Sign In to Follow Application
View All Documents & Correspondence

A Silicone Compound

Abstract: The present invention relates to silicone compounds which have photoprotective properties and personal care compositions comprising the same. The present inventors, in developing a sunscreen that gives protection against both UV radiation and visible radiation, found that when certain moieties generally occurring in nature e.g. curcuminoids, polyphenol or flavonoids having uv-visible absorption activity are attached to crosslinked silicone polymers they provide not only the desired photoprotection but also excellent spreadability on skin.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
12 October 2009
Publication Number
12/2012
Publication Type
INA
Invention Field
POLYMER TECHNOLOGY
Status
Email
Parent Application
Patent Number
Legal Status
Grant Date
2020-06-04
Renewal Date

Applicants

HINDUSTAN UNILEVER LIMITED
165/166 BACKBAY RECLAMATION, MUMBAI-400020, MAHARASHTRA, INDIA

Inventors

1. VAIDYA ASHISH ANANT
FLAT # 914 A, KNIGHTS BRIDGE, ITPL ROAD, KUNDANAHALLI, BANGALORE 560 037,
2. GHOSH NILMONI
C/O MR. RANENDRA NATH GHOSH, BHATTACHARJEE BARI LANE, CHOWDHURY PARA, P.O.: KRISHNAGAR, DIST: NADIA 741101 WEST BENGAL
3. KUNJUPILLAI BALU
2/19, VELLALA STREET, THIRUVIDAIKAZHI VILLAGE & POST, THARANGAMBADI TALUK, NGAPATTINAM 609 310, TAMILNADU

Specification

FORM - 2
THE PATENTS ACT, 1970
(39 of 1970)
&
The Patents Rules, 2003
COMPLETE SPECIFICATION
(See Section 10 and Rule 13)
A SILICONE COMPOUND
HINDUSTAN UNILEVER LIMITED, a company incorporated under
the Indian Companies Act, 1913 and having its registered office
at 165/166, Backbay Reclamation, Mumbai -400 020, Maharashtra, India
The following specification particularly describes the invention and the manner in which it is to be performed.

TECHNICAL FIELD
The present invention relates to silicone compounds and personal care compositions comprising the same which have photoprotective properties.
BACKGROUND OF THE INVENTION
Solar radiation includes about 5% Ultraviolet (UV) radiation, wavelength of which is between 200nm and 400 nm. It is further classified into three regions: from 320 to 400 nm (UV-A), 290 to 320 nm (UV-B) and from 200 to 290 nm (UV-C). A large part of UV-C radiation is absorbed by the ozone layer. Scientific studies have indicated that exposure to UV-A and UV-B radiation for short period causes reddening of the skin and localized irritation, whereas continued and prolonged exposure can lead to sunburn, melanoma and formation of wrinkles. It is also reported that UV radiation causes significant damage to hair. Therefore, it is desirable to protect the skin and other keratinous substrates of the human body from the harmful effects of both, UV-A and UV-B radiation. Further, it is also essential that the body is protected against the damaging effects of visible spectrum of light. Visible part of light ranges from 400 to 800 nm. It is believed that continued exposure to visible light is responsible for damaging effects on skin like erythema, pigmentation, thermal damage and free radical production (Effects of Visible Light on the Skin, Photochemistry and Photobiology Volume 84 Issue 2, Pages 450-462, 2008). Hence in addition to protection from UV rays it is also necessary to get broader spectrum protection which includes visible light. Personal care products such as creams and lotions are used to mitigate these effects and/or to prevent further damage. For this purpose, sunscreens or sun block agents are generally added therein to protect the skin from harmful effects of UV radiation.
Organic sunscreens absorb a large fraction of the incident UV radiation, thereby preventing the radiation from coming in contact with the surface of the skin. They have UV absorbing sites, called chromophores, which are primarily responsible for their activity. Some sunscreens absorb UV-A radiation while some absorb UV-B radiation.

Conventional UV-A and UV-B sunscreens have problems associated with relatively low photostability and harmful photodegradation byproducts when used in topical products.
One such approach of attaching both UV-A and UV-B moieties to a silicone backbone to provide sunscreen protection is disclosed in a co-pending Indian Patent Application number 2084/MUM/2006.
Further, EP0842938 (L'Oreal, 1999) discloses flavone substituted silicone compounds. US2009/0209743 (Wacker) discloses coloured organopolysiloxanes which are flavone derivatised. Both of the above publications disclose derivatisation of straight chain silicone polymer and there is no mention of crosslinking through a spacer group.
Not many compositions have been disclosed for providing protection against visible radiation, in addition to UV radiation, particularly as the recent evidence suggests that radiation in the visible wavelength can also cause significant skin damage, (Bassel et al, Photochemistry and Photobiology, Mar/Apr 2008).
Compounds like curcumin that provide some protection against visible radiation have been included in cosmetic compositions. However, compounds such as curcumin suffer from the problem of relatively low photostability and harmful degradation products.
On the other hand, thickeners such DC9040 can be used along with compounds that provide photoprotection against visible radiation to provide thickening, but the resulting compositions do not spread uniformly.
The present inventors have been working on the problem of providing a sunscreen that gives broad spectrum protection against both UV radiation and visible radiation. They found to their surprise that when certain moieties generally occurring in nature e.g. curcuminoids, polyphenol or flavonoids having UV-Visible absorption activity are attached to crosslinked silicone polymers they provide not only the desired photoprotection but also excellent spreadability on skin and other human keratinous substrates that is essential for providing enhanced photoprotection. Further, the new

polymer thus synthesized was highly amenable for further derivatisation with hydrophilic groups that enabled self-emulsification of the polymer in topical products. Further, the compound of the present invention gives enhanced sun protection when incorporated in sunscreen compositions comprising conventional UVA and UVB sunscreens.
It is therefore, one of the objects of the present invention is to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
Another object of the present invention is to provide compounds that give relatively better protection against uv and visible radiation and yet have relatively more photostability.
Yet another object of the present invention is to provide compounds that give enhanced photoprotection against uv and visible radiation while having self-emulsifying property to enable incorporation in personal care compositions without the need for additional emulsifiers.
Yet another object of the present invention is to provide for a personal care sunscreen composition that spreads optimally on the substrate to give the desired photoprotection.

SUMMARY OF THE INVENTION
According to one aspect of the invention there is provided a silicone compound of the

where R1 is a straight or branched alkyl, cycloalkyl, polycycloalkyl,
heterocycloalkyl, alkaryl, alkoxy, aryl, aralkyl, alkenyl, a\kyny\ or fluorocarbon
group containing 1 - 50 carbon atoms;
R2 is R1 or -H, -OH or an organic moiety containing carbon, nitrogen,
phosphorous, sulphur, oxygen or silicon atoms;
"Vis" is a uv-visible absorbing moiety selected from the group consisting of
flavonoids, curcuminoids, or polyphenols, covalently linked to polymer chain;
R3 is an organic moiety (or spacer) containing carbon, nitrogen, phosphorous,
sulphur, oxygen or silicon atoms;
Units A and F are the terminal moieties;
Blocks B, C, D and E are non terminal moieties independently positioned
between A and F in any order;
a, c and d are integers ranging from about 1-10,000; and
b is an integer ranging from about 0-10,000.
It is particularly preferred that the units of block E are cross-linked with another series of units of block E through R3 to form a net like architecture.

