workpieces (1) [as shown in Figure 5]. Further, the at least one template mesh (6) may
be provided on any of the at least one surface (1a) of the one or more workpieces (1) to form
the plurality of surface protrusions (2) on the one or more workpieces (1). The at least one
template mesh (6) may also be provided on a portion of the at least one surface (1a) of the one
or more workpieces (1) to form the plurality of surface protrusions (2). The at least one template
mesh (6) imprints the plurality of surface protrusions (2) on the one or more workpieces (1)
upon application of load via the punch and die assembly (102). The at least one template mesh
(6) may be configured with a material strength greater than the one or more workpieces (1), to
prevent deformation of the at least one template mesh (6) on the one or more workpieces (1)
upon application of load.
The at least one template mesh (6) may be formed with the plurality of wires (6a) of
predetermined cross-section. The cross-section of the plurality of wires (6a) may be selected
based on the configuration of the plurality of troughs (2a) required on the one or more
workpieces (1). The cross-section of the plurality of wires (6a) may be selected from group
such as, but not limiting to, a square cross-section, a rectangular cross-section, a circular cross-
section and the like. As an example, if the required configuration of the plurality of troughs
(2a) is rectangular, the plurality of wires (6a) of rectangular cross-section may be used to form
the at least one template mesh (6). Thus, upon application of load on the at least one template
mesh (6), rectangular depressions are formed, thereby forming the plurality of troughs (2a)
with rectangular configuration. As an example, if the required configuration of the plurality of
crests (2b) are rectangular, the plurality of wires (6a) are interconnected so that a rectangular

plurality of voids (6b) are formed in-between each interconnected wire. Thus, application of
load on this configuration of the at least one template mesh (6) ensures formation of the
plurality of crests (2b) of rectangular configuration. In an embodiment, the size of the plurality
of voids (6b) may vary in the range of about 10 microns to about 110 microns as per feasibility
and requirement. In an embodiment, the size of the plurality of wires (6a) may vary in the range
of about 15 microns to about 100 microns as per feasibility and requirement.
In an embodiment, providing the at least one template mesh (6) on the one or more workpieces
(1) may refer to the at least one template (6) fastened on the one or more workpieces (1) to
prevent misalignment during operation of the punch and die assembly (102). The at least one
template mesh (6) may also be mountable on at least one of the punch (3) and the die (4), to
ensure formation of the plurality of surface protrusions (2) on the one or more workpieces (1)
without providing the at least one template mesh (6) on the one or more workpieces (1). A slot
[not shown in Figures] may be provided to at least one of the punch (3) and the die (4) for
receiving and holding the at least one template mesh (6). A fastening mechanism [not shown
in Figures] such as a bolt and nut arrangement, a snap-fit arrangement and the like may be
provided to at least one of the punch (3) and the die (4) for receiving and holding the at least
one template mesh (6). This configuration, ensures cassette type replacement of the at least one
template mesh (6) in at least one of the punch (3) and the die (4), based on design requirement
of the plurality of protrusions (2) formed on the one or more workpieces (1). Further, this
configuration also ensures that, bare or plain configuration of the punch (3) and the die (4) may
also imprint the plurality of surface protrusions (2) by utilising the configuration of the at least
one template mesh (6).
In an embodiment, configuration of the at least one template mesh (6) may be defined on at
least one of the punch (3) and the die (4), so that the plurality of surface protrusions (2) are
formed on the one or more workpieces (1), even in the absence of the at least one template
mesh (6). The configuration defined on the at least one of the punch (3) and the die (4), may
be at least one of a plurality of protrusions (7) and a plurality of cavities (8), based on feasibility
and requirement. The plurality of protrusions (7) and the plurality of cavities (8) are defined on
the punch (3) and the die (4) to be complementary to each other, for feasibility of forming the
plurality of surface protrusions (2). In an exemplary embodiment, the plurality of protrusions
(7) are defined on the punch (3) and the plurality of cavities (8) are defined on the die (4), to
form the plurality of surface protrusions (2) on one surface of the one or more workpieces (1).

