Sign In to Follow Application
View All Documents & Correspondence

A Testing Automation Controller Framework And A Method To Operate The Same

Abstract: A TESTING AUTOMATION CONTROLLER FRAMEWORK AND A METHOD TO OPERATE THE SAME A testing automation controller framework and a method to operate the same are provided. The testing automation controller framework includes a processing subsystem which includes an acquisition module configured to receive one or more requests for testing of the at least one test case based from one or more users. The at least one test case includes a test case written in at least one of a plurality of technology platforms. The testing automation controller framework also includes a queue generation module configured to generate a queue of the corresponding one or more requests, a testing module configured to retrieve the one or more requests from the queue generation module, to test and execute the at least one test case sequentially based on a generated queue and to create a batch file for a test result obtained upon execution of the corresponding at least one test case.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
21 August 2018
Publication Number
09/2020
Publication Type
INA
Invention Field
COMPUTER SCIENCE
Status
Email
support@ipexcel.com
Parent Application
Patent Number
Legal Status
Grant Date
2025-10-30
Renewal Date

Applicants

Marlabs Innovations Private Limited
#2, 1st Floor, S.R. Complex, Tavarekere Main Road, S.G.Palya, Bengaluru, Karnataka - 560029.

Inventors

1. Govardhana Reddy R
#2, 1st Floor, S.R. Complex, Tavarekere Main Road, S.G.Palya, Bengaluru, Karnataka - 560029.

Specification

A TESTING AUTOMATION CONTROLLER FRAMEWORK AND A METHOD
TO OPERATE THE SAME
FIELD OF INVENTION
[0001] Embodiments of the present disclosure relate to testing a test case, and
more particularly to a testing automation controller framework and a method to operate the same.
BACKGROUND
[0002] With linear growth in the technology, test cases are being developed each
day for various applications. Further, prior to implementing these test cases into the various applications domain, testing and executing these developed test cases is a primary criterion. Conventional systems which are used to test and execute such test cases includes a platform to retrieve the test case to be verified and tested. Upon receiving the test case, the conventional system verifies and executes the received test case. Further, on verifying the test case, a user needs to enable the conventional system to generate a result for the executed test case. Also, the conventional systems are unable to verify the test cases written in different technology platforms. Hence, each technology domain must have a supporting conventional system for analysis and verification of the test cases of different technology platforms.
[0003] In comparison with the conventional systems, newer system automatically
tests, executes and generates results for the test cases chosen to be tested. Hence the newer system avoids the user intervention for enabling the newer system for generating the results of the test case upon execution. However, the newer system can test and execute the test case written in a specific technology platform. Such limitations restrict the testing and execution of the test cases written in different technology platforms, which give raise to using different testing system for corresponding test cases written in different technology platforms.
[0004] Hence, there is a need for an improved a testing automation controller
framework and a method to operate the same to address the aforementioned issues.
BREIF DESCRIPTION

[0005] In accordance with one embodiment of the disclosure, a testing automation
controller framework is provided. The testing automation controller framework includes a processing subsystem. The processing subsystem includes an acquisition module. The acquisition module is configured to receive one or more requests for testing of the at least one test case based on one or more parameters from one or more users. The at least one test case includes a test case written in at least one of a plurality of technology platforms. The testing automation controller framework also includes a queue generation module operatively coupled to the acquisition module. The queue generation module is configured to generate a queue of the corresponding one or more requests for the testing of the at least one test case. The processing subsystem also includes a testing module operatively coupled to the queue generation module. The testing automation controller framework is configured to retrieve the one or more requests associated with the testing of the at least one test case from the queue generation module. The testing automation controller framework is also configured to test and execute the at least one test case sequentially based on a generated queue. The testing automation controller framework is also configured to create a batch file for a test result obtained upon execution of the corresponding at least one test case. The testing automation controller framework also includes a memory operatively coupled to the processing subsystem. The memory is configured to store the test result and the batch file.
[0006] In accordance with another embodiment of the present disclosure a
method for testing at least one test case is provided. The method includes receiving one or more requests for testing of the at least one test case based on one or more parameters from one or more users. The at least one test case includes a test case written in at least one of a plurality of technology platforms. The method also includes generating a queue of the corresponding one or more requests for the testing of the at least one test case. The method also includes retrieving the one or more requests associated with the testing of the at least one test case. The method also includes testing and executing the at least one test case sequentially based on a generated queue. The method also includes creating a batch file for a test result obtained upon execution of the corresponding at least one test case.