According to a preferred aspect of the present invention there is provided a photoprotective personal care composition comprising from 0.01 to 10% by weight the silicone compound of the invention.
According to yet another aspect of the present invention there is provided use of the silicone compound of the invention as a sunscreen agent.
According to yet another aspect of the present invention there is provided use of the silicone compound of the invention as an SPF booster in a sunscreen composition comprising organic UV-A sunscreen and organic oil soluble UV-B sunscreen.
According to yet another aspect of the present invention there is provided a process for the preparation of a silicone compound of the invention comprising the steps of
(a) reacting
(i) an Si-H containing siloxane with (ii) a compound of the formula Vi-O-{CH2)0-50-CH=CH2
or CH2=CH-(CH2V50-Vi-0-(CH2)o.5o-CH=CH2
or Vi-0-(CH2)o-50-CH=CH2
or CHeCH-(CH2)0.50-Vi-0-(CH2)o-5o-CH=CH2
where Vi is a uv-visible absorbing moiety selected from the group consisting of flavonoids, curcumoids, or polyphenols having akyl or alkenyl functionality; and with (iii) a difunctional spacer compound having alkenyl or alkynyl groups, in the presence of a catalyst and a solvent to obtain a reaction product, and
(b) adding the reaction product to a swelling agent.

DETAILED DESCRIPTION OF THE INVENTION
These and other aspects, features and advantages will become apparent to those of ordinary skill in the art from a reading of the following detailed description and the appended claims. For the avoidance of doubt, any feature of one aspect of the present invention may be utilised in any other aspect of the invention. The word "comprising" is intended to mean "including" but not necessarily "consisting of or "composed of." In other words, the listed steps or options need not be exhaustive. It is noted that the examples given in the description below are intended to clarify the invention and are not intended to limit the invention to those examples per se. Similarly, all percentages are weight/weight percentages unless otherwise indicated. Except in the operating and comparative examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word "about". Numerical ranges expressed in the format "from x to y" are understood to include x and y. When for a specific feature multiple preferred ranges are described in the format "from x to y", it is understood that all ranges combining the different endpoints are also contemplated. The disclosure of the invention as found herein is to be considered to cover all embodiments as found in the claims as being multiply dependent upon each other irrespective of the fact that claims may be found without multiple dependency or redundancy.


The present invention provides for a novel silicone compound of the formula:
In the above formula R1 is straight or branched alkyl, cycloalkyl, poiycycloalkyl, heterocycloalkyl, alkaryl, alkoxy, aryl, aralkyl, alkenyl, alkynyl or fluorocarbon group containing 1 - 50 carbon atoms or any combination thereof
R2 is preferably R1 or -H, -OH. Of the various possibilities, R2 is preferably selected from a group selected from polyethers, perfluoropolyethers, or an organic moiety containing nitrogen and/or phosphorous and/or sulfur or polymer/biopolymer chains.
"Vis" is preferably a curcuminoid. However, the various possible functional groups which "Vis" represents are described below:
Curcuminoids
Curcuminoids include curcumins and derivatives of curcumins with different chemical groups that have been formed to increase solubility of curcumins and make them suitable for drug formulation. These compounds are polyphenols and produce yellow color. Many curcumin characters are unsuitable for drug design. They have poor solubility in water at acidic and physiological pH, they also hydrolyze rapidly in alkaline solutions. Therefore, curcumin derivatives are synthezised to increase their solubility and hence bioavailability. Curcuminoids are soluble in dimethyl sulfoxide (DMSO),

acetone and ethanol. but are poorly soluble in lipids. It is possible to increase their solubility in aqueous phase with surfactants or co-surfactants. There have been synthesized curcumin derivatives that could possible be more potent than curcumin. Most common derivatives have different substituents on the phenyl groups.
Chemical structures of various preferred uv-visible absorbing moieties of the curcuminoid class are given below:

Flavonoids
The term flavonoid (or bioflavonoid) refers to a class of plant secondary metabolites. According to the IUPAC nomenclature they can be classified into:
flavonoids, derived from 2-phenylchromen-4-one (2-phenyl-1,4-benzopyrone) structure
isoflavonoids, derived from 3-phenylchromen-4-one (3-phenyl-1,4-benzopyrone) structure

neoflavonoids, derived from 4-phenylcoumarine (4-phenyl-1,2-benzopyrone) structure.

R5=R6=R7=H or OH or OCH3 and combination thereof
Polyphenols
Polyphenols are a group of chemical substances found in plants, characterized by the
presence of more than one phenol unit or building block per molecule.

The difunctional spacer group (R3)
R3 is an organic moiety (or spacer) containing carbon, nitrogen, phosphorous, sulphur, oxygen or silicon atoms;
The difunctional spacer group has two terminal alkenyl groups. The base silicone polymer chains are covalently linked to each other through difunctional spacer groups. These difunctional spacer groups prevent excessive and three dimensional cross-linking, which leads to a gelled mass. Instead they help in forming a cross-linked elastomeric compound that is relatively easier to incorporate in personal care compositions.
The difunctional spacer group is preferably of the formula,

where Y is organic moiety containing carbon, nitrogen, phosphorous, sulphur, oxygen or silicon atoms
The difunctional spacer compound is preferably selected from the group consisting of di alkenyl polyethers, alpha omega dienes, alpha omega diynes; alpha omega ene-ynes or di alkenyl or dialkynyl terminated polysiloxane. Suitable examples of alpha, omega-dienes are 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene; 1,8-nonadiene, 1,9-decadiene, 1,11-dodecadiene, 1,13-tetradecadiene and 1,19-eicosadiene. Suitable examples of alpha, omega-diynes are 1,3-butadiyne or 1,5-hexadiyne, whereas alpha, omega ene-yne is preferably hexene-5-yne. It is further preferred that the spacer groups are siloxane or polyether based.
Di-alkenyl terminated polysiloxanes, are preferably of the general formula:


wherein R1 is straight or branched alkyl, cycloalkyl, polycycloalkyl, heterocycloalkyl, alkaryl, alkoxy, aryl, aralkyl, alkenyl, or alkynyl or fluorocarbon group containing approximately 1 to approximately 50 carbon atoms, wherein f is an integer ranging from approximately 1-10,000. More preferably number of repeat units are in the range of 300-500, corresponding to an average molecular weight in the range of 22,000-40,000 Daltons. A vinyl terminated polysiloxane having repeat units 375, and molecular weight of 28,000 Daltons is particularly preferred.
The di-alkenyl terminated polyethers can be represented by the following general formula:

R1 same as defined earlier or -H; wherein g and h are an integer ranging from approximately 1-10,000.
Units A and F
Units A and F are the terminal moieties. In the units A and F, the functional R1 is
preferably methyl or ethyl.
Blocks B, C, D and E
Blocks B, C, D, and E are non terminal moieties independently positioned between A
and F in any order. Thus the order may be B-C-D-E as shown in the formula in the

summary of the invention. Or the order could be any permutation and combination
which satisfies the rule "independently positioned between A and F in any order" i.e. it
may be
B-D-C-E, B-C-E-D, D-C-E-B, and a host of other possibilities.
a. b. c and d
a, c and d are integers ranging from about 1-10,000. Thus there could be 1 or as high as 10,000 units of B, D and E. However, it is essential that there is at least one block of B, D and E.
b is an integer ranging from about 0-10,000. Thus b could be 0 or as high as 10,000. When b is 0, it implies that the block C is absent from the silicone compound of the invention.
Process
The invention also provides for a convenient process to prepare the silicone compound of the invention. The essential steps are:
(a) reacting (i) an Si-H containing siloxane with (ii) a compound of the formula
Vi-0-(CH2)o-5o-CH=CH2
or CH2=CH-(CH2)0.50-Vi-0-(CH2)o-5o-CH=CH2
or Vi-0-(CH2V5o-CH=CH2
or CH2=CH-(CH2)0.50-Vi-0-(CH2)o.50-CH=CH2
where Vi is a uv-visible absorbing moiety selected from the group consisting of flavonoids, curcumoids, or polyphenols having akyl or alkenyl functionality; and with (iii) a difunctional spacer compound having alkenyl or alkynyl groups, in the presence of a catalyst and a solvent to obtain a reaction product, and
(b) adding the reaction product to a swelling agent.


