Abstract: A NOVEL INTELLIGENT GRADING MACHINE WITH TRAJECTORY TRACKING SENSOR NETWORK AND A PROCESS THEREOF The present invention discloses a novel intelligent and multi-channeled grading machine with trajectory tracking sensor network for grading objects into multiple grades in a single pass based on external characteristics viz. size, shape, color, texture, surface properties or any other possible external characteristics by continuously tracking the trajectory of objects. The novel grading machine comprises of hopper; at least one feeding unit; multiple optics units multiple conduits; multiple sensor networks in multiple conduits; at least one master controller; at least one ejector unit comprising of arrays of single–angled or multiple angle ejectors in each conduit; multiple vacuum creators placed respectively opposite to each ejector; multiple collecting chutes; and multiple collecting locations. The novel grading machine is extremely simple, accurate, and automated, power-efficient and cost-effective. The present invention also discloses a novel process for grading objects into multiple grades in a single pass by continuously tracking the trajectory of objects based on external characteristics
FIELD OF THE INVENTION
[0001] The present invention relates generally, to grading machines and grading
processes for grading objects of different properties. More particularly, it relates to a novel
intelligent grading machine with trajectory tracking sensor network for grading objects and a
novel process for grading objects into multiple grades in a single pass by continuously tracking
the trajectory of objects with sensor network.
5
10
15
20
BACKGROUND OF THE INVENTION
[0002] The need to be responsive to market demand requires a greater emphasis on
quality assessment resulting in the greatest need for grading of any agricultural produce as it
procures high price to the grower and improves packaging, handling and brings an overall
improvement in the marketing system. Today, the grading process has been fully mechanized. A
mechanical grader consists of a chain conveyor belt, with a bag at the end along with fewer or
more modifications like use of color sensors or use of image processing systems, etc. In grading
machine, the grading machine grades smaller or bigger produce fall through the chain, making
the grading process easier. Conventionally, the sorting machines provide a binary output. The
objects are dumped from the hopper and they are made to slide on a set of channels. They
present themselves to the cameras during the fall and the cameras decide upon the defects and if
found any, then they actuate the ejectors and a high jet of air is passed for a short period of time
making the desired object to fall into the collecting bin, thereby grading objects. During this
process, when the object once made to fall and pass the camera, the accurate position of the
object is not known so it becomes tedious to know the position of the object in real time and
2
eject them into different grades based on their different properties. The conventional sorting
machine need multi passes to get multiple distinguishable grades.
[0003] Few patent documents which describe sorting or grading of different objects as
described hereinafter. U.S. Pat. No. 3,650,397 titled “system for inspecting and classifying
5 objects such as screws, bolts and the like while in motion” discloses a system for sorting
threaded objects such as screws, bolts comprising sequential detection. Disadvantage of the
system can be observed as it sorts only the threaded objects and sorting is binary. The system
further does not claim anything on the positioning of objects in the free fall. U.S. Pat. No.
3,773,172 titled “blueberry sorter” discloses an automatic sorting apparatus for object with an
10 ejection system comprising a plurality of air nozzles disposed adjacent the carrier or input
conveyor means and connected through high pressure air valves to a source of pressurized air. A
logic network interprets the signals from the electronic system to cause selected air valves to be
actuated at particular times so that air blasts, then pass through the apertures in the fruit laden
cups to eject the fruit from the input conveyor means at different sorting stations onto output
15 conveyors in accordance with the sensed condition of the fruit. The disclosed sorting machine is
complex in arrangement and it is mainly designed to sort blueberries and other fruits such as
apples, oranges, cranberries, grapes, cherries, and any other fruit or vegetables which have an
approximately spherical shape, thereby limiting the scope of sorting by excluding other objects
which are not fruits or vegetables. U.S. Pat. No. 6,814,211 titled “slide for sorting machine”
20 discloses a slide for gravity sorting of objects. It uses a sensor to interpret the position of objects
and according to its delay time uses an ejector to eject the object into a bin. The machine uses a
delay time for ejection which may change due to different factors as it is an open loop system
which leads to inaccuracy and inefficiency of the system while sorting objects. U.S. Pat. No.
3
7,905,357 titled “product flow control apparatus for sorting” discloses a feed control apparatus
for use in a gravity slide sorter for sorting of products comprising an ejector system for sorting
small objects such as almonds, peanuts and rice grains or other food or fungible materials. It
eliminates particulate matter by detecting and ejecting objects falling from slant surface. A major
5 disadvantage of the system is that it sorts the objects in acceptable and unacceptable (binary)
items only. U.S. Pat. Application No. 20100096300 titled “chutes for sorting and inspection
apparatus” discloses different sections of slant surfaces to gravity sort the objects in acceptable
and unacceptable items. One of the disadvantages of the apparatus may be seen as the product
pieces may get stuck due to alignments in slant sections, which will affect its accuracy. Another
10 disadvantage is that the device sorts the objects in a binary fashion as acceptable and
unacceptable classes only.
[0004] PCT Publication No.WO2016000967 titled “Transport apparatus with vacuum
belt” discloses a system for sorting particles like grains, seed in three quality classes. It uses a
vacuum belt to carry the particles from hopper at the lower end to the fixed camera at the upper
15 end. A significant loophole of the system is blockage of the perforations on the vacuum belt due
to foreign particles often associated with grain or seed, thereby decreasing its efficiency.
Moreover, though the system sorts the particles in three quality classes, there is still tremendous
scope ahead to explore in this area to provide multiple quality classes rather than only two or
three classes or grades.