[0007] To further clarify the advantages and features of the present disclosure, a
more particular description of the disclosure will follow by reference to specific embodiments thereof, which are illustrated in the appended figures. It is to be appreciated that these figures depict only typical embodiments of the disclosure and are therefore not to be considered limiting in scope. The disclosure will be described and explained with additional specificity and detail with the appended figures.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosure will be described and explained with additional specificity and detail with the accompanying figures in which:
[0008] FIG. 1 is a block diagram of a testing automation controller framework for
testing at least one test case in accordance with an embodiment of the present disclosure;
[0009] FIG. 2 is a schematic representation of an exemplary testing automation
controller framework for testing a plurality of frameworks in accordance with an embodiment of the present disclosure;
[0010] FIG. 3 is a flow chart representing the steps involved in an exemplary
method for installing a message queue for testing at least one test case in accordance with an embodiment of the present disclosure;
[0011] FIG. 4 is a flow chart representing the steps involved in another exemplary
method for creating a message queue for testing at least one test case in accordance with an embodiment of the present disclosure; and
[0012] FIG. 5 is a flow chart representing the steps involved in a method for
testing at least one test case in accordance with an embodiment of the present disclosure.
[0013] Further, those skilled in the art will appreciate that elements in the figures
are illustrated for simplicity and may not have necessarily been drawn to scale. Furthermore, in terms of the construction of the device, one or more components of the device may have been represented in the figures by conventional symbols, and the figures may show only those specific details that are pertinent to understanding

the embodiments of the present disclosure so as not to obscure the figures with details that will be readily apparent to those skilled in the art having the benefit of the description herein.
DETAILED DESCRIPTION
[0014] For the purpose of promoting an understanding of the principles of the
disclosure, reference will now be made to the embodiment illustrated in the figures and specific language will be used to describe them. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended. Such alterations and further modifications in the illustrated system, and such further applications of the principles of the disclosure as would normally occur to those skilled in the art are to be construed as being within the scope of the present disclosure.
[0015] The terms "comprises", "comprising", or any other variations thereof, are
intended to cover a non-exclusive inclusion, such that a process or method that comprises a list of steps does not include only those steps but may include other steps not expressly listed or inherent to such a process or method. Similarly, one or more devices or sub-systems or elements or structures or components preceded by "comprises... a" does not, without more constraints, preclude the existence of other devices, sub-systems, elements, structures, components, additional devices, additional sub-systems, additional elements, additional structures or additional components. Appearances of the phrase "in an embodiment", "in another embodiment" and similar language throughout this specification may, but not necessarily do, all refer to the same embodiment.
[0016] Unless otherwise defined, all technical and scientific terms used herein
have the same meaning as commonly understood by those skilled in the art to which this disclosure belongs. The system, methods, and examples provided herein are only illustrative and not intended to be limiting.
[0017] In the following specification and the claims, reference will be made to a
number of terms, which shall be defined to have the following meanings. The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.

[0018] Embodiments of the present disclosure relate to a testing automation
controller framework and a method to operate the same. The testing automation controller framework includes a processing subsystem. The processing subsystem includes an acquisition module. The acquisition module is configured to receive one or more requests for testing of the at least one test case based on one or more parameters from one or more users. The at least one test case includes a test case written in at least one of a plurality of technology platforms. The testing automation controller framework also includes a queue generation module operatively coupled to the acquisition module. The queue generation module is configured to generate a queue of the corresponding one or more requests for the testing of the at least one test case. The processing subsystem also includes a testing module operatively coupled to the queue generation module. The testing automation controller framework is configured to retrieve the one or more requests associated with the testing of the at least one test case from the queue generation module. The testing automation controller framework is also configured to test and execute the at least one test case sequentially based on a generated queue. The testing automation controller framework is also configured to create a batch file for a test result obtained upon execution of the corresponding at least one test case. The testing automation controller framework also includes a memory operatively coupled to the processing subsystem. The memory is configured to store the test result and the batch file.
[0019] FIG. 1 is a block diagram of a testing automation controller framework
(10) for testing at least one test case in accordance with an embodiment of the present disclosure. As used herein, the ‘testing automation controller framework’ (10) also known as testing automation framework is defined as an execution environment to test, verify and execute test cases which is written in any computer environment or a computer language. Also, the term ‘test case’ is defined as a type of specification of an input, an execution condition, a testing procedure and an expected result that defines a single test to be executed in order to achieve an objective associated to a particular software testing.
[0020] The testing automation controller framework (10) includes a processing
subsystem (20). The processing subsystem (20) includes an acquisition module (30). The acquisition module (30) is configured to receive one or more requests for testing

