Abstract: A ball joint connector (10) is provided for linking a showerhead (24) to a water supply pipe (12). The connector (10) has an internal venturi (28, 30, 32) that draws air into the connector (10) to aerate water being provided to the showerhead (24). An insert (36) such as a check valve is provided in a radial air inlet (34) connected to the venturi (28, 30, 32). The insert (36) prevents spraying or leaking out the air inlet (34), while reducing noise associated with the air induction.
CROSS-REFERENCE TO RELATED APPLICATIONS
|0001] Not applicable
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH/DEVELOPMENT
[0002] Not applicable.
BACKGROUND OF THE INVENTION
[0003] The present invention relates to ball joints for showerheads. More
particularly it relates to the provision of an air induction system associated with such
ball joints to heighten the perceived water volume.
[0004J Primarily for water conservation reasons the flow rate to conventional
showerheads has been restricted. However, this can lead a consumer to perceive the
shower as being less forceful than desired.
[0005] It is known in connection with a variety of faucets and showerheads that
aerating the water stream can make a given volume of water flow appear more bulky
and substantial. Hence, aerating systems are often attached to the outlet of a faucet
spout, and sometimes integrated into a showerhead. See e.g. U.S. patents 6,471,141
and 6,796,518 and U.S. patent application publications 2004/0199995 and
2007/0.158470.
[0006] However, associating the aeration system with the showerhead itself, or the
faucet spout, can disrupt the aesthetics, and in some cases can add complexity to the
manufacturing of the product One such aerating low-flow showerhead accomplishes
this through a variety of moving parts. Further, associating the aeration system with
the showerhead itself does not provide a solution for aerating the millions of existing
showerheads which don't have this capability.
[0007] Hence, there were attempts to place the aeration system on a separate ball
joinl upstream of the showerhead, which would be hidden by the showerhead. See
e.g. U.S. patents 5,111,994, 5,154,355 and 6,260,273, and U.S. patent application
publication 2007/0193153. The approach used in these designs was to place a radial
air inlet at the ball joint, and associate it with a venturi passage so as to induce air into
the water flow in the joint. In this regard, as water passes through a throat of the
venturi, the water velocity increases and the pressure decreases. The resulting
negative pressure draws in ambient air through the radial inlet. The air then mixes
with the water to produce an aerated water supply.
[0008] These ball joint-related designs are not without their own drawbacks. For example, their air inlet ports are nothing more than uncovered holes formed in the water supply line. This creates the possibility of water leaking back out the air inlet, creating a path for water waste, spitback, or water spray into the main bath area. Further, designs of this type can create undesirable noise such as a whistling or a roaring sound.
[0009] Hence, a need still exists for improved ways to aerate showerhead flow while avoiding these problems.
SUMMARY OF THE INVENTION [0010] The present invention provides a joint connector for linking a water supply to a showerhead. The joint connector has a housing having an inlet section at one end suitable to connect to a water supply pipe, an outlet section at an opposed end suitable to mount the showerhead thereon, and a central portion there between. There is a passageway extending axially through the housing from the inlet section, through the central portion, and through the outlet section. The passageway is suitable to carry water there through, and a portion of the passageway in the central portion forms a venturi.
[00l1] There is also an air inlet port positioned in the central portion and extending radially from the passageway to an exterior wall of the housing so as to be suitable to let air pass through the air inlet port into the housing. Further, an insert positioned within the air inlet port (e.g. to provide one-way flow and/or to reduce noise). [0012] In preferred forms of the invention the insert is in the form of a check valve that permits air flow through the inlet port into the passageway, but restricts reverse flow from the passageway through the inlet port. One such check valve is an elastomeric duckbill check valve.
[0013] Surprisingly it has been found that this type of check valve greatly reduces noise associated with the joint while still controlling reverse flow through the air inlet. A particularly desirable placement for the intersection between the air inlet and the passageway is the throat of the venturi. Alternatively, noise reduction without check valve function can be obtained by using a cylindrical/sleeve form insert. [0014] Various refinements are also possible such as having the inlet section provided with a flat area on its upper exterior which extends to the air inlet port (to provide a hidden position for the insert), providing the inlet section with interior threads (to facilitate linkage to a water supply pipe), and providing the outlet section
with a generally ball-shaped exterior (to facilitate mounting a showerhead for
essentially universal pivoting).
[0015] In another aspect the invention provides a showerhead mounted on such a
joint connector.
[0016] In some forms the passageway can have in the central section a portion that
narrows in a conical fashion. This then leads to a narrowed cylindrical section to
define a venturi throat. Water flowing through the passageway obtains a higher
velocity through the throat than upstream of the throat. The passageway then expands
sharply downstream of the throat. This causes a pressure drop at the throat, causing
air to be sucked in past the insert. The air becomes mixed with the water supply to
create the aerated water stream.
[0017] It will be appreciated from the following description and the drawings that
the present invention provides a number of advantages. First, because the air
induction occurs at the ball joint, millions of existing showerheads can be retrofitted
with this type of ball joint instead of the one they currently use. Hence, aeration can
be provided for them.