20 [0005] Typical sorting or grading systems that are known in practice, often less efficient
due to limitation in the number of classes or grades that the machine provides and the lack of coordination
in between tracking of accurate position of moving object and the actuation of ejectors
4
to blast that object of particular characteristics to get quality grade without missing a single
quality grade.
[0006] Therefore, there creates a strong need to solve above mentioned problems by
providing a novel grading machine which is simple, more efficient, more accurate and costeffective
grading machine to grade different types of objects into multiple commercial grades in
a single pass by continuously tracking their trajectory. It would also be desirable to provide a
novel process for grading such objects into multiple commercial grades in an easy, simple and
time-efficient manner.
5
10
15
20
SUMMARY OF THE INVENTION
[0007] Present invention recognizes and addresses various disadvantages and drawbacks
of the existing sorting and grading machine and grading process and provides a novel grading
machine and related novel process for grading variety of objects into multiple grades accurately
to increase efficiency of grading process tremendously, thereby saving significant amount of
time and labor.
[0008] In accordance with one aspect of the present invention, the invention discloses a
novel intelligent and multi-channeled grading machine with trajectory tracking sensor network
for grading objects based on external or physical characteristics into multiple grades in a single
pass by continuously tracking the trajectory of objects. The novel grading machine comprises of
at least one hopper; at least one feeding unit comprising of multiple feeder and multiple feed
controllers; multiple optics units, wherein each optics unit comprises multiple cameras and
multiple light source; multiple conduits; multiple sensor networks, wherein a single sensor
network is assigned for single conduit and it comprises of multiple sensor layers arranged
5
throughout single conduit, multiple sensor layer controllers and at least one network controller
for controlling all sensor layer controllers of a single conduit; a single ejector unit comprising of
arrays of single-angled or arrays of multiple angled ejectors in each conduit; at least one master
controller to coordinate different signals from multiple optics units, multiple network controllers
of the grading machine and to provide final directions for ejection of different objects from
multiple conduits to provide multiple grades in a single pass; multiple collecting chutes to
convey graded objects for further collection; and multiple collecting locations to collect multiple
grades. The machine further comprises of multiple vacuum creators placed respectively opposite
to each said ejector throughout each conduit for easy grading.
5
10
15
[0009] Accordingly, the main object of the present invention is to provide a novel,
extremely simple, accurate, intelligent, automated and multi-channeled grading machine for
grading objects into multiple grades in a single pass based on external characteristics by
continuously tracking the trajectory of each object using sensor network and triggers
corresponding ejectors with clear knowledge of where the accurate position of object is in
corresponding conduit, which makes the machine unique. The grading machine also uses
multiple cameras which capture at least six directional view of each object in coordination with
light sources for enhanced analysis of each object, so the grade possibilities are immense which
enables the grading machine to grade ‘n’ number of grades intelligently using master controller
based on different external properties. The grading machine grades, multiple grades in a single
pass so that it eliminates the room for multi-pass to get efficient grade which is the case in the
conventional inventions and moreover, the grading machine grades ‘n’ number of grades in a
single pass unlike the conventional two grades (binary) sorting.
20
6
[0010] Further, the grading machine which comprises of a specialized ejector unit
comprising of arrays of multiple ejectors in each conduit which are located as a group of multiple
single-angled or multiple multi-angled ejectors at each grade throughout each conduit of the
grading machine, wherein a separate single-angled or multi-angled ejectors are placed for each
grade, which are responsive to signals from the master controller for expelling a predefined
duration blast of high pressure fluid or high pressure air towards the direction of object by
targeting accurate position, velocity etc. of the conveying object, thereby ejecting the conveying
object into corresponding collecting location, and further the machine also comprises vacuum
creators placed respectively opposite to each said ejector throughout the conduit for easy and
effective grading. The grading machine has minimal moving parts which makes the machine
power-efficient and cost-effective.
5
10
15
20
[0011] In accordance with another aspect of the present invention, the invention discloses
a novel process for grading objects into multiple grades in a single pass based on various external
or physical characteristics viz. size, shape, color, surface properties, or any other characteristics
by continuously tracking their trajectory with sensor network for accurate ejection of each grade
of object from corresponding conduit into multiple grades. The novel grading process grades any
kind/variety/type of object efficiently without limiting the nature of object to be graded, thereby
broadens the scope of grading operation for variety of objects without restricting its scope for
grading limited types of objects like agricultural produce etc.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] Other objects, features and advantages of the invention will best be understood
from the following description of various embodiments thereof when read with reference to
7
accompanying drawings and the accompanying drawings are only exemplary drawings for the
purposes of illustration.
FIG. 1 is a front schematic view of a novel, intelligent grading machine for grading objects of
different external characteristics according to one embodiment of the invention.
FIG. 2 is an isometric view of a single optics unit of the grading machine according to one
embodiment of the invention.
5
10
15
FIG. 3 is a front view of a single conduit illustrating arrangement of multiple sensor layers,
arrays of multiple ejectors and multiple collecting chutes throughout the conduit according to
one embodiment of the invention.
FIG. 4 is a front view of a single conduit illustrating the conduit as a tube with gravity as
conveyance according to one embodiment of the invention.
FIG. 5 is an isometric view of a conduit illustrating ejection of the conveying object by an array
of single-angled or multiple angle based ejectors into common collecting location at each grade
throughout the conduit according to one embodiment of the invention.
FIG. 6 is a block diagram illustrating different non-limiting steps involved in a novel process for
grading objects into multiple grades in a single pass by continuously tracking the trajectory of
objects based on external characteristics according to another embodiment of the invention.
20
8
DETAILED DESCRIPTION OF THE INVENTION
[0013] The present invention will now be described in a great detailed manner with
reference to the accompanying exemplary drawings for the purposes of illustrating non-limiting
embodiments of the present invention.