of the at least one test case based on one or more parameters from one or more users. In one embodiment, the one or more users may send a request to the acquisition module (30) requesting for testing of the at least one test case. In one exemplary embodiment, the one or more parameters may include at least one of a type of test, a part of the one or more test cases to be tested, a type of a technology domain and a type of a computer programming language.
[0021] Furthermore, the one or more users may upload the at least one test case to
the acquisition module (30) through a user device. In such embodiment, the user device may be a computer device. Further, the at least one test case includes a test case written in at least one of a plurality of technology platforms. In one embodiment, the plurality of technology platforms may correspond to a plurality of testing automation controller frameworks. In another embodiment, the plurality of testing platforms may correspond to a plurality of computer environment. In one specific embodiment, the plurality of testing automation controller frameworks may correspond to a plurality of computer programming languages.
[0022] The testing automation controller framework (10) also includes a queue
generation module (40) operatively coupled to the acquisition module (30). The queue generation module (40) is configured to generate a queue of the corresponding one or more requests for the testing of the at least one test case. In one embodiment, the testing automation controller framework (10) may generate a queue for the at least one test case based on at least one of a priority level, a type of technology platform and the like. In such embodiment, the queue generation module (40) may generate the queue in a form of one or more messages. In one specific embodiment, the queue generated by the queue generation module (40) may correspond to a private transitional messaging queue. As used herein, the term ‘messaging queue’ is defined as components which are used for inter-process communication or inter-thread communication within a said process.
[0023] In one specific embodiment, the one or more messages which may
associate with the queue generated may include at least one of a test case identification of a selected at least one test case, a log in of the corresponding one or more users, a time of submission of the at least one test case by the corresponding

one or more users and one or more browsers on which the at least one test case may be tested.
[0024] Furthermore, the testing automation controller framework (10) includes a
testing module (50) operatively coupled to the queue generation module (40). The testing module (50) is configured to retrieve the one or more requests associated with the testing of the at least one test case from the queue generation module (40). In one embodiment, the testing module (50) retrieves the at least one test case based on the one or more messages which may be generated by the queue generation module (40).
[0025] The testing module (50) is also configured to test and execute the at least
one test case sequentially based on a generated queue. More specifically, the testing module (50) tests and executes the at least one test case one after the other based on the queue generated. In one embodiment, a mapper file may be used to identify a location of the at least one test case to be executed based on the queue generated.
[0026] In one exemplary embodiment, the testing module (50) may first test the at
least one test case for one or more errors. Consequently, the testing module (50) executes the at least one test case if the at least one test case is free from the one or more errors. In another embodiment, the testing module (50) may generate an error notification upon detecting the one or more errors in the at least one test case. Consequently, the one or more users may rectify the detected one or more errors and may further enable the testing module (50) to execute the at least one test case upon rectifying the one or more errors.
[0027] The testing module (50) is also configured to create a batch file for a test
result obtained upon execution of the corresponding at least one test case. As used herein, the term ‘batch file’ is defined as a file which is stored in a computer system which includes a list of instructions or rules which is used to execute the at least one test case. In one embodiment, the batch file may be used to test the at least one test case in future. In such embodiment, the batch file may be used as a reference file for testing the at least one file of the same category. In one specific embodiment, the batch file may be stored in a queue support file location associated with the queue generated for the corresponding at least one test case.