[0018] Also, there is no spurting or leaking of water back out the air inlet port.
Also, the air inlet port and associated insert are essentially hidden from view.
[0019] Further, the problem of noise due to air induction is overcome. Moreover,
all these advantages can be obtained without materially increasing the cost of a
standard ball joint.
[0020] These, and still other advantages, can be obtained with the present
invention. While preferred embodiments are described below, the claims should be
looked to in order to judge the full scope of the invention.
BFUEF DESCRIPTION OF THE DRAWINGS [0021] FIG. 1 is a side elevational view of a joint connector of the present invention linking a water supply pipe and a showerhead;
[0022] FIG. 2 is an exploded perspective view of the joint connector of FIG. 1; and [0023] FIG. 3 is a cross sectional view taken along line 3-3 of FIG. 1.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [0024] Ball joint connector 10 is shown threaded onto a conventional water supply line 12. The ball joint connector 10 has a generally tubular outer housing which has an inlet portion 14 and an outlet portion 16 which is generally ball-shaped. The
intermediate portion there between houses an internal venturi and an air inlet port 34, as well as an axially extending passageway 18.
[0025] A passageway inlet 20 is located at an upstream end of the ball joint connector 10, and a passageway outlet 22 is located at the opposing downstream end. When installed as shown in FIGS. 1 and 3, the passageway 18 carries water from the water supply line 12 to a conventional showerhead 24.
[0026] The ball joint connector 10, apart from the insert 40, is preferably made of a metal such as brass. Standard internal threads 26 are provided in the passageway inlet 20 and are designed to threadingly engage the water supply line 12. The showerhead 24 can be movably secured to the outlet portion 16 in a known manner so as to be easily swiveled (compare the mounting system of U.S. patent 6,796,518). [0027] The passageway 18 includes a venturi entry section 28 that provides a taper (preferably conical) to speed up the flow through a venturi throat 30. Downstream of the venturi throat 30, the passageway 18 has a venturi exit cone 32 to expand flow outwardly. The passageway 18 may further include a pocket section within which a flow regulator and/or a filter screen may be placed. The passageway 18 may further include a pocket section within which a flow regulator and/or filter screen may be placed.
[0028] When water flows through the passageway 18, the reduction provided by the venturi entry cone 28, throat 30, and exit cone 32 causes the velocity of the water to increase and the pressure to decrease. This phenomenon is well known in the art and often referred to as the Bernoulli principle.
|0029] The ball joint connector 10 has a radially extending air inlet port 34. An elastomeric insert in the form of a duck bill type check valve 36 is situated within the air inlet port 34. The reduced water pressure in the venturi throat 30 is less than the pressure of the ambient air when water is rushing through the ball joint connector 10. Due to the resulting pressure difference, ambient air is drawn into the passageway 18 through the air inlet port 34 and becomes inducted, or entrained, into the water stream contained therein.
[0030] The air inlet port 34 as shown extends transversely between the water supply passageway 18 and a flat outer upper surface portion 38 of the ball joint connector 10. Alternatively, the air inlet port 34 may extend at an acute angle. The flat outer upper surface portion 38 also facilitates use of a gripping wrench. When
installed as shown in FIG. 3, an inlet end 46 of the check valve 36 is flush with the
flat outer upper surface portion 38.
[0031] Still referring to FIG. 3, the air inlet port 34 joins the passageway 18 at the
venturi throat portion 30. The entry point of the air inlet port 34 could alternatively
be formed in other locations in the passageway 18.
[0032] In the embodiment shown, the elastomeric check valve 36 is force fit into
the air inlet port 34 and through which air flows into the passageway 18. The check
valve 36 permits the flow of air into the passageway 18 while preventing water (or
air) from discharging out of the passageway 18. The preferred check valve design, as
shown in FIGS. 2 and 3, is commonly referred to as a "duckbill" valve because its
outlet end 42 has a pair of lips 44 that taper like the bill of a duck.
[0033] The check valve 36 has a cylindrical flange at its inlet end 46 configured to
fit snugly within the air inlet port 34. A central bore 48 extends completely through
the check valve 36. Air drawn into the bore 48 acts to drive the flexible tapered lips
44 apart, thereby permitting air flow into the passageway 18. Pressure applied against
the outlet 42 of the check valve 36 acts to drive the lips 44 closed and prevent reverse
flow through the check valve 36.
[0034] When first starting a shower, the check valve 36 prevents the initial surge
of water from discharging out of the air inlet port 34. Similarly, if the venturi-induced
vacuum is interrupted, such as by air trapped in the line, the potential exit path
provided by the air inlet port 34 is blocked by the one-way nature of the check valve
36.
[0035] Surprisingly, the check valve 36 further acts to substantially reduce the
level of noise. If the ball joint connector were used without an insert such as check
valve 36, a shrill whistling or roaring noise is oftentimes produced. The noise level
has been measured as high as ninety-five decibels just outside of the air inlet port 34.