In the process of the invention, the Si-H containing siloxane is of the general formula:
where a and e are integers ranging from about 1-10,000.
The Si-H containing siloxane is preferably present in 0.001 to 95 % by weight of the reaction mixture
The uv-visible absorbing moiety (Vi) is selected from the group consisting of flavonoids, curcumoids, or polyphenols. The term "uv-visible absorbing moiety" as used herein means a moiety having a molar extinction coefficient of at least 50 units.
The uv-visible absorbing moiety is preferably a curcuminoid. The compound of the
formula
Vi-O-(CH2)0.50-CH=CH2
or CH2=CH-(CH2)o-.5o-Vi-0-(CH2)0-50-CH=CH2
or Vi-0-(CH2WCH=CH2
or CH2=CH-(CH2)0.50-Vi-O-(CH2)0.50-CH=CH2 is preferably present in 0.001 to 95 % by weight of the reaction mixture.
The difunctional spacer compound used in the process of the invention preferably has the formula


where Y is organic moiety containing carbon, nitrogen, phosphorous, sulphur, oxygen or silicon atoms. Y is preferably a compound selected from a group consisting of hydrocarbons, polysiloxanes, polyethers, polycarboxylic acids, or polysaccharides. Thus, preferred difunctional spacer compound is selected from the group consisting of di alkenyl polyethers, alpha omega dienes, alpha omega diynes; alpha omega ene-ynes or di alkenyl ordialkynyl terminated polysiloxane.
The difunctional spacer compound is preferably present in 0.001 to 95 % by weight of the reaction mixture.
The process is preferably carried out in the presence of a monofunctional organic moiety of the general formula

Where z is -R1 or-OH or -H
The compounds most preferred for providing the functionality of block C are Polyethylene Glycol Monoallyl Ethers (Clarient) and long chain alkenes such as octadecene (Sigma Aldrich) having general structure indicated below:

Polyethylene Glycol Monoallyl Ethers

where Rct is reactive group containing carbon, nitrogen, phosphorous, sulphur, oxygen or silicon atoms. Alternately, the mono functional organic moiety of the step (a) is preferably of a general formula:

The segment C has been found to be useful to include in the compound of the invention since it can be selected to provide useful properties like emulsification and act as a solubilizer for other oleophilic materials like sunscreens. The monofunctional organic moiety is preferably present in 0.001 to 95 % by weight of the reaction media.

Ri same as defined earlier or -H; wherein e and f are an integer ranging from approximately 1-10,000.
Catalyst
Step (a) is carried out in the presence of a catalyst. The catalyst is preferably selected from metal complexes or their compounds or metals in free or immobilized form. Transition metals such as Platinum, Palladium and Rhodium are particularly preferred. Preferred catalysts include Chloroplatinic acid, complexes of Platinum with unsaturated compounds e.g. Platinum(0)-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex; Platinum(0)-2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane complex; Pt0(1,5 cyclooctadine) i.e. Pt(COD)]; Platinum Phospine complexes; Platinum on Carbon; Platinum on inorganic supports such as silica and Platinum black. Complexes of other metals such as palladium, rhodium may also be used for the reaction, for example, Wilkinson's catalyst RhCI [(C6H5) P]3. The catalyst can be in heterogeneous phase, e.g., on charcoal or, preferably, in homogeneous phase (Karstedt catalyst). Platinum(0)-1,3-divinyl- ,1,3,3-tetramethyldisiloxane complex is most preferred catalyst. The catalyst is preferably used in an amount of 0.0001 to 20 % by weight of the reaction mixture.
Reaction media:
The reaction is carried out in the presence of a reaction media which is a solvent which is water, a silicone fluid, polar organic compound, a non-polar organic compound or mixtures thereof. Typically the solvent is present in an amount of 0. 1 to 99.89 wt. % based on the weight of all ingredients in the step (a). Preferably the solvent is present in an amount of from 1 to 80 wt. % and more preferably from 1 to 50 wt. %. When the solvent is a polar or nonpolar organic compound, it is preferred that the amount to be used is that which would create a product containing <40 wt. % solids. When used, the solvent becomes an integral part of the resulting elastomer composition and affects the structural and physical properties of the silicone elastomer. Preferably the solvent is not removed from the silicone elastomer composition. Silicone fluid useful as the solvents include, alkyl and/or aryl siloxanes. Preferred are volatile methyl siloxanes (VMS). Linear VMS have the formula

(CH 3)3SiO{(CH3)2SiO}0.5Si(CH 3)3. Cyclic VMS have the formula {(CH 3)2SiO}3.9.
Preferably, the volatile methyl siloxane have a normal boiling point less than about
250° C. Representative linear volatile methyl siloxanes include, but are not limited to,
hexamethyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane,
dodecamethylpentasiloxane, tetradecamethylhexasiloxane, and
hexadecamethylheptasiloxane. Representative cyclic volatile methyl siloxanes are
hexamethylcyclotrisiloxane; octamethylcyclotetrasiloxane,
decamethylcyclopentasiloxane; and dodecamethylcyclohexasiloxane. Representative branched volatile methyl siloxanes are heptamethyl-3-{(trimethylsilyl)oxy}trisiloxane, hexamethyl-3,3 ,bis {(trimethylsilyl) oxy}trisiloxane, and pentamethyl '{(trimethylsilyl)oxy} cyclotrisiloxane. The silicone fluid useful herein also includes polysiloxane compound represented respectively by formulas R1SiO((Ri)2SiO)1.10oooSi(R1)3 and ((R1)2SiO) p wherein R1 is as defined above.
Illustrative of such silicone fluids are polydimethylsiloxane, polydiethylsiloxane, polymethylethylsiloxane, polymethylphenylsiloxane, and polydiphenylsiloxane. Organofunctional silicone fluids can also be employed as the solvent. Examples of functional silicone fluids include, but are not limited to, are acrylamide functional silicone fluids, acrylate functional silicone fluids, carbinol functional silicone fluids, carboxy functional silicone fluids, chloroalkyl functional silicone fluids, glycol functional silicone fluids, ketal functional silicone fluids, mercapto functional silicone fluids, methyl ester functional silicone fluids, perfluoro functional silicone fluids, polyisobutylene (PIB) functional silicone fluids, silanol functional silicone fluid, and vinyl functional silicone fluids. When silicone fluids are used, the resulting ultraviolet radiation absorbing silicone compound is in the form of silicone gels. Polar organic compounds useful herein include monohydroxy alcohols such as ethyl alcohol and isopropyl alcohol; diols and triols such as propylene glycol, 2-methyl-t,3-propane diol HOCH2CH(CH3)CH2OH, 1,2-hexanediol CH3(CH2)3CH(OH)CH2OH, and glycerol; glycerol esters such as glyceryl triacetate (triacetin), glyceryl tripropionate (tripropionin), and glyceryl tributyrate (tributyrin); and polyglycols such as polyethylene glycols and polypropylene glycols, among which are PPG-14 butyl ether C4H9[OCH(CH3)CH 2]140H. Non-polar organic compounds may also be used as the solvents. The non-polar organic compounds include aromatic hydrocarbons, aliphatic hydrocarbons, alcohols, aldehydes, ketones,