[0028] In one exemplary embodiment, the testing automation controller
framework (10) may include a tracking module (not shown in FIG. 1) operatively coupled to the testing module (50). The tracking module is configured to track every stage of execution of the at least one test case when being tested and executed. In such embodiment, the tracking module may generate a notification if any of the stage of execution is found to generate the one or more errors.
[0029] The testing automation controller framework (10) also includes a memory
(60) operatively coupled to the processing subsystem (20). The memory (60) is configured to store the test result and the batch file. In one embodiment, the memory (60) may be a random-access memory (RAM), a read only memory (ROM), an external memory and the like. In one exemplary embodiment, the memory (60) may be stored on a remote storage such as a cloud storage.
[0030] Furthermore, in one exemplary embodiment, the testing automation
controller framework (10) may further include a report module (1not shown in FIG. 1) operatively coupled to the testing module (50). The report module is configured to generate one or more reports for the test results obtained upon execution of the at least one test case. In such embodiment, the report module may generate at least one of a dashboard, a structured threat information expression and an application programming interface to represent the test results obtained upon execution of the at least one test case. In one specific embodiment, the report module may update a status of the execution of the at least one test case in the one or more reports and may share the same with the corresponding one or more users through an electronic mail (e-mail).
[0031] FIG. 2 is a schematic representation of an exemplary testing automation
controller framework (70) for testing a plurality of frameworks in accordance with an embodiment of the present disclosure. A user X (80) and a user Y (90) needs to test and execute a test case B and a test case C respectively. The test case B is written in language M and the test case C is written in language N. The user X (80) and the user Y (90) sends a request to an acquisition module (110) of a processing subsystem (100) for testing the test case B and the test case C respectively. Also, the user X (80) send the request for testing the test case B to the acquisition module

(110) prior to the user Y (90), leading to a time delay between the request sent by the user X (80) and the user Y (90).
[0032] Also, the testing automation controller framework (70) enables the user X
(80) and the user Y (90) to input a plurality of parameters such as a type of test, a part of the test case B and the test case C to be tested, a type of a technology domain, that is the languages in which the test case B and the test case C to be tested, a technology domain the test case B and the test C belongs to respectively and a browser on which the user X (80) and the user Y (90) wishes to test and execute the test case B and the test case C respectively.
[0033] Furthermore, based on the time delay and the plurality of parameters
associated with the test case B and the test case C, a queue generation module (120) which is operatively coupled to the acquisition module (110) generates a queue for the request of testing requested by the user X (80) and the user Y (90) in a form of a message. Furthermore, a testing module (130) which is operatively coupled to the queue generation module (120) retrieves the message associated with the request of the user X (80) and the user Y (90) from the queue generation module (120).
[0034] For example, a message queue which is substantially similar to the queue
generation module (120) may be installed on a computer device associated with the user X (80) and the user Y (90) respectively. The message queue is configured to generate and maintained the queue associated with the request raised by the user X (80) and the user Y (90). A method (170) to install the message queue is adapted through the steps as shown in FIG. 3. A server manager console is opened and a tab comprising ‘add roles and windows’ is selected in step 180. Upon selecting the tab, a new popup window would be displayed on the computer device in step 190. Further, the window is traversed till the tab comprising ‘message queuing’ is displayed on a display of the computer device in step 200. Consequently, the ‘messaging queuing’ tree is expanded and an option displaying ‘message queuing services’ is selected in step 210.
[0035] Furthermore, a tab displaying ‘message queuing DCOM proxy’ is selected
to enable a connection to a remote message queuing server in step 220. Consequently, the message queue is installed on the computer device in step 230.

upon installing the message queue, a new message queue is created in order to test the test file B and the test file C by the user X (80) and the user Y (90) respectively.
[0036] Upon completing the installation of the message queue, a new message
queue is created. A method (240) for creating the message queue is as shown in FIG. 4. The method (240) includes selecting administrative tools, and then double¬click on tab displaying ‘computer management’ in step 250. Expanding the ‘computer management’ tab in step 260, further expanding the tab displaying ‘services and application’ in step 270 and then expanding the tab displaying ‘message queuing’ in step 280. Consequently, Right-clicking on the tab displaying ‘Private Queues’ in step 290, selecting the tab displaying ‘new’ and then selecting the tab displaying ‘private queue’ in step 300. Furthermore, entering a name for the ‘private queue’ in step 310 and then clicking ‘ok’ to complete the creation of the message queue in step 320. Furthermore, upon the creation of the message queue, the queue which is generated by the queue generation module is displayed under the tab ‘private queues’.
[0037] Furthermore, the test case B and the test case C is verified using an
automation framework, for verifying, testing and executing the test case B and the test case C respectively. Upon retrieving the test case B and the test case C, verification for the same will be conducted by the automation framework. If the test case B and the test case C passes through the current configuration, message will be queued for the further execution of the test case B and the test case C.
[0038] The message is retrieved from the queue generation module (120). Upon
retrieving the message, the testing module (130) tests the test case B first and then tests the test case C as the queue generation module (120) would have generated the queue for testing of the test cases one sequentially. Furthermore, if a test result of the test case B and the test case C generates a positive result, the testing module (130) further executes the test case B and the test case C sequentially.
[0039] Furthermore, upon executing the test case B and the test case C, the testing
module (130) creates a first batch file for the test case B written in language M and a second batch file for the test case C written in language N. Simultaneously, a tracking module (140) which is operatively coupled to the testing module (130)