As used herein, the term ‘object’ shall refer to any regular, irregular, even, uneven,
homogeneous, non-homogeneous material which includes any naturally occurring product
including but not limited to any agricultural product like cashews, almonds, raisins, cloves,
walnut, pistachios, or can be all culinary nuts, dry fruits and other regularly or irregularly shaped
objects like diced vegetables and the term ‘object’ also includes synthetically manufactured
material including but not limited to plastic pellets, artificial stones, gems etc.
5
10
15
20
As used herein, the term ‘homogeneous’ shall refer to any one type of object like only almonds
to be graded or only cashews to be graded or only artificial stones to be graded.
As used herein the term ‘non-homogeneous’ shall refer to mixture of different types of objects
like a mixture of cashews and almonds or a mixture of plastic pellets and any one , two or more
type of objects, wherein the term ‘non-homogeneous’ shall refer to any possible combination or
variations of mixture of objects.
As used herein, the ‘size’ of object to be graded in the grading machine is an average size ranged
in between 2 mm to 35 mm measured at the extreme ends of the object.
As used herein, the term ‘external’ or ‘physical’ characteristics shall refer to any characteristics
including but not limited to size, shape, color, texture, surface properties, or any other possible
external or physical characteristics.
As used herein, there are multiple optics units in the grading machine of the present invention as
at least one optics unit is attributed to at least one conduit, wherein each optics unit comprises of
9
‘multiple cameras’ and ‘multiple light sources’, wherein the light sources are specific light
sources to ensure the enhanced surface analysis of the objects. The term ‘multiple cameras’ refer
to ‘multiple programmable cameras’ which are programmable cameras for the purposes of the
invention. These cameras can be “regular color cameras’ or ‘multi-spectral cameras’ and further
these ‘multiple cameras’ can be synchronous or asynchronous or both. The term ‘multi-spectral
cameras’ work at different frequencies of electromagnetic spectrum (multi-spectrum) like
visible, ultra-violet, infra-red (IR), x-ray etc. for analysis of the objects spectral properties.
5
10
15
20
As used herein, the term ‘conduit’ may be a vertical tube with ‘gravity as conveyance’ or ‘a slant
surface’ or ‘a horizontal surface’ or ‘conveying opposite to gravity’ and each ‘conduit’
comprises of multiple sensor layers. The ‘conduit’ may be arranged in any direction, thereby
enabling multiple sensor layers to track the trajectory of each object continuously. Multiple
sensor layers are used to determine the position, velocity etc. of the object on instantaneous bases
and provide the related information in real time.
As used herein, the term ejector unit in the grading machine of the present invention comprises
of arrays of multiple ejectors in each conduit. Each ejector is a group of multiple single-angled
ejectors or multiple multi-angled (multiple angle-based) ejectors and the term ‘ejector’ may refer
to ‘single-angled ejector’ or ‘multi-angled ejector’ or both.
As used herein, ‘pressure of fluid’ or ‘pressure of air’ may differ according to different ‘external’
or ‘physical’ characteristics of the objects.
[0014] According to one embodiment of the present invention, FIG. 1 is a side schematic
view of a novel intelligent and multi-channeled grading machine for grading objects of different
external or physical characteristics. The disclosed invention describes a novel intelligent and
multi-channeled grading machine with trajectory tracking sensor network for grading objects
10
into multiple grades in a single pass based on external characteristics viz. size, shape, color,
texture, surface properties or any other possible external or physical characteristics by
continuously tracking the trajectory of objects. The non-limiting elements of the grading
machine comprises of at least one hopper (1); at least one feeding unit (2) comprising of multiple
feeder and multiple feed controllers; multiple optics units (3), wherein each optics unit comprises
of multiple cameras (4), and multiple light source (5); multiple conduits (6); multiple sensor
networks (7) in multiple conduits, wherein each conduit comprises of a single sensor network; at
least one master controller; at least one ejector unit comprising of arrays of single–angled or
multiple angle ejectors (8) in each conduit (6); multiple collecting chutes (9); and multiple
collecting locations (10). The machine further comprises of multiple vacuum creators (Not
shown in FIG.1) placed respectively opposite to each ejector (8) throughout each conduit (6) for
easy grading.
5
10
15
20
[0015] The grading machine has huge hopper (1) into which objects having different
external characteristics are fed. The hopper (1) acts as a reservoir and as a distribution unit to
continuously distribute or flow objects into the feeding unit (2). The objects flow from the
hopper (1) into the feeding unit (2) which is located below hopper (1) to receive objects, wherein
the feeding unit (2) comprises of multiple feeder shown as 2a1, 2a2,……2an and multiple feed
controllers (Not shown in FIG. 1) and at least one feeder (2a1 or 2a2 or 2an) is connected at
lower side to at least one optics unit (3), thereby the grading machine is divided into multiple
channels downwards from common feeding unit (2). The objects are released from multiple
feeders (2a1, 2a2,……2an) of the feeding unit (2) into multiple optics units shown as T1,
T2,….Tn (3) which are connected to the corresponding multiple feeders (2a1, 2a2,……2an) at
their top, and lower side of multiple optics units (3) are connected further to the corresponding
11
multiple conduits (6), wherein at least one optics unit (3) is placed at the top of starting point of
each conduit (6). There is at least one feed controller for one feeder to control bulk flow of
objects from corresponding feeder into corresponding optics unit (3) and further into
corresponding conduit (6) for effective feeding, thereby making the feeding unit (2) as
completely automated and controlled based on the need of number of objects to be fallen in
particular conduit. Feed controller of corresponding feeder receives signals related to flow of
objects from network controller of sensor network of corresponding conduit through master
controller as the feed controller of corresponding conduit is coupled with the master controller
for effective feeding of objects from corresponding feeder into corresponding optics unit and
further into corresponding conduit (6).