amines, esters, ethers, glycols, glycol ethers, alkyl halides, or aromatic halides. Representative compounds are alcohols such as methanol, ethanol, 1-propanol, cyclohexanol, benzyl alcohol, 2-octanol, ethylene glycol, propylene glycol, and glycerol; aliphatic hydrocarbons such as pentane, cyclohexane, heptane, Varnish Maker's & Painter's (VM&P) solvent, and mineral spirits; alkyl halides such as chloroform, carbon tetrachloride, perchloroethylene, ethyl chloride, and chlorobenzene; aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene; esters such as ethyl acetate, isopropyl acetate, ethyl acetoacetate, amyl acetate, isobutyl isobutyrate, benzyl acetate, and isopropyl palmitate; ethers such as ethyl ether, n-butyl ether, tetrahydrofuran, and 1,4-dioxane; glycol ethers such as ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether, and propylene glycol monophenyl ether; ketones such as acetone, methyl ethyl ketone, cyclohexanone, diacetone alcohol, methyl amyl ketone, and diisobutyl ketone; petroleum hydrocarbons such as petroleum jelly, mineral oil, gasoline, naphtha, kerosene, gas oil, heavy oil, and crude oil; lubricating oils such as spindle oil and turbine oil; and fatty oils such as corn oil, soybean oil, olive oil, rape seed oil, cotton seed oil, sardine oil, herring oil, and whale oil. When a polar or non-polar organic solvent is used, the resulting silicone compound is in the form of a silicone gel. Suitable organic solvents are the ones that do not undergo a chemical reaction with any of the components of the silicone phase, under the anticipated conditions of processing and use and that is suitable for use in the intended end-use application.
The reaction temperature, depending upon the reactants, is in the range of 0 to 250°C and preferably about 80 - 120°C and most preferably about 110°C. The reaction time may vary between 1 minute to about 48 hours, more preferably between 1 hour to 12 hours.
Swelling agent:
After the reaction is taken to desired completion, the contents are then added to a swelling agent. The swelling agent is preferably a solvent which is used in the step (a) of the reaction with the exception of water or alcohol. Thus the swelling agent may be a silicone fluid, apolar organic compound, or a non-polar organic compound with the above exceptions. The swelling agent is most preferably a silicone fluid or a functional

silicone fluid. The swelling agent is preferably used in an amount which is in a weight ratio of 1:10 to 10:1, more preferably 1:1 to 5:1 with respect to the reaction mixture of step (a).
An additional advantage of the present invention is that the silicone compound of the invention can be used as a delivery vehicle for active ingredients such as oil soluble vitamins, fragrances and sunscreens. Fragrance oils that are compatible with silicone elastomers can be absorbed into the silicone compound of the invention and their volatility will be reduced, thereby improved the desired sensorial impact.
A highly desired advantage of the present invention is that the silicone compound of the invention when incorporated in sunscreen compositions comprising well known UV-A organic sunscreens and oil-soluble UV-B sunscreens synergisticaliy boosts the sun-protection factor (SPF). Preferred UV- A sunscreen for getting this benefit is Parsol -1789. Preferred oil soluble UV-B sunscreen for getting this benefit is selected from the class of cinnamic acid, salicylic acid, diphenyl acrylic acid or derivatives thereof. Examples of such oil soluble organic sunscreen are Octisalate™, Homosalate™, NeoHelipan™, Octocrylene™ or Parsol MCX™. Most suitable such oil soluble UV-B organic sunscreen is Parsol MCX.

Preferred reaction scheme


When the straight chain silicone polymer was synthesized without the use of the crosslinking spacer molecule, a product in a rubbery mass was produced. This product was difficult to swell and hence cannot be used easily in skin care formulation. The reaction scheme without the use of the crosslinking spacer molecule is shown below.

The above scheme indicates the advantage of providing the spacer molecule between the straight chain silicones to form a cross-linked product as per the present invention as compared to a straight chain silicone polymer as disclosed in EP0842938 or US2009/0209743
Personal care composition
"Personal Care Composition" as used herein, is meant to include a composition for topical application to skin and/or hair of mammals, especially humans. Such a composition may be generally classified as leave-on or rinse off, and includes any product applied to a human body for improving appearance, cleansing, odor control or general aesthetics. The composition of the present invention can be in the form of a liquid, lotion, cream, foam, scrub, gel, soap bar or toner, or applied with an implement or via a face mask, pad or patch. Non-limiting examples of personal care compositions include leave-on skin lotions and creams, shampoos, conditioners, shower gels, toilet bars, antiperspirants, deodorants, dental products, shave creams, depilatories,

lipsticks, foundations, mascara, sunless tanners and sunscreen lotions. "Skin" as used herein is meant to include skin on the face and body (e.g., neck, chest, back, arms, underarms, hands, legs, buttocks and scalp).
According to yet another aspect, the present invention relates to a personal care composition comprising the silicone compound according to the invention, in a cosmetically acceptable vehicle. It is preferred that the compound is present from 1 to 30% by weight of the composition, more preferably from 2 to 15% and most preferably from 3 to 10% by wt of the composition. These are suitable for the protection of human skin and/or hair from damaging effects of UV radiation.
The personal care compositions of the invention are useful as compositions for photo protecting the human epidermis or hair against the damaging effect of UV irradiation, as antisun/sunscreen composition or as makeup product. Such compositions can, in particular, be provided in the form of a lotion, a thickened lotion, a gel, a cream, cleansing milk, an ointment, a powder or a solid tube stick and may optionally be packaged as an aerosol and may be provided in the form of a mousse, foam or a spray.
The personal care compositions of the invention can also contain usual cosmetic adjuvants and skin care additives commonly employed in skin care products such as liquid or solid emollients, silicone oils, emulsifiers, solvents, humectants, polymeric or inorganic thickeners, powders, pigments(example clay mineral, barium sulfate, or pearl pigments, for example silver or gold, or any iris foil pearl pigment, having an Interference color of red, orange, green, blue, or, purple (including any iris foil pearl pigments covered with inorganic pigments, organic pigments, laked pigments, etc.), bismuth oxychloride, bismuth oxychloride coated mica,) organic or inorganic sunscreens with and without photostabiliser, skin lightening agents, skin conditioners, optical brighteners, propellants, healing agents (example allantoin), cooling agents (example urea, menthol, menthyl lactate, frescolate), antiseptic agents and other specific skin-benefit actives, skin care actives such as skin lightening actives, antiaging, antiacne, antibacterials, antiperspirant agents etc,. The vehicle may also further include adjuncts such as antioxidants, perfumes, opacifiers, preservatives,

colorants and buffers. The necessary amounts of the cosmetic and dermatological adjuvants and additives can, based on the desired product, easily be chosen by the skilled person.
The composition may additionally comprise from 0.1 % to 20%, more preferably from 0.1 % to 5 % of an inorganic sunscreen agent. Inorganic sunscreens, which may be employed, are for e.g. titanium dioxide, zinc oxide or silica such as fumed silica and mixtures thereof. These are preferably in the micronized form. Ultrafine titanium dioxide in either of its two forms, namely water- dispersible titanium dioxide and oil dispersible titanium dioxide, may be suitable for the invention. Water-dispersible titanium dioxide is ultra-fine titanium dioxide, the particles of which are non-coated or which are coated with a material to impart a hydrophilic surface property to the particles. Examples of such materials include aluminium oxide and aluminium silicate. Oil-dispersible titanium dioxide is ultrafine titanium dioxide, the particles of which exhibits a hydrophobic surface property, and which, for this purpose, can be coated with metal soaps such as aluminium stearate, aluminium laurate or zinc stearate, or with organosilicone compounds. By "ultrafine or micronized form" is meant particles of inorganic sunscreens having an average particle size of less than 100 u, preferably 70 u or less, more preferably less than 40 u and most preferably from 15 μ to 25 μ.
Vitamins, which act as skin-lightening ingredients can be advantageously included in the composition to provide for additional skin lightening effects. These include vitamin B3, vitamin B6, vitamin C, vitamin A or their precursors and cosmetically acceptable derivatives. Mixtures of the vitamins can also be employed in the composition of the invention. When present, these vitamins are used in the range of 0.01 to 10.0% by weight of said composition.
Emollients, such as stearyl alcohol, glyceryl monoricinoleate, mink oil, cetyl alcohol, isopropyl isostearate, stearic acid, isobutyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecan-2-ol, isocetyl alcohol, eicosanyl alcohol, behenyl alcohol, cetyl palpitate, silicone oils such as dimethylpolysiloxane, organomodified silicones such as cetyl dimethicone, steryl dimethicones; cross-linked silicone elastomers/resins; organo-modified cross-linked