[0036] However, it has been found that by placing a small sleeve-like insert within
the air inlet port 34, the noise emanating from the ball joint connector 10 can be
greatly reduced. It is believed this is occurring because a flexible sleeve absorbs and
limits the sound waves, while still permitting air passage.
[0037] It should be appreciated that merely preferred embodiments of the
invention have been described above. However, many modifications and variations to
the preferred embodiments will be apparent to those skilled in the art, which will be
within the spirit and scope of the invention. For example, the insert could be a rubber
cylindrical sleeve, rather than a rubber or other elastomeric check valve. Therefore,
the invention should not be limited to the described embodiments. To ascertain the
full scope of the invention, the following claims should be referenced.
[0038] Industrial Applicability
[0039) The invention provides a ball joint-type connector for linking a showerhead
to a water supply pipe, where the connector provides aeration function with reduced
noise and water waste.
WE CLAIM:-
1. A joint connector for linking a water supply to a showerhead, the joint
connector comprising:
a housing having an inlet section at one end suitable to connect to a water supply pipe, an outlet section at an opposed end suitable to mount the showerhead thereon, and a central portion there between;
a passageway extending axially through the housing from the inlet section, through the central portion, and through the outlet section, the passageway being suitable to carry water there through, a portion of the passageway in the central portion of the housing forming a venturi;
an air inlet port positioned in the central portion of the housing extending radially from the passageway to an exterior wall of the housing so as to be suitable to let air pass through the air inlet port into the passageway; and
an insert positioned within the air inlet port.
2. The joint connector of claim 1, wherein the insert is in the form of a check
valve that permits air flow through the inlet port into the passageway, but restricts
reverse flow from the passageway through the inlet port.
3. The joint connector of claim 2, wherein the check valve is a duckbill check
. valve.
4. The joint connector of claim 1, wherein the insert is suitable to reduce noise associated with running water through the passageway and thereby inducing air into the passageway.
5. The joint connector of claim 1, wherein the air inlet port intersects the passageway at a throat of the venturi.
6. The joint connector of claim 1, wherein the insert is elastomeric.
7. The joint connector of claim 1, wherein the insert is in sleeve form.
8. The joint connector of claim 1, wherein the inlet section is provided with a flat area on its upper exterior which extends to the air inlet port.
9. The joint connector of claim 1, wherein the inlet section is provided with interior threads.
10. The joint connector of claim 1, wherein the outlet section is provided with
a generally ball-shaped exterior.
11. A showerhead assembly comprising a showerhead mounted on the joint connector of claim 1.
| # | Name | Date |
|---|---|---|
| 1 | 5710-DELNP-2010-AbandonedLetter.pdf | 2017-11-09 |
| 1 | 5710-DELNP-2010-Form-18-(18-08-2010).pdf | 2010-08-18 |
| 2 | 5710-DELNP-2010-FER.pdf | 2017-02-03 |
| 2 | 5710-DELNP-2010-Correspondence-Others-(18-08-2010).pdf | 2010-08-18 |
| 3 | 5710-delnp-2010-form-5.pdf | 2011-08-21 |
| 3 | 5710-delnp-2010-abstract.pdf | 2011-08-21 |
| 4 | 5710-delnp-2010-claims.pdf | 2011-08-21 |
| 4 | 5710-delnp-2010-form-3.pdf | 2011-08-21 |
| 5 | 5710-delnp-2010-form-2.pdf | 2011-08-21 |
| 5 | 5710-delnp-2010-correspondence-others.pdf | 2011-08-21 |
| 6 | 5710-delnp-2010-form-1.pdf | 2011-08-21 |
| 6 | 5710-delnp-2010-description (complete).pdf | 2011-08-21 |
| 7 | 5710-delnp-2010-drawings.pdf | 2011-08-21 |
| 8 | 5710-delnp-2010-form-1.pdf | 2011-08-21 |
| 8 | 5710-delnp-2010-description (complete).pdf | 2011-08-21 |
| 9 | 5710-delnp-2010-form-2.pdf | 2011-08-21 |
| 9 | 5710-delnp-2010-correspondence-others.pdf | 2011-08-21 |
| 10 | 5710-delnp-2010-claims.pdf | 2011-08-21 |
| 10 | 5710-delnp-2010-form-3.pdf | 2011-08-21 |
| 11 | 5710-delnp-2010-abstract.pdf | 2011-08-21 |
| 11 | 5710-delnp-2010-form-5.pdf | 2011-08-21 |
| 12 | 5710-DELNP-2010-FER.pdf | 2017-02-03 |
| 12 | 5710-DELNP-2010-Correspondence-Others-(18-08-2010).pdf | 2010-08-18 |
| 13 | 5710-DELNP-2010-Form-18-(18-08-2010).pdf | 2010-08-18 |
| 13 | 5710-DELNP-2010-AbandonedLetter.pdf | 2017-11-09 |
| 1 | 5710_delnp_2010_21-11-2016.pdf |