5
10
[0016] Objects flow from the multiple feeders (2a1, 2a2,……2an) of the feeding unit (2)
into multiple corresponding optics units (3). Each optics unit (3) comprises of multiple
programmable cameras (4) shown as C1, C2,…..Cn, and multiple light sources (5) shown as L1,
L2, ….Ln. Once object enters into any optics unit (3), cameras (4) of corresponding optics unit
(3) view each object from multiple sides or multiple angles and capture at least six directional
view of each object to analyze each object three dimensionally (3D) using correlation between
multiple cameras which gives the information about different external characteristics of each
15
object. Multiple light sources (5) of the optics unit (3) finds/enhances features of each object by
illuminating each object which enable cameras (4) to analyze each object in a more enhanced
20 manner. These cameras (4) along with light sources (5) analyze different external characteristics
of each object passing through each optics unit. Cameras (4) of each optics unit (3) decide the
exact grade of each analyzed object and processes the captured data, therefore the optics unit (3)
can decide exact grades of each object. Each optics unit (3) communicate signals related to grade
12
of each object to the master controller and the master controller further decides the exact,
accurate, final grade of each analyzed object based on input signals provided by each optics unit
(3). The master controller remembers intelligently the final grade of each object present in optics
unit (3).
[0017] Objects further flow from multiple optics unit (3) into corresponding multiple
conduits shown as H1, H2,……Hn (6) which are connected at their top to multiple optics units
(3). The form and arrangement of conduit (6) can vary according to the need of the invention.
The conduit (6) may be a vertical tube with gravity as conveyance or a slant surface or a
5
horizontal surface or conveying opposite to gravity. In FIG.1, the conduit (6) is shown as a tube
with ‘gravity as conveyance’. Each conduit (6) comprises of single sensor network and arrays of
multiple ejectors (8) along with multiple vacuum creators, wherein at least one vacuum creator is
arranged respectively opposite to each corresponding ejector throughout each conduit for
predictable exit of the object into particular collecting grading location. Multiple sensor networks
(7) are located in multiple corresponding conduits (6), wherein one sensor network is located in
each conduit (6) and each sensor network comprises of multiple sensor layers which are shown
10
15
as S1, S2……Sn (7) which are lined up throughout each conduit (6), multiple sensor layer
controllers to receive signals from corresponding multiple sensor layers (7) and at least one
network controller for controlling all sensor layer controllers of corresponding conduit, wherein
each sensor layer comprises of multiple sensors which continuously track the trajectory of
20 objects in corresponding conduits (6). As objects are conveyed through each conduit (6),
multiple sensor layers (7) which are lined up throughout each conduit (6) from the starting point
of each conduit till the last dropping point (collecting locations) in such a way that it will
continuously track the position of each object in its trajectory in real time and triggers signals to
13
corresponding multiple sensor layer controller. These multiple sensor layer controllers (7) are
located outside the corresponding conduit (6). There is a single sensor layer controller for
controlling functioning of single sensor layer (7) located inside the corresponding conduit (6).
[0018] There are multiple sensor layer controllers to coordinate with corresponding
multiple sensor layers (7). Multiple sensors of each sensor layer (7) of each conduit (6)
continuously track the trajectory of conveying objects that particular conduit (6) to determine the
position, velocity etc. of each object accurately in real time and trigger signals to corresponding
sensor layer controller about the current position, velocity etc. of each conveying object in the
corresponding conduit in real time. Each sensor layer controller receives signals from only one
sensor layer (7), thereby determining the exact position, velocity etc. of each conveying object
accurately in real time by interpreting information received from one sensor layer (7). Each
sensor layer controller decides the time period required for each conveying object to convey in
corresponding conduit to particular grading point. Each sensor layer (7) is connected to
corresponding sensor layer controller and further each sensor layer controller is coupled to at
least one network controller of corresponding conduit (6). Network controller of corresponding
conduit receives information from all sensor layer controllers of corresponding conduit (6) and
further sends signals to the master controller related to exact position, velocity etc. of each grade
of conveying object accurately in real time, therefore these signals from all sensor layer
controllers of each corresponding conduit (6) are communicated to the master controller through
the network controller of each corresponding conduit as the object cuts the multiple rays of
corresponding sensor layers, so that the master controller can decide the exact position, velocity
etc. of each grade of conveying object accurately in real time. If any sensor layer detects any
hollow or damaged conveying object in corresponding conduit, then properties like specific
5
10
15
20
14
gravity and hollowness of such any object can also be sensed intelligently by network controller
of corresponding sensor network depending on velocity variation of any such object and signals
same information to the master controller.
[0019] The master controller can decide the accurate position of grade of each such
conveying object to reach to its grading point in real time. The information about position,
velocity etc. of each conveying object is analyzed by all sensor layer controllers of
corresponding conduit accurately in real time as all sensor layer controllers are always active
during the grading process to receive signals from one or multiple sensor layers of corresponding
conduit (6) to sense each grade which can randomly come across any sensor of corresponding
conduit (6).