Alternatively, the plurality of protrusions (7) are defined on the die (4) and the plurality of
cavities (8) are defined on the punch (3), to form the plurality of protrusions (3) on another
surface of the one or more workpieces (1). In another embodiment, the plurality of protrusions
(7) and the plurality of cavities (8) may be defined on the punch (3) and the die (4)
complementarily to one another, so that each portion of the one or more workpieces (1) are
induced with different configuration of the plurality of surface protrusions (2). Further, the size
of the plurality of protrusions (7) [height] and the plurality of cavities (8) are corresponding to
the size of the at least one template mesh (6). This configuration ensures that the plurality of
surface protrusions (2) obtained by operation of the punch (3) and the die (4) corresponds to
that of the plurality of surface protrusions (2) obtained by the at least one template mesh (6).
In an embodiment, the die (4) includes a securing means [not shown in Figures] for securely
positioning the one or more workpieces (1) during operation of the punch and die assembly
(102), to prevent unintended movement. In an embodiment, the securing means may be
selected from at least one of fasteners, a snap-fit arrangement and the like which serves the
purpose of securing the one or more workpieces (1). In an embodiment, the die (4) may include
a support member (5) for holding the one or more workpieces (1).
In an embodiment, the top bolster (101a) and the bottom bolster (101b) of the press (101)
includes a mechanism [now shown in Figures] for connecting the punch (3) and the die (4)
before use. This mechanism, enables to detach the punch (3) and the die (4), during non-
operational condition of the apparatus (100). In an embodiment, different punch (3) and die (4)
combinations, for forming the plurality of surface protrusions (2), based on feasibility and
requirement may be mounted to the press (101). The mechanism may be selected from at least
one of a fastening mechanism, a snap-fit mechanism, a sliding mechanism or any other
mechanism which serves the purpose of connecting the punch (3) to the top bolster (101a) and
the die (4) to the bottom bolster (101b).
In an embodiment, the one or more workpieces (1) may be selected with material properties
including sufficient ductility so that, the one or more workpieces (1) can undergo plastic
deformation, instead of fracture upon loading. Further, the one or more workpieces (1) is
selected from at least one of a steel sheet, an aluminium sheet, a stainless-steel sheet or any
other sheet that serves the requirement. Also, the one or more workpieces (1) is selected from
at least one of a bare workpiece, a forming workpiece, a formed workpiece, a heat-treated
workpiece or any other workpiece.

In an embodiment, the plurality of surface protrusions (2) are formed due to the strain hardening
effect induced by the plastic deformation. The strain hardening induces size effect on the
surface of the one or more workpieces (1), thereby forming a configuration including the
plurality of troughs (2a) and the plurality of crests (2b). This configuration ensures that the
surface available for receiving or contacting the load is minimised, thereby preventing
deformation, which inherently improves yield strength of the one or more workpieces (1).
In an embodiment, the size of the plurality of voids (6b) of the at least one template mesh (6)
ranges from about 20 microns to about 1000 microns. The size of the plurality of wires (6a)
ranges from about 20 microns to about 500 microns.
In an embodiment, the one or more workpieces (1) may be a sheet material with thickness
ranging from about 0.25mm to about 2mm. In another embodiment, the one or more
workpieces (1) may be selected from at least one of a hot-rolled sheet material and a cold-rolled
sheet material.
In an embodiment, the punch (3) and the die (4) may be made of tool grade steel material,
which is harder than the one or more workpieces (1).
Figure 6 in one exemplary embodiment of the present disclosure, illustrates a flow chart of a
method for improving yield strength of one or more workpieces (1).
In step 601 the one or more workpieces (1) is positioned securely in the punch and the die
assembly (102), by the suitable mechanism, to prevent misalignment during operation of the
punch and die assembly (102).
In step 602, the punch and die assembly (102) is operated by the press (101) to displace the
punch towards the die (4). Operation of the punch and die assembly (102) includes stamping
by the punch (3) on the at least one template mesh (6), for imprinting the plurality of troughs
(2a) over the at least one surface (1a) of the one or more workpieces (1). The plurality of
troughs (2a) are formed due to plastic deformation of the one or more workpieces (1) by
application of the load. The plurality of troughs (2a) formed over the at least one surface (1a)
induces the plurality of crests (2b) adjacent to the plurality of troughs (2a) hence forming the
plurality of surface protrusions (2) [as shown in Figure 7]. The plurality of surface protrusions
(2) may be formed corresponding to the configuration of the punch (3) and the die (4). In an