tracks the testing and the execution of the test case B and the test case C respectively.
[0040] Upon executing the test case B and the test case C, a report module (150)
which is operatively coupled to the testing module (130) generates a first report and a second report based for the test case B and the test case C respectively.
[0041] A test result of the test case B and a test result of the test case C along with
the first batch file and the second batch file is stored in a memory (160) which is operatively coupled to the processing subsystem (100). The first batch file and the second batch file are also stored within the memory (160).
[0042] Furthermore, the processing subsystem (100), the acquisition module
(110), the queue generation module (120), the testing module (130) and the memory (150) is substantially similar to a processing subsystem (20), an acquisition module (30), a queue generation module (40), a testing module (50) and a memory (60) of FIG. 1.
[0043] FIG. 5 is a flow chart representing the steps involved in a method (330) for
testing at least one test case in accordance with an embodiment of the present disclosure. The method (330) includes receiving one or more requests for testing of the at least one test case based on one or more parameters from one or more users. The at least one test case comprises a test case written in at least one of a plurality of technology platforms in step 340. In one embodiment, receiving the one or more requests for testing of the at least one test case may include receiving the one or more requests for testing of the at least one test case based on at least one of a type of test, a part of the one or more test cases to be tested, a type of a technology domain and a type of a technology platform. In one exemplary embodiment, receiving the one or more requests for testing of the at least one test case may include receiving the one or more request from an acquisition module which may be communicatively coupled to
[0044] The method (330) also includes generating a queue of the corresponding
one or more requests for the testing of the at least one test case in step 350. In one embodiment, generating the queue of the corresponding one or more requests for testing of the at least one test case may include generating the queue of the

corresponding one or more requests based on at least one of a priority level, a type of technology platform and the like. In another embodiment, generating the queue for the one or more requests for the testing of the at least one test case may include generating one or more messages associated with the one or more requests for testing of the at least one test case. In such embodiment, generating the queue of the one or more requests may include generating the queue of the one or more requests by a queue generation module which may be operatively couple to the acquisition module.
[0045] Furthermore, the method (330) includes retrieving the one or more
requests associated with the testing of the at least one test case in step 360. In one embodiment, retrieving the one or more requests may include retrieving the one or more messages associated with the one or more requests for testing of the at least one test case. In one exemplary embodiment, retrieving the one or more requests associated with the testing of the at least one test case may include retrieving the one or more requests associated with the testing of the at least one test case by a testing module which may be operatively coupled to the queue generation module.
[0046] The method (330) also includes testing and executing the at least one test
case sequentially based on a generated queue in step 370. In one embodiment, testing and executing the at least one test case may include retrieving the one or more requests sequentially based on the queue generated. Consequently, testing the at least one test code associated with the retrieved one or more requests. In such embodiment, the method (330) may include generating a notification upon detecting one or more errors which may be associated to the at least one test case. In such another embodiment, the method (330) may include compiling the at least one test case upon receiving a positive test result after testing. Subsequently, executing the at least one test case upon being tested. In one exemplary embodiment, testing and executing the at least one test case sequentially based on the generated queue may include testing and executing the at least one test case by the testing module.
[0047] The method (330) also includes creating a batch file for the at least one
test result obtained upon execution of the corresponding at least one test case in step 380. In one embodiment, creating the batch file for the at least one test case may include creating the batch file by the testing module. In another embodiment, the