silicone elastomers/resins di-n-butyl sebacate, isopropyl myristate, isopropyl palmitate, isopropyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lanolin, cocoa butter, corn oil, cotton seed oil, olive oil, palm kernel oil, rape seed oil, safflower seed oil, evening primrose oil, soybean oil, sunflower seed oil, avocado oil, sesame seed oil, coconut oil, arachis oil, castor oil, acetylated lanolin alcohols, petroleum jelly, mineral oil, butyl myristate, isostearic acid, palmitic acid, isopropyl linoleate, lauryl lactate, myristyl lactate, decyl oleate, myristyl myristate; Propellants, such as propane, butane, isobutane, dimethyl ether, carbon dioxide, nitrous oxide; Solvents, such as ethyl alcohol, isopropanol, acetone/ ethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether; Powders, such as chalk, talc, fullers earth, kaolin, starch, gums, colloidal silica sodium polyacrylate, tetra alkyl and/or trialkyl aryl ammonium smectites, chemically modified magnesium aluminium silicate, organically modified montmorillonite clay, hydrated aluminium silicate, fumed silica, carboxyvinyl polymer, sodium carboxymethyl cellulose, ethylene glycol monostearate; Plant extracts such as those from genus Rubia, Symplocus, Curcuma and various perfume/fragrance ingredients may also be included in the composition at ranges from 0.001 to 40.0% by weight of the composition. The emollient is preferably present in an amount from about 1 to about 20 wt.%, preferably from about 2 to about 15 wt.%, and most preferably from about 4 to about 10 wt.% of the total weight of the composition.

The preservatives and antioxidants are preferably present in an amount ranging from about 0.01 to about 10 % of the total weight of the composition. Preferably, the preservatives and/or antioxidants are present in an amount varying from about 0.1 to about 1 wt. %
Preferred emulsifiers that may be used to form O/W, W/O is and/or O/W/O formulations, include sorbitan oleate, sorbitan sesquioleate, sorbitan isostearate, sorbitan trioleate, polyglyceryl-3- diisostearate, polyglycerol esters of oleic/isostearic acid, polyglyceryl- 6 hexaricinolate, polyglyceryl-4-oleate, polygylceryl-4 oleate/PEG-8 propylene glycol cocoate, oleamtde DEA, TEA myristate, TEA stearate, magnesium stearate, sodium stearate, potassium laurate, potassium ricinoleate, sodium cocoate, sodium tallowate, potassium castorate, sodium oleate, silicone based emulsifiers and mixtures thereof.

The oily phase of the compositions according to the present Invention may also contain natural vegetable or animal waxes such as bee wax, china wax, bumblebee wax and other waxes of insects as well as shea butter.
The aqueous phase of the formulations of the present invention may contain the usual cosmetic additives such as alcohols, especially lower alcohols, preferably ethanol and so or isopropanol, low alkyl diols or polyols and their ethers, preferably propyleneglycol, glycerine, ethyleneglycol, ethylene glycol monoethyl or monobutyl ether, electrolytes and especially, one or more thickeners. Thickeners that may be used in formulations of the present invention include the family of silicon dioxide, magnesium and/or aluminum silicates, polysaccharides and their derivatives such as hyaluronic acid, xanthan gum, hydroxypropyl cellulose, acrylate copolymers, preferably a polyacrylate of the family of carbopols, such as carbopols of type 980, 981, 1382, 2984, 59S4.
Moisturizing agents, such as humectants, may be incorporated into the compositions according to the present invention to reduce the trans- epidermal water loss (TEWL) of the horny layer of the skin. Suitable humectants include glycerin, lactic acid, pyrrolidone carbonic acid, urea, polyethylene glycol, polypropylene glycol, sorbitol, PEG- 400, and mixtures thereof. Additional suitable moisturizers are polymeric moisturizers of the familiy of water soluble and/or with water gelating polysaccarides such as hyaluronic acid, chitosan and/or fucose rich polysaccharides available, e.g., as FucogeHOOO (CAS-Nr. is 178463-23-5) from SOLABIA S. The moisturizing agent is optionally present in an amount varying from about 0.5 to about 8 wt. %, preferably from about 1 to about 5 wt. % of the total weight of the composition.
Suitable neutralizing agents which may be included in the composition of the present invention to neutralize components such as e.g. an emulsifier or a foam builder/stabilizer include but are not limited to alkali hydroxides such as a sodium and potassium hydroxide) organic bases such as diethanolamine (DEA), triethanolamine (TEA), aminomethyl propanol, trisodium ethylenediaminetetraacetic acid and mixtures thereof; basic amino acids such as arginine and lysine and any combination of any of

the foregoing. The neutralizing agent may be present in an amount of about 0.01 to about 8 wt.% in the compositions of the present invention, preferably 1 to about 5 wt.%. The addition of electrolytes into the composition of the present invention may be necessary to change the behavior of a hydrophobic emulsifier. Thus the emulsions may preferably contain electrolytes of one or several salts including anions such as a chloride, a sulfate, a carbonate, a borate or an aluminate, without being limited thereto. Other suitable electrolytes may be on the bases of organic anions such as, but not limited to, lactate, acetate, benzoate, propionate, tartrate and citrate. As cations preferred are ammonium, alkyl ammonium, alkaline or alkaline earth metals such as Sodium or Magnesium. Especially preferred salts are potassium and sodium chloride, magnesium sulfate, zinc sulfate and mixtures thereof. Electrolytes are preferably present in an amount of about 0.01 to about 0.5 wt.% in the compositions of the present inventions.
The invention will now be explained in detail with help of the following non-limiting examples, which form preferred embodiments of the various aspects of the invention.
Example-1
Synthesis of ultraviolet -visible light absorbing silicone compound having curcumin moiety.
This silicone compound was synthesized in four stages.
Stage 1: Synthesis of allyfoxy functional Curcumin derivative (a compound of the formula Vi-O-(CH2)0-50-CH=CH2 or Vi-O-(CH2)0-50-CH=CH2 in step (a) (ii) of the process of the invention.)
Stage 2: Synthesis of methylhydrogenpolysiloxane (MHPS) copolymer (Si-H containing siloxane of step (a) (i) of the process of the invention). Stage 3: Synthesis of divinyl terminated polysiloxane copolymer (VTP) spacer (a difunctional spacer compound having alkenyl or alkynyl groups of step (a) (iii) of the process of the invention). Stage 4: Hydrosilylation and Swelling (step (b) of the process of the invention)