embodiment, the plurality of troughs (2a) and the plurality of crests (2b) formed over the at
least one surface (1a) is configured to be at least one of symmetrical configuration and
asymmetrical configuration. That is, the size of the plurality of the troughs (2a) and the plurality
of crests (2b) on the one or more workpieces (1) may be equal or unequal based on design
feasibility and requirement.
In step 603, the at least one template mesh (6) may be provided in the punch and die assembly
(102) such that, the at least one template mesh (6) may be placed selectively on the at least one
surface (1a) of the one or more workpieces (1). The at least one template mesh (6) is configured
to imprint a texture of its configuration on the at least one surface (1a), to form the plurality of
surface protrusions (2). The provision of the at least one template mesh (6) mitigates the need
for defining the plurality of protrusions (7) and the plurality of cavities (8) on at least one of
the punch (3) and the die (4). This provision therefore, further simplifies the process of
imprinting the plurality of protrusions (2) on the at least one surface (1a) of the one or more
workpieces (1).
In an embodiment, the one or more workpieces (1) may be positioned in the punch and the die
assembly (102) either manually by a user or automatically by a robot in step 101.
Referring to Figure 8 in conjunction to Figure 1, the improvement in yield strength of the one
or more workpieces (1) is graphically illustrated. As per the representation, provision of the
plurality of surface protrusions (2) on the one or more workpieces (1) has significantly
improved its yield strength by approximately 25%, with the reduction in thickness of the one
or more workpieces (1) being less than 1%. Formation of the plurality of troughs (2a) due to
plastic deformation leads to compaction [plastic strain] of the one or more workpieces (1). Such
compaction at the formation of plurality of troughs (2a) increases concentration of the material
molecules in this region, thereby improving yield strength of the one or more workpieces (1).
The improvement of yield strength of the one or more workpieces (1) is due to the phenomenon
of strain hardening, which further induces the size effect phenomenon. In an embodiment, the
plurality of surface protrusions (2) improve the yield strength of the one or more workpieces
(1) by at least 10%. In an embodiment, dimensions of the plurality of surface protrusions (2)
varies in the range of about 5 microns to about 100 microns and pitch [distance between each
of the plurality of surface protrusions] of the plurality of surface protrusions (2) varies in the
range of about 10 microns to about 1000 microns.

Exemplary Experimental results:
Based on the method for improving yield strength of the one or more workpieces (1) as
described above, comparison of mechanical properties of the one or more workpieces (1) after
forming the plurality of surface protrusions (2) is conducted. The comparison is conducted on
different grades of one or more workpieces (1).
The parameters pertaining to the comparison of mechanical properties is tabulated in Table 1,
provided below.

The comparison includes two sets of experiments. The first set of experiments are carried out
on rectangular samples of the one or more workpieces (1) with dimensions
10mm*15mm*0.6mm. Second set of experiments are performed on the uniaxial tensile test
samples. The dimensions of the sample are as per the ASTM-E6 standard.
First set of experiments:
In this test, 100µm square shaped plurality of surface protrusions (2) are formed with height
ranging from 30µm to 50µm. A predefined punch load is selected enough to produce average
compressive stress equivalent to three times the yield strength of the one or more workpieces
(1). The results are tabulated below in table 2.


The plurality of surface protrusions (2) produced with regards to the one or more workpieces
(1) of table 1, is illustrated in figures 9-12. The images of the plurality of surface protrusions
(2) captured using the optical microscope at 500X for 35µm micro-pillar.
As illustrated in the table 1 and the figures 9-12, it is evident that formation of the plurality of
surface protrusions (2) has improved yield strength of the one or more workpieces (1) by at
least 10%.
Further, a set of uniaxial tensile testing was carried out to characterize the improvement of the
yield strength of the one or more workpieces (1) after the plurality of surface protrusions (2)
are obtained on these samples.
Second set of experiments:
The physical property considered in this study is yield strength of the one or more workpieces
(1). The one or more workpieces (1) is tested on the ASTM-E8 standard sample with width of
the gauge area 12.5. The process parameters are tabulated in table 3 and results are tabulated
in table 4.


From the data collated in tables 3 and 4, it is evident that formation of the plurality of surface
protrusions (2) on the one or more workpieces (1) improves the yield strength by at least 10%
in comparison with the one or more workpieces (1) without the plurality of surface protrusions
(2).
Referring to Figure 13, a graphical representation of yield strength of one or more workpieces
(1) with the plurality of surface protrusions (2) of mesh sizes 100 microns and 35 microns is
compared with a rolled one or more workpieces (1). It is evident from the graph that, the yield
strength of the one or more workpieces (1) with the plurality of surface protrusions (2) is greater
than the yield strength of the rolled one or more workpieces (1). Also, it is noticeable that the
yield strength of the one or more workpieces (1) having lower protrusions is lower in
comparison to the same for one or more workpieces (1) with deep protrusions. The data for
such variations in micro alloyed steel is tabulated in Table 5.