5
10
15
20
[0020] Further, the grading machine comprises at least one ejector unit and this ejector
unit comprises arrays of multiple ejectors in each conduit of the grading machine. This ejector
unit comprises of arrays of multiple ejectors (8) in each conduit (6) to eject each analyzed grade
of objects. As shown in FIG. 1, multiple ejectors (8) are shown as E1, E2……. En, as there can
be ‘n’ number of ejectors in each conduit (6), where n* is a natural positive integer. Each ejector
(8) is a group of single-angled or multi-angled ejectors which are placed at same level as shown
in FIG. 1, one such ejector (E1) is shown as a group of single-angled or multi-angled ejectors
shown as e11, e12……..e1n. Second ejector (E2) is shown as e21, e22,,……. e2n and last ejector
(En) is shown as en1, en2,……… enn. Single-angled ejectors or multi-angled ejectors are used
in the grading machine according to the property of the object like specific gravity, hollowness
etc. to be graded as there is difference in speed of different sized objects while conveying at
different corners of the conduit. Single angled or multi-angled ejectors are appropriately used as
per requirement. These types of ejectors will be used for predictable ejection, hence making the
15
system more efficient. The system may also consist of customized manifold for easy ejection of
differently sized conveying objects.
[0021] Each ejector (8) is coupled to the master controller for receiving signals related to
expelling a jet of a predefined duration of high pressure air or high pressure fluid towards the
conveying object in corresponding conduit (6) as each ejector (8) receives signals related to
ejection of each grade of object sent by the master controller before the arrival of each grade of
object in corresponding conduit (6). The master controller decides the accurate final grade of
each analyzed object based on signals received from the optics unit (3) related to external
characteristics of objects. The master controller is capable of anticipating the exact position,
velocity etc. of each object before the arrival of grading point during its trajectory in
corresponding conduit based on signals received from each sensor layer controller through
network controller of sensor network of corresponding conduit (6) related to the exact position,
velocity etc. of each grade of object accurately in real time. Based on these aforementioned two
different signals received by the master controller, the master controller sends signals to
corresponding/particular single-angled ejectors (8) or multiple angled ejectors (8) of
corresponding conduit related to ejection of said conveying objects, wherein these ejectors (8)
are located at same level near each grading point in corresponding conduit (6) to expel a jet of
pre-defined duration of high pressure air or high pressure fluid to eject the particular grade of
object in corresponding collecting location (10). Responsive to said signals from the master
controller, the moment the particular grade of object conveys near the grading point in
corresponding conduit (6) wherein particular single-angled or multi-angled ejectors are located,
5
10
15
20
it opens a valve to expel a jet of a pre-defined duration of high pressure air or high pressure fluid
is directed towards the conveying object across its trajectory at particular position in
16
corresponding conduit (6) and the pressure applied by said ejectors (8) eject each grade of object
accurately and makes each grade of object to fall into the corresponding desired collecting
location (10) shown as B1, B2…….Bn through corresponding multiple collecting chutes (9)
shown as M1, M2,….Mn as there can be ‘n’ number of collecting chutes (9) and corresponding
‘n’ number of multiple collecting location (10) for collecting different grades of objects into
multiple grades in a single pass. At each grading point, the grading machine has at least one
ejector (8) which can be single-angled ejectors or multi-angled ejectors and at least one
collecting chute along with corresponding collecting location is located. These single-angled or
multi-angled ejectors are placed along the trajectory of the conveying object to facilitate yield to
multiple grades of the objects in a single pass continuously with increased efficiency in the
grades as well.
5
10
15
20
[0022] The grading machine further comprises of multiple vacuum creators (Not shown
in FIG.1) placed respectively opposite to each ejector (8) throughout each conduit (6) for easy
grading. The generation of vacuum at each of the collecting chute (9) is based on the signals
communicated by at least one sensor layer controller through network controller corresponding
to particular conduit (6). The hopper, the feeding unit, the optics unit, the conduit or other parts
of the grading machine are made from materials like polyurethane, food grade acrylic, ionized
elements or teflon coated material etc. The conduit (6) can be arranged in any direction, thereby
enabling multiple sensor layers (7) to track the trajectory of each object continuously. Each
conduit (6) is considered as one channel for grading objects; therefore the grading machine
provides grading through multiple channels due to the presence of multiple conduits (6) in the
grading machine, the grading machine is multi-channeled for speedy and effective grading of
maximum number of objects.
17
Example:
The grading machine is worked upon many different objects effectively by providing multiple
grades in a single pass. To name few objects as follows:
Cashew Splits are graded effectively into multiple grades like JH, S, K, LWP, SWP, SPS etc.
5 which can not be separated by sieve.
10
Cardamoms are graded effectively into multiple grades like AGEB, AGB, AGS, AGS-1, AGS-2
etc.
[0023] Referring to FIG. 2, which is an isometric view of a single optics unit of the
grading machine according to one embodiment of the invention. FIG. 2 is an enlarged view of
only one optics unit T1 (3) out of multiple optics units (3) illustrated in FIG.1.FIG. 2 illustrates
the optics unit T1 (3) placed at the starting point of conduit H1 (6) which analyzes the object
denoted as (P1). As illustrated the optics unit (T1) comprises of multiple cameras (4) indicated as
C1, C2,…..Cn (where ‘n’ is a natural positive integer) and multiple light sources (5) shown as
L1, L2, ….Ln (where ‘n’ is a natural positive integer). Multiple cameras (4) view each object
15 from multiple sides or multiple angles to analyze external characteristics of the objects and
capture at least six directional view of each object to analyze each object three dimensionally
(3D) using correlation between multiple cameras which gives the information about different
external characteristics of object (P1) in the conduit (H1). Multiple light sources (5) of the optics
unit (T1) are positioned in the optics unit (3) in such that there is even brightness on the object
(P1). Multiple light sources (3) illuminate the object (P1) from different angles to facilitate
multiple cameras (4) to view the object clearly in a more enhanced way to analyze all external
characteristics of the object (P1) in more enhanced manner, thereby increasing efficiency of
multiple cameras (4) for deciding the accurate grade of the analyzed object (P1). Multiple
20
18
cameras (4) capture different images which are shown as K1, K2...Kn (where ‘n’ is a natural
positive integer).