Stage 1) Synthesis of allyloxy functional Curcumin derivative
A 2-liter, 3-neck flask was fitted with condenser and and additional funnel. The flask was charged with 5g (0.014mol) of curcumin and 17.7 ml of ethanol. Sodium ethoxide 2.268 g (0.042 mol) as a 21% solution in ethanol was added rapidly. The mixture was heated to 50-60 °C for 2 hours. Allyl bromide (3.7 g.(0.042 mol) was added and the mixture heated to reflux (70-74 °C) for 20 hours. The mixture was allowed to return to room temperature and 50 ml water were added, followed by 17 ml of toluene and about 1 ml of 38% aqueous hydrochloric acid. The organic layer was separated and washed with 50 ml of water. Volatiles were removed from the organic layer by rotary evaporation at 80 °C and at 2 mm Hg to give 5 g of allyl ether intermediate. The intermediate consisted primarily of 1,7 bis(4-allyloxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione.
A dark brownish yellow coloured sticky solid was obtained having, 1H-NMR (CDCI3) peaks (due to allyl and methoxy group present on curcumin molecule) at 6.05 (m, 1H, CH2=CH~CH2-0-)l 5.32 & 5.43 (2H, CH2=CH-CH2O), 4.6 (2H, CH=CH2CH2-O), 3.9 (3H, CH30-).
Stage 2. Synthesis of methylhydrogen-polvsiloxane (MHPS) copolymer
50 g of octamethycyclotetrasiloxane (D4) was mixed with 15 g of methylhydrogen-polysiloxane (Aldrich, MHPS) in a two necked round bottom flask. To the mixture 1 g of Tulsion catalyst (Thermax, T63MP) was added. The reaction mixture was stirred at 120 °C for 4 hours. Viscous MHPS copolymer obtained was cooled down to room temperature. Catalyst was filtered off. Un-reacted D4 was distilled off under vacuum at 125 °C. The product obtained was a colorless - viscous oily substance.
The colorless, viscous liquid was characterised with an FTIR peak due to Si-H at 2115 cm'1, Si-CH3at 1260 cm-1 -Si-O-Si at 1186 cm-1; 1H-NMR (CDCI3) peaks at δ0.09 (s, SiCH3), 0.17 (s, Si(CH3)H) and 4.68 (s, Si~H).


Stage 3. Synthesis of divinyl terminated polysiloxane (VTP) copolymer
20 g of octamethycyclotetrasiloxane (D4) was mixed with 4 g of divinyltetramethy-disiloxane (Aldrich) in a 50 mL two necked flask. To the mixture 0.3 g of Tulsion catalyst (Thermax, T63MP) was added. The reaction mixture was stirred at 120 °C for 4 hours. Divinyl terminated polysiloxane copolymer (VTP) copolymer obtained was cooled down to room temperature. Catalyst was filtered off. Un-reacted D4 was distilled off under vacuum at 125 °C. The product obtained was colorless - viscous oil. This was used as the spacer compound.
The colorless, viscous liquid was characterised with 1H-NMR (CDCI3) peaks at 5 0.09 (s, SiCH3), 0.17 (s, Si(CH3)H), 0.8 (m, Si-CH=CH2), 5.6 - 6.2 (s, Si-CH=CH2).

Stage 4: Hvdrosilvlation & Swelling
100 mL toluene and 1.5 g of Polyethylene Glycol monoallyl ethers (Polyglykol A 20-10) were charged to a three necked flask fitted with a Dean and stark set-up under nitrogen atmosphere. Traces of water present in toluene were removed by azeotropic distillation. 1.5 g allyloxy functional Curcumin class (as prepared in stage-1 above);) and 0.21 g divinyi terminated polysiloxane (VTP) (as prepared in stage-3 above) were charged into a moisture-free three necked flask, fitted with as reflux assembly, maintained under Nitrogen atmosphere. 50 ml dry toluene was added subsequently to

dissolve all the reagents, Three drops of platinum catalyst (1,3-divinyltetramethyldisiloxane, Sigma-Aldrich) were added to the reaction mixture and the mixture was stirred at RT for about 0.5 hours. 2 g of methylhydropolysiloxane (MHPS) copolymer (as prepared in stage-2 above) were added and the reaction was stirred at about 110 °C for about 2-3 hrs. The progress of the reaction was monitored by TLC and FT-IR. The product was obtained in a gel form. The gel was further washed with methanol to remove un-reacted organic matter and Platinum catalyst. It was further swollen in 30 g of (decamethylcyclopentasiloxane) D5 and remaining traces of toluene and methanol were removed under vacuum below 60 °C.
The absorbance of a 400 ppm solution of the compound obtained in example-1 showed 2 UV absorption maxima, one at 310 nm with an absorbance value of 0.65 units and the other at 355 nm with a corresponding absorbance value of 0.80 and at 440 nm with a corresponding absorbance value of 0.26 units, thereby confirming the presence of both the UV as well as visible absorbing moieties.
Thus it can be readily seen that the compound of the present invention provides protection against both uv and visible radiation as indicated by absorbance in UVA, UVB and visible radiation wavelengths.
Example 1A: Admixture of polymer and curcumin
Curcumin (at 0.13 % by weight of the composition) was mixed with Silicone 9040 gel (Dow Corning®) Dimethicone crosspolymer to obtain a composition of Comparative Example 1A. The appearance of the gel composition (Example 1A) obtained by physical addition of curcumin to the gel was opaque and not homogeneous where particles of curcumin could be seen to be physically dispersed in the gel matrix when observed under microscope. On the other hand, the appearance of the gel of Example 1 where curcumin is covalently attached to silicone backbone was transparent and homogeneous and no particles could be seen when observed under microscope. Thus, the composition of Example 1A does not provide for uniform distribution of curcumin in the polymer thereby affording poor uv - visible protection.

Example 2: Personal care Composition comprising the silicone compound of the
invention
A personal care composition was prepared using the silicone compound of the
invention. First the ingredients were prepared in two different phases i.e (i) an oil
phase and (ii) a water (aqueous) phase. The ingredients in the respective phases are
tabulated below in Table - 1.
Table-1

Ingredients %by weight in composition the
Phase 1 (oil phase)
Compound prepared in Example 1 50
Emulsifier D5225C 20
Titanium dioxide 0.9
Phase 2 (aqueous phase)
Water To 100
Ingredients from phase 1 were mixed and homogenized for 10 minutes. Phase 2 was prepared separately at 25°C. Aqueous solution of phase 2 was added slowly to phase 1 until the mixture attained a homogenized condition. After homogenization, a smooth cream with acceptable spreading characteristics was obtained.
Example - 3:
Example - 3 was a commercial skin lightening cream Fair & Lovely Multivitamin
containing 0.45% Parsol 1789 (UVA filter), 0.75% Parsol MCX (UVB filter) and 0.9%
Ti02
Transmittance Study
The compositions of Example 1, Example 2 and Example 3 (- 3 mg/cm2} were applied on a transpore tape (3M) which was fixed to the quartz plate. The application was performed using standard colipa procedure. The quartz plate was dried and kept in the solar simulator. The incident energy of light was adjusted to 5.5 mW/cm2. The

transmitted energy was measured through the film present on the transpore tape/quartz, using radiometer. The transmitted energy obtained from the transpore tape/quartz was used as the control.
The data on the % transmittance is given in Table - 2 below:
Table - 2

Examples % Transmittance
310 nm 360 nm 410 nm
Example 1 23 15 36
Example 2 41 35 57
Example 3 24 35 91
The data in Table -2 indicates that the silicone compound as per the invention and a personal care composition prepared using the silicone compound provide for better and broader spectrum photoprotection (to include good visible protection) in comparison to a commercial sample.
Examples 4 and 5: Improved sunprotection factor fSPF) through use of compound of the present invention.
Sunscreen compositions as shown in Table - 3 were prepared. Invitro SPF of these compositions were measured using an Optometries 290S instrument model. The substrate used was a 8 cm Transpore tape procured from 3M Company. The sample was applied at 2 mg/cm2. The data is summarised in Table - 3.