Though the description and the embodiments demonstrate results pertaining to yield strength,
the description can also be extended to any other parameter such as flow strength.
Advantages:
The present disclosure provides a method for improving yield strength of one or more
workpieces by forming a plurality of surface protrusions.
The present disclosure provides a cost-effective method for improving yield strength of one or
more workpieces.
The present disclosure provides the method to improve yield strength of the one or more
workpieces by at least 10% than the bare or conventional workpiece, without etching or
removal of the one or more workpieces.
The present disclosure provides the method to improve physical and mechanical properties of
the workpiece at desired locations.
The present disclosure provides a method for improving yield strength, particularly where
higher strength is desirable post forming the components, such as automobiles panels.
Equivalents
With respect to the use of substantially any plural and/or singular terms herein, those having
skill in the art can translate from the plural to the singular and/or from the singular to the plural
as is appropriate to the context and/or application. The various singular/plural permutations
may be expressly set forth herein for sake of clarity.

It will be understood by those within the art that, in general, terms used herein, and especially
in the appended claims (e.g., bodies of the appended claims) are generally intended as "open"
terms (e.g., the term "including" should be interpreted as "including but not limited to," the
term "having" should be interpreted as "having at least," the term "includes" should be
interpreted as "includes but is not limited to," etc.). It will be further understood by those
within the art that if a specific number of an introduced claim recitation is intended, such an
intent will be explicitly recited in the claim, and in the absence of such recitation no such intent
is present. For example, as an aid to understanding, the following appended claims may
contain usage of the introductory phrases "at least one" and "one or more" to introduce claim
recitations. However, the use of such phrases should not be construed to imply that the
introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular
claim containing such introduced claim recitation to inventions containing only one such
recitation, even when the same claim includes the introductory phrases "one or more" or "at
least one" and indefinite articles such as "a" or "an" (e.g., "a" and/or "an" should typically be
interpreted to mean "at least one" or "one or more"); the same holds true for the use of definite
articles used to introduce claim recitations. In addition, even if a specific number of an
introduced claim recitation IS explicitly recited, those skilled in the art will recognize that such
recitation should typically be interpreted to mean AT LEAST the recited number (e.g., the bare
recitation of "two recitations," without other modifiers, typically means AT LEAST two recitations,
or TWO OR MORE recitations). Furthermore, in those instances where a convention analogous to
"at least one of A, B, and C, etc." is used, in general such a construction is intended in the sense
one having skill in the art would understand the convention (e.g., "a system having at least one
of A, B, and C" would include but not be limited to systems that have A alone, B alone, C
alone, A and B together, A and C together, B and C together, and/or A, B, and C together,
etc.). In those instances, where a convention analogous to "at least one of A, B, or C, etc." is
used, in general such a construction is intended in the sense one having skill in the art would
understand the convention (e.g., "a system having at least one of A, B, or C" would include but
not be limited to systems that have A alone, B alone, C alone, A and B together, A and C
together, B and C together, and/or A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or phrase presenting two or more
alternative terms, whether in the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms, either of the terms, or both

terms. For example, the phrase "A or B" will be understood to include the possibilities of "A"
or "B" or "A and B."
While various aspects and embodiments have been disclosed herein, other aspects and
embodiments will be apparent to those skilled in the art. The various aspects and embodiments
disclosed herein are for purposes of illustration and are not intended to be limiting, with the
true scope and spirit being indicated by the following claims.