[0024] Referring to FIG. 3, which is a front view of a single conduit illustrating
arrangement of multiple sensor layers and arrays of multiple ejectors and multiple collecting
chutes throughout the conduit according to one embodiment of the invention. FIG. 3 is an
enlarged view of only conduit H1 (6) out of multiple conduits illustrated in FIG.1. Each conduit
(6) of the grading machine is considered as one channel for grading objects. The conduit (6) can
be a vertical tube (free fall) with gravity as conveyance or a slant surface or a horizontal surface
or conveying opposite to gravity and the conduit (6) can be arranged in any direction to enable
5
10 multiple sensor layers (7) to track the trajectory of each object continuously. The conduit (6) as
illustrated in FIG.3 is a tube into which objects conveys with ‘gravity as conveyance’ for
purposes of illustration of conduit (6) in the grading machine which does not limit the variations
in form and arrangement of conduits possible in the grading machine. Objects flow from optics
unit into the conduit (H1). The conduit (H1) comprises of one sensor network which comprises
of multiple sensor layers (7) shown as S1, S2,Sn, which are arranged throughout the conduit
(6), multiple sensor layer controllers (where ‘n’ is a natural positive integer) and at least one
network controller to control all sensor layer controllers of one conduit (6). These sensor layers
(7) are arranged from starting point of the conduit (H1) till the last dropping point. There are
multiple collecting chutes (9) shown as M1, M2, M3, M4, M5M6, M7, …… Mn (where ‘n’ is a
natural positive integer) through which objects flow and gets collected into multiple collecting
locations. The arrangement of multiple sensor layers (7) is such that, the object can be traced
even if it is passed from any corner of the conduit (H1) to enable corresponding multiple sensor
layer controllers to know the accurate position, velocity etc. of each conveying object which
15
20
19
further helps master controller through the network controller of sensor network to predict the
position, velocity etc. of conveying object in the conduit (H1) and accordingly master controller
signals to corresponding single-angled or multi-angled ejectors of different arrays of multiple
ejectors (8) shown as E1, E2,….En (where ‘n’ is a natural positive integer) of corresponding
conduit, and these ejectors eject each analyzed object in corresponding desired collecting
location through multiple collecting chutes (9).
5
10
15
20
[0025] FIG. 4 is a front view of a single conduit illustrating the conduit as a tube with
gravity as conveyance according to one embodiment of the invention. Only conduit H1 (6) is
shown in FIG. 4, out of multiple conduits shown in FIG. 1. FIG. 4 details out the entire
mechanism of continuous tracking of conveying object in single conduit (H1) and the entire
mechanism of multiple grading in single conduit (H1). Objects P1, P2, P3….Pn (where ‘n’ is a
natural positive integer) of different external characteristics are conveyed from optics unit (T1)
into the conduit (H1) comprising of multiple sensor layers which are divided into multiple layers
(7) S1, S2, S3…….Sn (where ‘n’ is a natural positive integer) throughout the conduit (H1). As
illustrated in FIG. 4, the distance between two sensor layers (S1, S2,… Sn) can be varied. Once
the object (P1) has passed from optics unit (T1), the master controller knows its grade and
grading point. To know the position, velocity etc. of object (P1) the master controller
continuously receives the information from network controller of sensor network, which collects
the information from all/different sensor layer controllers of single conduit (H1).
[0026] Consider sensor layer S1, when the object (P1) passes from this layer, it cuts
multiple rays, hence S1 provides information about object’s position to S1 controller. S1
controller transfers this information to S2 controller and when actually the object (P1) moves to
sensor layer S2, it cuts the rays and S2 provides the same information about object’s position,
20
velocity etc. to S2 controller. Simultaneously, while conveying the object (P1) from S1 to S2, the
information about position, velocity etc. of object (P1) from these S1 controller and S2 controller
is sent to the master controller through network controller and to S3 controller. Further, when the
object (P1) cuts the sensor layer S3, S3 provides the information about object’s position, velocity
etc. to S4 controller and to the master controller through network controller and the process of
tracking object by multiple sensor layers continues so on, thereby helping the master controller
to know the accurate position, velocity etc. of the object (P1). The master controller interprets
this data to decide the exact grading point of the object (P1) for signaling corresponding ejector
of the conduit (H1) to eject the object (P1).
5
10
15
20
[0027] As shown in FIG. 4, object (P1) when reaches to its grading point, it can be
ejected to its respective ejector which can be any ejector E1 or E2 or E3 or E4 (8) from its
conveying path to its respective collecting location which can be B1, B2, B3 or B4 (10) through
corresponding collecting chutes M1, M2, M3 or M4 (9). In FIG. 4, object (P2) is shown to be
ejected by Ejector E3 (8) to eject by expelling a pre-defined duration of a jet of high pressure air
or high pressure fluid towards the direction of conveying object (P2) which drops in collecting
location B3 (10) through collecting chute M3 (9). If any object do not belong to any of the
grades in a conduit (H1), it gets collected in the last collecting location which is attached to the
corresponding conduit (H1).
[0028] FIG. 5 is an isometric view of a conduit illustrating ejection of the conveying
object by an array of single-angled or multiple angle based ejectors into common collecting
location at each grade throughout the conduit according to one embodiment of the invention. As
shown in FIG. 5, at each grading point there are multiple ejectors (8) as shown e11,e12,
e13....e21, e22, e23…e31, e32, e33……which may extend to …enn located at different angles at
21
same level in the conduit (H1) arranged with multiple sensor layers (7) as shown S1, S2…S8….
which may extend to Sn. The arrangement of multiple single-angled or multi-angled ejectors
may vary within the scope of the invention and the illustrated arrangement of said ejectors is
only exemplary in nature without limiting the invention. Single-angled or multi-angled ejectors
are appropriately used as per requirement. These types of ejectors will be used for predictable
ejection, hence making the grading machine more efficient. The grading machine may also
comprise of customized manifold for easy ejection of object.