Table - 3

Ingredients Example-4, wt% Example-5, wt%
Sample of Example 1 50 -
Sample of Example 1A - 50
5225C Emulsifier 30 30
Parsol MCX 0.75 0.75
Parsol 1789
Water
SPF 0.4
To 100
12 0.4
To 100
2.5
The data in Table -3 indicates that the compound as per the invention when included in a sunscreen composition comprising conventional organic UV-A and UV-B sunscreens (Example - 4) provides for vastly improved SPF as compared to a composition where equivalent amount of curcumin is added as an admixture in the composition (Example -5).
Example - 6: Hair Gel for Photoprotective benefits
Good photoprotective hair gel composition (as shown in Table - 4) was prepared using the silicone compound of the invention. The process comprised the steps of first mixing the compound of Example - 1 with Aristoflex AVC (which is a cationic polymer). The mixture was homogenized for five minutes. Parsol MCX, and a hair colorant were added subsequently. These were then mixed in a high speed homogenizer for 15 minutes. Perfume was added subsequently. This composition had good consumer accepted sensory properties. The composition is given in Table -4 below:

Table - 4

Ingredients wt%
Silicone compound as per Example -1 5
Aristofiex AVC ( cationic polymer) 1.2
Parsol MCX 2.25
Hair Colorant Perfume
Water 5
0.3
To 100
Example - 7: Deodourant composition
A deodourant composition as shown In Table - 5, using the silicone compound of the invention, in the form of a cream, was prepared. The process used was to first mi> the compound of Example -1 with a silicone emulsifier (DC 5225C from Dow Corninc Corp., Midland, Mich.). The mixture was homogenized for five minutes. Antiperspiranl active (Aluminium chlorohydrate) was then added and the mixture subjected to high speed homogenization for 15 minutes. Perfume was added subsequently.
Table - 5

Ingredients Wt%
Silicone compound as per Example -1 25
5225C emulsifier 10
Antiperspirant active 10
Perfume Water 0.3 To 100

Claims
1. A silicone compound of the general formula:

where R1 is a straight or branched alkyl, cycloalkyl, polycycloalkyl,
heterocycloalkyl, alkaryl, alkoxy, aryl, aralkyl, alkenyl, alkynyl or fluorocarbon
group containing 1-50 carbon atoms;
R2 is R1 or -H, -OH or an organic moiety containing carbon, nitrogen,
phosphorous, sulphur, oxygen or silicon atoms;
"Vis" is a uv-visible absorbing moiety selected from the group consisting of
flavonoids, curcuminoids, or polyphenols, covalently linked to polymer chain;
R3 is an organic moiety (or spacer) containing carbon, nitrogen, phosphorous,
sulphur, oxygen or silicon atoms;
Units A and F are the terminal moieties;
Blocks B, C, D and E are non terminal moieties independently positioned
between A and F in any order;
a, c and d are integers ranging from about 1-10,000; and
b is an integer ranging from about 0-10,000; and
A compound as claimed in claim 1 wherein the units of block E are cross-linked with another series of units of block E through R3 to form a net like architecture of the general formula:


3. A silicone compound as claimed in claim 1 wherein said Vis is a curcuminoid derivative.
4. A process for the preparation of a silicone compound as claimed in claim 1 comprising the steps of
(a) reacting
(i) an Si-H containing siloxane with (ii) a compound of the formula Vi-O-(CH2)0.50-CH=CH2
or CH2=CH-(CH2)0.5o-Vi-0-(CH2)o.50-CH=CH2
or Vi-O-(CH2)0-50-CH=CH2
or CHeCH-(CH2)o.5o-Vi-0-(CH2)o-5o-CH=CH2

where Vi is a uv-visible absorbing moiety selected from the group consisting of flavonoids, curcumoids, or polyphenols having akyl or alkenyl functionality; and with
(iii) a difunctional spacer compound having alkenyl or alkynyl groups, in the presence of a catalyst and a solvent to obtain a reaction product, and (b) adding the reaction product to a swelling agent.
5. A process as claimed in claim 4 wherein the difunctional spacer group is of the formula

where Y is organic moiety containing carbon, nitrogen, phosphorous, sulphur, oxygen or silicon atoms.
6. A process as claimed in claim 5 wherein Y is selected from a group consisting of hydrocarbons, polysiloxanes, polyethers, polycarboxylic acids, or polysaccharides.
7. A process as claimed in any one of claims 4 to 6 wherein the difunctional spacer compound is selected from the group consisting of di alkenyl polyethers, alpha omega dienes, alpha omega diynes; alpha omega ene- ynes ordi alkenyl or dialkynyl terminated polysiloxane.
8. A process as claimed in any one of the preceding claims 4 to 7 wherein the Si-H containing siloxane is of the general formula:


where a and e are integers ranging from about 1-10,000.
9. A process as claimed in any one of the preceding claims 4 to 8 wherein the
step (a) is carried out in presence of a monofunctional organic moiety of the general formula

where Ret is reactive group containing carbon, nitrogen, phosphorous, sulphur, oxygen or silicon atoms.
10. A process as claimed in any one of the preceding claims 4 to 9 wherein said solvent is water, a silicone fluid, polar organic compound, a non-polar organic compound or a mixture thereof.
11. A process as claimed in any one of the claims 4 to 10 wherein said swelling agent is a solvent as claimed in claim 10 with the exception of water or alcohol.

12. A process as claimed in claim 11 wherein said swelling agent is a silicone fluid or a functional silicone fluid.
13. A photoprotective personal care composition comprising from 0.01 to 10% by weight the silicone compound as claimed in claim 1.
14. Use of a compound as claimed in claim 1 as a sunscreen agent.
15. Use of a compound as claimed in claim 1 as an SPF booster in a sunscreen composition comprising organic UV-A sunscreen and organic oil soluble UV-B sunscreen.