We Claim:
1. A method for improving yield strength of one or more workpieces (1), comprising:
positioning the one or more workpieces (1) in a punch and die assembly (102);
operating the punch and die assembly (102) such that, a plurality of surface
protrusions (2) are formed on the one or more workpieces (1),
wherein the plurality of surface protrusions (2) formed by plastic
deformation on the one or more workpieces (1), improves yield strength of the
one or more workpieces (1).
2. The method as claimed in claim 1, comprises at least one template mesh (6) provided
selectively on at least one surface (1a) of each of the one or more workpieces (1).
3. The method as claimed in claim 1, wherein operating the punch and die assembly (102)
includes stamping, for imprinting a texture of a plurality of troughs (2a) over the at least
one surface (1a) of the one or more workpieces (1).
4. The method as claimed in claim 3, wherein formation of the plurality of troughs (2a)
induces a plurality of crests (2b) adjacent to the plurality of troughs (2a), to form the
plurality of surface protrusions (2).
5. The method as claimed in claim 3, wherein stamping includes imprinting configuration
of the at least one template mesh (6) over the at least one surface (1a) of the one or more
workpieces (1).
6. The method as claimed in claim 3, wherein the plurality of troughs (2a) and the plurality
of crests (2b) are configured to be at least one of symmetrical configuration and
asymmetrical configuration.
7. The method as claimed in claim 1, wherein configuration of the at least one template
mesh (6) is defined on a punch (3).
8. The method as claimed in claim 7, wherein configuration of the punch (3) includes at
least one of a plurality of protrusions (7) and a plurality of cavities (8).
9. The method as claimed in claim 1, wherein configuration of the at least one template
mesh (6) is defined on a die (4).

10. The method as claimed in claim 9, wherein configuration of the die (4) includes at least
one of the plurality of protrusions (7) and the plurality of cavities (8).
11. The method as claimed in claims 8 and 10, wherein stamping of at least one of the
plurality of protrusions (7) and the plurality of cavities (8) on at least one of the punch
(3) and the die (4) forms the plurality of surface protrusions (2) on the one or more
workpieces (1).
12. The method as claimed in claim 1, wherein the at least one template mesh (6) is
provided between each of the one or more workpieces (1).
13. The method as claimed in claim 1, wherein operating the punch and the die assembly
(102) stamps the one or more workpieces (1) to form the plurality of troughs (2a),
thereby forming the plurality of surface protrusions (2).
14. The method as claimed in claim 1, wherein providing the at least one template mesh (6)
includes, mounting the at least one template mesh (6) on at least one of the punch (3)
and the die (4) to form the plurality of surface protrusions (2).
15. The method as claimed in claim 1, wherein formation of the plurality of surface
protrusions (2) on the one or more workpieces (1) improves yield strength of the one or
more workpieces (1) by at least 10%, in comparison to the one or more workpieces (1)
without the plurality of surface protrusions (2).
16. The method as claimed in claim 1, wherein the one or more workpieces (1) is selected
from at least one of a steel sheet, an aluminum sheet, a stainless-steel sheet or any other
sheets thereof.
17. The method as claimed in claim 1, wherein the one or more workpieces (1) is selected
from at least one of a bare workpiece, a forming workpiece, a formed workpiece, a heat-
treated workpiece or any other workpiece thereof.
18. The method as claimed in claim 1, wherein dimensions of the plurality of surface
protrusions (2) varies in the range of about 5 microns to about 100 microns, and pitch

of the plurality of surface protrusions (2) varies in the range of about 10 microns to
about 1000 microns.
19. The method as claimed in claim 2, wherein configuration of the at least one template
mesh (6) is selected from at least one of a square configuration, a triangular
configuration, a rectangular configuration or any other configurations thereof.
20. The method as claimed in claim 2, wherein the at least one template mesh (6) is
detachable from at least one of the punch (3) and the die (4).
21. An apparatus (100) for improving yield strength of one or more workpieces (1), the
apparatus (100) comprising:
a punch and die assembly (102) mountable on a press (101), the punch and die
assembly (102) comprising:
a top bolster (101a) connected to a punch (3), and
a bottom bolster (101b) connected to a die (4), the die (4) is configured
to position one or more workpieces (1), such that a plurality of surface
protrusions (2) are formed on the one or more workpieces (1) upon operating
the punch and die assembly (102),
wherein the plurality of surface protrusions (2) formed by plastic
deformation on the one or more workpieces (1) improves yield strength
of the one or more workpieces (1).
22. The apparatus (100) as claimed in claim 21, comprises at least one template mesh (6)
provided selectively on at least one surface (1a) of the one or more workpieces (1).
23. The apparatus (100) as claimed in claim 22, wherein the at least one template mesh (6)
is mountable on at least one of the punch (3) and the die (4) to form the plurality of
surface protrusions (2).
24. The apparatus (100) as claimed in claim 22, wherein the at least one template mesh (6)
imprints a texture of a plurality of troughs (2a) on the at least one surface (1a) of the
one or more workpieces (1), upon operation of the punch and die assembly (102).
25. The apparatus (100) as claimed in claim 22, wherein configuration of the at least one
template mesh (6) is defined on the punch (3).