[0029] Multiple sensor layers and said ejectors which may be arranged in different ways
in the conduit (H1). When objects P1, P2, P3 which may extend to Pn conveyed from
optics unit into the conduit (H1) which is attached with multiple collecting chutes M1, M2, M3 which may extend to Mn (where ‘n’ is a natural positive integer) through which objects
flow at each grading point throughout the conduit (H1) and when object reaches to its accurate
grading point in the conduit (H1), the corresponding object (P2) is shown to be ejected by
multiple multi-angled ejectors (e31, e32, e33….e3n) which are all activated at once by the
master controller to effectively expel a jet of pre-defined duration of high pressure air or high
pressure fluid to eject the object (P2) which drops in collecting location B3 (10) through
collecting chute M3 (9). If any object do not belong to any of the grades in a conduit (H1), it gets
collected in the last collecting location attached to conduit (H1). Due to this unique arrangement
of multiple single-angled or multi-angled ejectors (e11, e12,……enn), even if the object passes
from any corner of the conduit, it accurately falls into the desired common collecting location
(B1, B2, B3, …..which may extend to …Bn), thereby making the machine more efficient.
[0030] According to another embodiment of the present invention, FIG. 6 is a block
diagram illustrating different non-limiting steps involved in a novel process for grading objects
22
into multiple grades in a single pass by continuously tracking the trajectory of objects based on
external characteristics viz. viz. size, shape, color, texture, surface properties or any other
possible external characteristics using the novel, intelligent and multi-channeled grading
machine with trajectory tracking sensor network.
[0031] The non-limiting elements of the grading machine comprises of at least one
hopper (21); at least one feeding unit (22) comprising of multiple feeders and multiple feed
controllers; multiple optics units (23), wherein each optics unit (23) comprises multiple cameras
(24), and multiple light source; multiple conduits; multiple sensor networks (25) in multiple
conduits, wherein each conduit comprises of single sensor network comprising of multiple
sensor layers, multiple sensor layer controllers and at least one network controller; at least one
master controller (26); at least one ejector unit (27) comprising of arrays of single–angled or
multiple angle ejectors in each conduit; multiple collecting chutes; and multiple collecting
locations (28) . The machine further comprises of vacuum creators placed respectively opposite
to each ejector of ejector unit (27) throughout each conduit for predictable exit of the object into
particular collecting grading location (28).
5
10
15
20
[0032] The objects flow from the hopper (21) into the feeding unit (22). The feeding unit
(22) is automated and the rate of feeding of the objects in the feeding unit (22) is controlled by
multiple feed controllers in a systematic way to avoid bulk flow of objects from feeding unit
(22). The objects are released from the feeding unit (22) into multiple optics units (23). Multiple
optics units (23) are further connected to multiple corresponding conduits. Objects flow from the
feeding unit (22) into multiple optics units (23). In each optics unit (23) when any object enters,
each object is viewed from multiple sides or multiple angles and images of each object are
captured from at least six directional views by multiple programmable cameras (24) shown as
23
camera 1, camera 2, camera n*, (wherein ‘n*’ denotes nth camera, where “n” is a natural positive
integer), to analyze each object three dimensionally (3D) using correlation between cameras
which gives the information about different external characteristics. Multiple light sources of the
optics unit (23) enhances features of each object by illuminating each object to enable cameras
5 (24) to analyze each object in a more enhanced manner. Cameras (24) along with light sources
(Not shown in FIG. 2) of each optics unit (23) decide the exact grade of the analyzed objects by
processing captured data. This is how each such optics unit (23) processes the captured data and
decides different exact grades of each object.
[0033] Each optics unit (23) communicate signals related to exact grade of each analyzed
10 object to the master controller (26) and the master controller (26) further decides the exact,
accurate, final grade of each analyzed object based on input signals provided by each optics unit
(23) and the master controller remembers intelligently final grade of each object present in optics
unit (23). As each optics unit (23) is connected further to corresponding conduit; objects flow
from each optics unit (23) into corresponding conduits. Each conduit is considered as one
separate channel for grading objects, thereby facilitating multi-channeled grading of objects. The
objects are released from multiple optics units (23) in to corresponding multiple conduits,
wherein each conduit comprises single sensor network (25), arrays of multiple ejectors and
multiple vacuum creators. As the grading machine comprises at least one ejector unit, it
comprises arrays of multiple ejectors in each conduit of the grading machine. Each sensor
network (25) comprises of multiple sensor layers arranged throughout each conduit, multiple
sensor layer controllers and at least one network controller. As objects are conveyed through
each conduit, multiple sensor layers in co-ordination with corresponding sensor layer controllers
continuously track the position, velocity etc. of each object in its trajectory in real time, wherein
24
these multiple sensor layers trigger signals to corresponding sensor layer controller about the
position, velocity etc. of each falling object in the corresponding conduit in real time.