method (330) may further include storing the batch file as a reference for the reference file for testing the at least one file of a same category.
[0048] In one exemplary embodiment, the method (330) may further include
tracking every stage of execution of the at least one test case when being tested and executed. In such embodiment, tracking every stage of execution of the at least one test case may include tracking every stage of execution by the tracking module. In one embodiment, the method (330) may also include generating the notification if any of the stage of execution is found to generate the one or more errors.
[0049] In another exemplary embodiment, the method (330) may further include
generating one or more reports for the test results obtained upon execution of the at least one test case. In such embodiment, generating the one or more reports may include generating the one or more reports by a report module which may be operatively coupled to the testing module. In one embodiment, generating the one or more reports may include generating at least one of a dashboard, a structured threat information expression and an application programming interface to represent the test results obtained upon execution of the at least one test case.
[0050] Various embodiments of the present disclosure enable the testing platform
to execute the at least one test case which is written in any of the plurality of technology platforms. Henceforth, eradicating the conventional method of using different testing platforms for the at least one test case written in the corresponding technology platform thereby making the testing platform independent of the technology which is used to develop the at least one test case.
[0001] Also, the testing platform uses minimal execution time as the distribution
and execution of the at least one test case happens parallelly. The testing platforms enables a connectivity for one or more open-source testing tools which increases the efficiency of testing the at least one test case.
[0002] While specific language has been used to describe the invention, any
limitations arising on account of the same are not intended. As would be apparent to a person skilled in the art, various working modifications may be made to the method in order to implement the inventive concept as taught herein.

[0051] The figures and the foregoing description give examples of embodiments.
Those skilled in the art will appreciate that one or more of the described elements may well be combined into a single functional element. Alternatively, certain elements may be split into multiple functional elements. Elements from one embodiment may be added to another embodiment. For example, order of processes described herein may be changed and are not limited to the manner described herein. Moreover, the actions of any flow diagram need not be implemented in the order shown; nor do all of the acts need to be necessarily performed. Also, those acts that are not dependent on other acts may be performed in parallel with the other acts. The scope of embodiments is by no means limited by these specific examples.

WE CLAIM:
1. A testing automation controller framework (10) for testing at least one test
case comprising:
a processing subsystem (20) comprising:
an acquisition module (30) configured to receive one or more requests for testing of the at least one test case based on one or more parameters from one or more users, wherein the at least one test case comprises a test case written in at least one of a plurality of technology platforms;
a queue generation module (40) operatively coupled to the acquisition module (30), and configured to generate a queue of the corresponding one or more requests for the testing of the at least one test case;
a testing module (50) operatively coupled to the queue generation module (40), and configured to:
retrieve the one or more requests associated with the testing of the at least one test case from the queue generation module (40);
test and execute the at least one test case sequentially based on a generated queue;
create a batch file for a test result obtained upon execution of the corresponding at least one test case; and
a memory (60) operatively coupled to the processing subsystem (20), and configured to store the test result and the batch file.
2. The testing automation controller framework (10) as claimed in claim 1,
wherein the one or more parameters comprises at least one of a type of test, a part
of the one or more test cases to be tested, a type of a technology domain and a
type of a computer programming language.

3. The testing automation controller framework (10) as claimed in claim 1, wherein the plurality of technology platforms corresponds to a plurality of testing automation controller frameworks, wherein each of the plurality of framework is associated with a specific computer environment of a plurality of computer environments.
4. The testing automation controller framework (10) as claimed in claim 1, further comprising a tracking module operatively coupled to the testing module (50), and configured to track every stage of execution of the at least one test case when being tested and executed.
5. The testing automation controller framework (10) as claimed in claim 1, further comprising a report module operatively coupled to the testing module (50), and configured to generate one or more reports for the test results obtained upon execution of the at least one test case.
6. A method (330) for testing at least one test case comprising:
receiving, by an acquisition module, one or more requests for testing of the at least one test case based on one or more parameters from one or more users, wherein the at least one test case comprises a test case written in at least one of a plurality of technology platforms; (340)
generating, by a queue generation module, a queue of the corresponding one or more requests for the testing of the at least one test case; (350)
retrieving, by a testing module, the one or more requests associated with the testing of the at least one test case; (360)
testing and executing, by the testing module, the at least one test case sequentially based on a generated queue; and (370)
creating, by the testing module, a batch file for a test result obtained upon execution of the corresponding at least one test case. (380)
7. The method (330) as claimed in claim 6, wherein receiving the one or
more requests for testing of the at least one test case based on the one or more