26. The apparatus (100) as claimed in claim 25, wherein configuration of the punch (3)
includes at least one of a plurality of protrusions (7) and a plurality of cavities (8).
27. The apparatus (100) as claimed in claim 22, wherein configuration of the at least one
template mesh (6) is defined on the die (4).
28. The apparatus (100) as claimed in claim 27, wherein configuration of the die (4)
includes at least one of the plurality of protrusions (7) and the plurality of cavities (8).
29. The apparatus (100) as claimed in claim 21, wherein formation of the plurality of
surface protrusions (2) on the one or more workpieces (1) improves yield strength of
the one or more workpieces (1) by at least 10%, in comparison to the one or more
workpieces (1) without the plurality of surface protrusions (2).
30. The apparatus (100) as claimed in claim 21, wherein the one or more workpieces (1)
includes at least one of a steel sheet, an aluminum sheet, a stainless-steel sheet or any
other sheets thereof.
31. The apparatus (100) as claimed in claim 21, wherein dimensions of the plurality of
protrusions vary in the range of about 5 microns to about 100 microns.
32. The apparatus (100) as claimed in claim 22, wherein configuration of the at least one
template mesh (6) is selected to be at least one of a square configuration, a triangular
configuration, a circular configuration, a rectangular configuration or any other
configurations thereof.
33. The apparatus (100) as claimed in claim 22, wherein the at least one template mesh (6)
is detachable from at least one of the punch (3) and the die (4).

34. A workpiece (1) comprising:
a plurality of surface protrusions (2) formed by plastic deformation induced by
operating a punch and die assembly (102), the plurality of surface protrusions (2)
includes a plurality of troughs (2a),
wherein the workpiece (1) is configured with an increased yield strength
of at least 10% in comparison to the workpiece (1) without the plurality of
surface protrusions (2).