Documents

Orders

Section Controller Decision Date

Application Documents

# Name Date
1 2362-MUM-2009-FORM 3(10-12-2013).pdf 2013-12-10
1 2362-MUM-2009-IntimationOfGrant04-06-2020.pdf 2020-06-04
2 2362-MUM-2009-FORM 3(10-11-2014).pdf 2014-11-10
2 2362-MUM-2009-PatentCertificate04-06-2020.pdf 2020-06-04
3 2362-MUM-2009-FORM 3-(19-03-2016).pdf 2016-03-19
3 2362-MUM-2009-FORM 3 [25-05-2020(online)].pdf 2020-05-25
4 2362-MUM-2009-Form 3-210519.pdf 2020-01-07
4 2362-MUM-2009-FER_SER_REPLY [09-08-2018(online)].pdf 2018-08-09
5 2362-MUM-2009-POWER OF ATTORNEY(6-11-2009).pdf 2018-08-10
5 2362-MUM-2009-Form 3-171219.pdf 2019-12-20
6 2362-MUM-2009-Written submissions and relevant documents (MANDATORY) [09-12-2019(online)].pdf 2019-12-09
6 2362-MUM-2009-Original Under Rule 6 (1 A)Form 3-200117.pdf 2018-08-10
7 2362-MUM-2009-FORM 5(5-10-2010).pdf 2018-08-10
7 2362-MUM-2009-Form 3-261118.pdf 2019-11-21
8 2362-mum-2009-form 3.pdf 2018-08-10
8 2362-MUM-2009-Form 3-080618.pdf 2019-11-20
9 2362-MUM-2009-ExtendedHearingNoticeLetter-(DateOfHearing-26-11-2019).pdf 2019-11-14
9 2362-MUM-2009-FORM 3-25-4-2015.pdf 2018-08-10
10 2362-MUM-2009-Form 3-221217.pdf 2018-08-10
10 2362-MUM-2009-REQUEST FOR ADJOURNMENT OF HEARING UNDER RULE 129A [05-11-2019(online)].pdf 2019-11-05
11 2362-MUM-2009-ExtendedHearingNoticeLetter-(DateOfHearing-07-11-2019).pdf 2019-10-31
11 2362-MUM-2009-Form 3-100816.pdf 2018-08-10
12 2362-MUM-2009-Form 3-081015.pdf 2018-08-10
12 2362-MUM-2009-HearingNoticeLetter13-09-2019.pdf 2019-09-13
13 2362-MUM-2009-ABSTRACT(5-10-2010).pdf 2018-08-10
13 2362-MUM-2009-FORM 3(8-8-2012).pdf 2018-08-10
14 2362-MUM-2009-CLAIMS(5-10-2010).pdf 2018-08-10
14 2362-MUM-2009-FORM 3(5-10-2010).pdf 2018-08-10
15 2362-mum-2009-claims.pdf 2018-08-10
15 2362-MUM-2009-FORM 3(4-8-2010).pdf 2018-08-10
16 2362-MUM-2009-CORRESPONDENCE(5-10-2010).pdf 2018-08-10
16 2362-MUM-2009-FORM 3(24-2-2010).pdf 2018-08-10
17 2362-MUM-2009-FORM 3(23-1-2013).pdf 2018-08-10
17 2362-MUM-2009-CORRESPONDENCE(6-11-2009).pdf 2018-08-10
18 2362-mum-2009-correspondence.pdf 2018-08-10
18 2362-MUM-2009-FORM 3(22-6-2013).pdf 2018-08-10
19 2362-MUM-2009-DESCRIPTION(COMPLETE)-(5-10-2010).pdf 2018-08-10
19 2362-MUM-2009-FORM 3(21-5-2014).pdf 2018-08-10
20 2362-mum-2009-description(provisional).pdf 2018-08-10
20 2362-MUM-2009-FORM 3(15-2-2012).pdf 2018-08-10
21 2362-MUM-2009-FER.pdf 2018-08-10
21 2362-MUM-2009-FORM 3(15-2-2011).pdf 2018-08-10
22 2362-mum-2009-form 1.pdf 2018-08-10
22 2362-MUM-2009-FORM 3(12-8-2011).pdf 2018-08-10
23 2362-MUM-2009-FORM 13(1-11-2011).pdf 2018-08-10
23 2362-mum-2009-form 2.pdf 2018-08-10
24 2362-mum-2009-form 2(title page).pdf 2018-08-10
24 2362-MUM-2009-FORM 13(9-2-2012).pdf 2018-08-10
25 2362-mum-2009-form 2(5-10-2010).pdf 2018-08-10
25 2362-MUM-2009-FORM 2(TITLE PAGE)-(5-10-2010).pdf 2018-08-10
26 2362-mum-2009-form 2(5-10-2010).pdf 2018-08-10
26 2362-MUM-2009-FORM 2(TITLE PAGE)-(5-10-2010).pdf 2018-08-10
27 2362-MUM-2009-FORM 13(9-2-2012).pdf 2018-08-10
27 2362-mum-2009-form 2(title page).pdf 2018-08-10
28 2362-MUM-2009-FORM 13(1-11-2011).pdf 2018-08-10
28 2362-mum-2009-form 2.pdf 2018-08-10
29 2362-mum-2009-form 1.pdf 2018-08-10
29 2362-MUM-2009-FORM 3(12-8-2011).pdf 2018-08-10
30 2362-MUM-2009-FER.pdf 2018-08-10
30 2362-MUM-2009-FORM 3(15-2-2011).pdf 2018-08-10
31 2362-mum-2009-description(provisional).pdf 2018-08-10
31 2362-MUM-2009-FORM 3(15-2-2012).pdf 2018-08-10
32 2362-MUM-2009-DESCRIPTION(COMPLETE)-(5-10-2010).pdf 2018-08-10
32 2362-MUM-2009-FORM 3(21-5-2014).pdf 2018-08-10
33 2362-mum-2009-correspondence.pdf 2018-08-10
33 2362-MUM-2009-FORM 3(22-6-2013).pdf 2018-08-10
34 2362-MUM-2009-CORRESPONDENCE(6-11-2009).pdf 2018-08-10
34 2362-MUM-2009-FORM 3(23-1-2013).pdf 2018-08-10
35 2362-MUM-2009-FORM 3(24-2-2010).pdf 2018-08-10
35 2362-MUM-2009-CORRESPONDENCE(5-10-2010).pdf 2018-08-10
36 2362-mum-2009-claims.pdf 2018-08-10
36 2362-MUM-2009-FORM 3(4-8-2010).pdf 2018-08-10
37 2362-MUM-2009-CLAIMS(5-10-2010).pdf 2018-08-10
37 2362-MUM-2009-FORM 3(5-10-2010).pdf 2018-08-10
38 2362-MUM-2009-ABSTRACT(5-10-2010).pdf 2018-08-10
38 2362-MUM-2009-FORM 3(8-8-2012).pdf 2018-08-10
39 2362-MUM-2009-Form 3-081015.pdf 2018-08-10
39 2362-MUM-2009-HearingNoticeLetter13-09-2019.pdf 2019-09-13
40 2362-MUM-2009-ExtendedHearingNoticeLetter-(DateOfHearing-07-11-2019).pdf 2019-10-31
40 2362-MUM-2009-Form 3-100816.pdf 2018-08-10
41 2362-MUM-2009-Form 3-221217.pdf 2018-08-10
41 2362-MUM-2009-REQUEST FOR ADJOURNMENT OF HEARING UNDER RULE 129A [05-11-2019(online)].pdf 2019-11-05
42 2362-MUM-2009-ExtendedHearingNoticeLetter-(DateOfHearing-26-11-2019).pdf 2019-11-14
42 2362-MUM-2009-FORM 3-25-4-2015.pdf 2018-08-10
43 2362-MUM-2009-Form 3-080618.pdf 2019-11-20
43 2362-mum-2009-form 3.pdf 2018-08-10
44 2362-MUM-2009-Form 3-261118.pdf 2019-11-21
44 2362-MUM-2009-FORM 5(5-10-2010).pdf 2018-08-10
45 2362-MUM-2009-Written submissions and relevant documents (MANDATORY) [09-12-2019(online)].pdf 2019-12-09
45 2362-MUM-2009-Original Under Rule 6 (1 A)Form 3-200117.pdf 2018-08-10
46 2362-MUM-2009-POWER OF ATTORNEY(6-11-2009).pdf 2018-08-10
46 2362-MUM-2009-Form 3-171219.pdf 2019-12-20
47 2362-MUM-2009-Form 3-210519.pdf 2020-01-07
47 2362-MUM-2009-FER_SER_REPLY [09-08-2018(online)].pdf 2018-08-09
48 2362-MUM-2009-FORM 3-(19-03-2016).pdf 2016-03-19
48 2362-MUM-2009-FORM 3 [25-05-2020(online)].pdf 2020-05-25
49 2362-MUM-2009-PatentCertificate04-06-2020.pdf 2020-06-04
49 2362-MUM-2009-FORM 3(10-11-2014).pdf 2014-11-10
50 2362-MUM-2009-FORM 3(10-12-2013).pdf 2013-12-10
50 2362-MUM-2009-IntimationOfGrant04-06-2020.pdf 2020-06-04

Search Strategy

1 2362_MUM_2009_07-02-2018.pdf

ERegister / Renewals

3rd: 21 Jul 2020

From 12/10/2011 - To 12/10/2012

4th: 21 Jul 2020

From 12/10/2012 - To 12/10/2013

5th: 21 Jul 2020

From 12/10/2013 - To 12/10/2014

6th: 21 Jul 2020

From 12/10/2014 - To 12/10/2015

7th: 21 Jul 2020

From 12/10/2015 - To 12/10/2016

8th: 21 Jul 2020

From 12/10/2016 - To 12/10/2017

9th: 21 Jul 2020

From 12/10/2017 - To 12/10/2018

10th: 21 Jul 2020

From 12/10/2018 - To 12/10/2019

11th: 11 Aug 2020

From 12/10/2019 - To 12/10/2020

12th: 11 Aug 2020

From 12/10/2020 - To 12/10/2021

13th: 28 Sep 2021

From 12/10/2021 - To 12/10/2022