parameters from the one or more users, wherein the at least one test case comprises the test case written in at least one of the plurality of technology platforms comprises receiving the one or more requests for testing of the at least one test case based on at least one of a type of test, a part of the one or more test cases to be tested, a type of a technology domain and a type of a technology platform.
8. The method (330) as claimed in claim 6, further comprising storing, by a memory, the test result and the batch file.
9. The method (330) as claimed in claim 6, further comprising tracking, by a tracking module, every stage of execution of the at least one test case when being tested and executed.
10. The method (330) as claimed in claim 6, further comprising generating, by a report module, one or more reports for the test results obtained upon execution of the at least one test case.

Documents

Application Documents

# Name Date
1 201841031267-STATEMENT OF UNDERTAKING (FORM 3) [21-08-2018(online)].pdf 2018-08-21
2 201841031267-POWER OF AUTHORITY [21-08-2018(online)].pdf 2018-08-21
3 201841031267-FORM 1 [21-08-2018(online)].pdf 2018-08-21
4 201841031267-DRAWINGS [21-08-2018(online)].pdf 2018-08-21
5 201841031267-DECLARATION OF INVENTORSHIP (FORM 5) [21-08-2018(online)].pdf 2018-08-21
6 201841031267-COMPLETE SPECIFICATION [21-08-2018(online)].pdf 2018-08-21
7 abstract 201841031267.jpg 2018-08-29
8 201841031267-Proof of Right (MANDATORY) [17-09-2018(online)].pdf 2018-09-17
9 201841031267-FORM 3 [17-09-2018(online)].pdf 2018-09-17
10 201841031267-ENDORSEMENT BY INVENTORS [17-09-2018(online)].pdf 2018-09-17
11 Correspondence by Agent_F1,F3,F5,F26_20-09-2018.pdf 2018-09-20
12 201841031267-REQUEST FOR CERTIFIED COPY [09-08-2019(online)].pdf 2019-08-09
13 201841031267-FORM 13 [09-08-2019(online)].pdf 2019-08-09
14 201841031267-Proof of Right (MANDATORY) [20-08-2019(online)].pdf 2019-08-20
15 201841031267-Proof of Right (MANDATORY) [23-08-2019(online)].pdf 2019-08-23
16 201841031267-Proof of Right [20-10-2021(online)].pdf 2021-10-20
17 201841031267-PA [20-10-2021(online)].pdf 2021-10-20
18 201841031267-FORM-26 [20-10-2021(online)].pdf 2021-10-20
19 201841031267-ASSIGNMENT DOCUMENTS [20-10-2021(online)].pdf 2021-10-20
20 201841031267-8(i)-Substitution-Change Of Applicant - Form 6 [20-10-2021(online)].pdf 2021-10-20
21 201841031267-Proof of Right [07-02-2022(online)].pdf 2022-02-07
22 201841031267-RELEVANT DOCUMENTS [28-04-2022(online)].pdf 2022-04-28
23 201841031267-Proof of Right [28-04-2022(online)].pdf 2022-04-28
24 201841031267-POA [28-04-2022(online)].pdf 2022-04-28
25 201841031267-FORM-26 [28-04-2022(online)].pdf 2022-04-28
26 201841031267-FORM 13 [28-04-2022(online)].pdf 2022-04-28
27 201841031267-Proof of Right [29-06-2022(online)].pdf 2022-06-29
28 201841031267-FORM 18 [05-08-2022(online)].pdf 2022-08-05
29 201841031267-FER.pdf 2023-02-02
30 201841031267-OTHERS [19-04-2023(online)].pdf 2023-04-19
31 201841031267-FORM-26 [19-04-2023(online)].pdf 2023-04-19
32 201841031267-FORM 3 [19-04-2023(online)].pdf 2023-04-19
33 201841031267-FER_SER_REPLY [19-04-2023(online)].pdf 2023-04-19
34 201841031267-DRAWING [19-04-2023(online)].pdf 2023-04-19
35 201841031267-FORM-8 [07-05-2025(online)].pdf 2025-05-07
36 201841031267-PatentCertificate30-10-2025.pdf 2025-10-30
37 201841031267-IntimationOfGrant30-10-2025.pdf 2025-10-30

Search Strategy

1 201841031267E_31-01-2023.pdf

ERegister / Renewals