Documents

Orders

Section Controller Decision Date

Application Documents

# Name Date
1 201731045065-26-09-2023-CORRESPONDENCE.pdf 2023-09-26
1 201731045065-STATEMENT OF UNDERTAKING (FORM 3) [14-12-2017(online)].pdf 2017-12-14
2 201731045065-26-09-2023-FORM-27.pdf 2023-09-26
2 201731045065-POWER OF AUTHORITY [14-12-2017(online)].pdf 2017-12-14
3 201731045065-RELEVANT DOCUMENTS [30-09-2021(online)].pdf 2021-09-30
3 201731045065-FORM 1 [14-12-2017(online)].pdf 2017-12-14
4 201731045065-RELEVANT DOCUMENTS [10-03-2020(online)].pdf 2020-03-10
4 201731045065-DRAWINGS [14-12-2017(online)].pdf 2017-12-14
5 201731045065-IntimationOfGrant14-02-2019.pdf 2019-02-14
5 201731045065-DECLARATION OF INVENTORSHIP (FORM 5) [14-12-2017(online)].pdf 2017-12-14
6 201731045065-PatentCertificate14-02-2019.pdf 2019-02-14
6 201731045065-COMPLETE SPECIFICATION [14-12-2017(online)].pdf 2017-12-14
7 201731045065-FORM-8 [15-12-2017(online)].pdf 2017-12-15
7 201731045065-AMMENDED DOCUMENTS [01-02-2019(online)].pdf 2019-02-01
8 201731045065-FORM 18 [15-12-2017(online)].pdf 2017-12-15
8 201731045065-CORRECTED PAGES [01-02-2019(online)].pdf 2019-02-01
9 201731045065-FORM 13 [01-02-2019(online)].pdf 2019-02-01
9 201731045065-REQUEST FOR CERTIFIED COPY [04-01-2018(online)].pdf 2018-01-04
10 201731045065-FORM-9 [04-01-2018(online)].pdf 2018-01-04
10 201731045065-MARKED COPIES OF AMENDEMENTS [01-02-2019(online)].pdf 2019-02-01
11 201731045065-MARKED COPY [01-02-2019(online)].pdf 2019-02-01
11 201731045065-Proof of Right (MANDATORY) [05-02-2018(online)].pdf 2018-02-05
12 201731045065-FORM 18A [08-02-2018(online)].pdf 2018-02-08
12 201731045065-Written submissions and relevant documents (MANDATORY) [01-02-2019(online)].pdf 2019-02-01
13 201731045065-FORM 3 [17-05-2018(online)].pdf 2018-05-17
13 201731045065-HearingNoticeLetter.pdf 2018-12-21
14 201731045065-COMPLETE SPECIFICATION [05-11-2018(online)].pdf 2018-11-05
14 201731045065-FER.pdf 2018-05-23
15 201731045065-FER_SER_REPLY [05-11-2018(online)].pdf 2018-11-05
15 201731045065-Information under section 8(2) (MANDATORY) [05-11-2018(online)].pdf 2018-11-05
16 201731045065-FER_SER_REPLY [05-11-2018(online)].pdf 2018-11-05
16 201731045065-Information under section 8(2) (MANDATORY) [05-11-2018(online)].pdf 2018-11-05
17 201731045065-FER.pdf 2018-05-23
17 201731045065-COMPLETE SPECIFICATION [05-11-2018(online)].pdf 2018-11-05
18 201731045065-FORM 3 [17-05-2018(online)].pdf 2018-05-17
18 201731045065-HearingNoticeLetter.pdf 2018-12-21
19 201731045065-FORM 18A [08-02-2018(online)].pdf 2018-02-08
19 201731045065-Written submissions and relevant documents (MANDATORY) [01-02-2019(online)].pdf 2019-02-01
20 201731045065-MARKED COPY [01-02-2019(online)].pdf 2019-02-01
20 201731045065-Proof of Right (MANDATORY) [05-02-2018(online)].pdf 2018-02-05
21 201731045065-FORM-9 [04-01-2018(online)].pdf 2018-01-04
21 201731045065-MARKED COPIES OF AMENDEMENTS [01-02-2019(online)].pdf 2019-02-01
22 201731045065-FORM 13 [01-02-2019(online)].pdf 2019-02-01
22 201731045065-REQUEST FOR CERTIFIED COPY [04-01-2018(online)].pdf 2018-01-04
23 201731045065-CORRECTED PAGES [01-02-2019(online)].pdf 2019-02-01
23 201731045065-FORM 18 [15-12-2017(online)].pdf 2017-12-15
24 201731045065-FORM-8 [15-12-2017(online)].pdf 2017-12-15
24 201731045065-AMMENDED DOCUMENTS [01-02-2019(online)].pdf 2019-02-01
25 201731045065-PatentCertificate14-02-2019.pdf 2019-02-14
25 201731045065-COMPLETE SPECIFICATION [14-12-2017(online)].pdf 2017-12-14
26 201731045065-IntimationOfGrant14-02-2019.pdf 2019-02-14
26 201731045065-DECLARATION OF INVENTORSHIP (FORM 5) [14-12-2017(online)].pdf 2017-12-14
27 201731045065-RELEVANT DOCUMENTS [10-03-2020(online)].pdf 2020-03-10
27 201731045065-DRAWINGS [14-12-2017(online)].pdf 2017-12-14
28 201731045065-RELEVANT DOCUMENTS [30-09-2021(online)].pdf 2021-09-30
28 201731045065-FORM 1 [14-12-2017(online)].pdf 2017-12-14
29 201731045065-POWER OF AUTHORITY [14-12-2017(online)].pdf 2017-12-14
29 201731045065-26-09-2023-FORM-27.pdf 2023-09-26
30 201731045065-STATEMENT OF UNDERTAKING (FORM 3) [14-12-2017(online)].pdf 2017-12-14
30 201731045065-26-09-2023-CORRESPONDENCE.pdf 2023-09-26

Search Strategy

1 ISA-IN-2018-000142PCT_ISA_210_23-05-2018.pdf
1 SEARCHSTRATEGY_17-04-2018.pdf
2 ISA-IN-2018-000142PCT_ISA_237_23-05-2018.pdf
3 ISA-IN-2018-000142PCT_ISA_210_23-05-2018.pdf
3 SEARCHSTRATEGY_17-04-2018.pdf

ERegister / Renewals

3rd: 08 Apr 2019

From 14/12/2019 - To 14/12/2020

4th: 08 Apr 2019

From 14/12/2020 - To 14/12/2021

5th: 26 Nov 2021

From 14/12/2021 - To 14/12/2022

6th: 29 Nov 2022

From 14/12/2022 - To 14/12/2023

7th: 13 Dec 2023

From 14/12/2023 - To 14/12/2024

8th: 03 Dec 2024

From 14/12/2024 - To 14/12/2025