[0034] Further each sensor layer controller of corresponding conduit is coupled to the
network controller of sensor network (25), network controller collects information from all the
sensor layer controllers and further provides these signals to master controller (26) related to
exact position, velocity etc. of each grade of conveying object accurately in real time, therefore
these signals from each sensor layer controller from each conduit are communicated to the
master controller (26) through the network controller of sensor network (25) of each conduit as
the object cuts the multiple rays of corresponding sensor layers, so that the master controller (26)
can decide the exact position, velocity etc. of each grade of conveying object accurately in real
time by deciding grading point of each conveying object
[0035] The master controller (26) decides the accurate final grade of each analyzed
object based on signals received from the optics unit (3) related to external characteristics of
objects and the master controller (26) can also anticipate the exact position, velocity etc. of each
grade of object before the arrival of grading point of each object during its trajectory in
corresponding conduit based on signals received from network controller of corresponding
sensor network (25) of each corresponding conduit related to the exact position, velocity etc. of
each grade of object accurately in real time. Based on these aforementioned two different signals
received by the master controller, the master controller (26) sends signals to
corresponding/particular single-angled ejectors or multiple angled ejectors of particular array of
multiple ejectors of ejector unit (27), wherein these ejectors are located at same level near each
grading point in corresponding conduit. In each corresponding conduit, at each grading point,
single-angled or multi-angled ejectors along with vacuum creators and at least one collecting
25
chute along with corresponding collecting location is located, wherein said vacuum creators are
placed respectively opposite to each ejector throughout each conduit for easy grading by
generating vacuum at each of the collecting chute based on the signals communicated by at least
one sensor layer controller through network controller of corresponding conduit.
5 [0036] The master controller sends signals to multiple ejectors (of each conduit) of the
ejector unit (27) for ejecting a jet of a pre-defined duration of high pressure air or high pressure
fluid towards the conveying object in corresponding conduit when corresponding grade of object
reached its grading point in corresponding conduit, as each ejector of corresponding conduit is
coupled to the master controller (26), therefore each ejector receives signals related to ejection of
each object sent by the master controller (26) before the arrival of each grade of object in
corresponding conduit. When the particular grade of object conveys near particular grading point
10
in corresponding conduit across its trajectory at particular position in corresponding conduit,
these single-angled or multi-angled ejectors of corresponding conduit opens a valve to eject a jet
of pre-defined duration of high pressure air or high pressure fluid to eject the particular grade of
object and the pressure applied by said ejectors eject each grade of object accurately, thereby
making each grade of object to fall into the corresponding desired collecting location (28)
through corresponding collecting chutes for collecting different grades of objects into multiple
grades in a single pass.
15
20
[0037] As will be readily apparent to those skilled in the art, the present invention may
easily be produced in other specific forms without departing from its essential characteristics.
The present embodiments are, therefore, to be considered as merely illustrative and not
restrictive, the scope of the invention being indicated by the claims rather than the foregoing
description, and all changes which come within therefore intended to be embraced therein.
26
WHAT IS CLAIMED IS:
1. A novel intelligent and multi-channeled grading machine with trajectory tracking sensor
network for grading objects into multiple grades in a single pass based on external characteristics
by continuously tracking the trajectory of objects having size in the range of at least 2 mm to at
5 least 35 mm, wherein the grading machine comprises of:
10
15
-at least one feeding unit which is located below said hopper to receive objects from said hopper,
wherein said feeding unit comprises of multiple feeder and multiple feed controllers, and
wherein said feeding unit is automated and is operated and controlled by said feed controllers to
control rate of feeding of said objects in a systematic way to release said objects further from
each feeder downwards;
-multiple optics units which are connected at lower side of said multiple feeders to receive said
objects released from said multiple corresponding feeders, wherein at least one feeder is attached
to at least one optics unit, and wherein at least one feed controller of one feeder controls the rate
of feeding of said objects for further processing, and further wherein each optics unit comprises
of multiple programmable cameras and multiple light sources, and still further wherein said
cameras are correlated to each other to view each object from multiple sides and/or multiple
angles to capture at least six directional images of each object to analyze each object threedimensionally
(3D) based on data of captured images based on different external characteristics
of each object and said multiple light sources enhances features of each object by illuminating
20 each object to enable said cameras to analyze objects in a more enhanced manner which leads
said cameras to decide the exact grade of each analyzed object, and wherein each said optics unit
processes the captured said data by said cameras to decide exact grades of each said object and
27
further signals related to exact grade of each analyzed object are sent from each said optics unit
for further processing;
-multiple conduits which are connected to the lower side of corresponding said multiple optics
units to receive objects from said multiple optics unit, wherein at least one optics unit is
connected at the top of starting point of each corresponding conduit to receive objects from
corresponding optics unit, and wherein each conduit comprises of single network comprising of
multiple sensor layers which are lined up throughout each said conduit from the starting point of
each conduit till the last dropping point of objects; multiple sensor layer controllers to coordinate
with corresponding multiple sensor layers, wherein there is a single sensor layer controller to
coordinate with respective sensor layer of corresponding conduit; and at least one network
controller for controlling all sensor layer controllers of corresponding conduit, wherein each
sensor layer comprises of multiple sensors and said each sensor layer continuously tracks the
5
10
position of each object in trajectory in real time and trigger signals to said corresponding sensor
layer controller about the position, velocity of each conveying object in real time; and further
15 wherein each sensor layer of corresponding conduit trigger signals about at least the position and
velocity to said network controller which receives said signals from all sensor layer controllers of
corresponding conduit and further said network controller of corresponding conduit sends said
signals from all sensor layer controllers of corresponding conduit for further processing;
-at least one master controller which is coupled to each optics unit, each network controller of
each sensor network to coordinate different signals from each said optics units and each said
network controller of each sensor network of the grading machine as said master controller
20
receives said signals related to grade of each analyzed object sent by each said optics unit and
decides the exact, accurate, final grade of said each analyzed object, wherein said cameras of
28
said optics unit are capable of correlation between them by said master controller; and further
said master controller also receives signals sent by each network controller of each said sensor
network of corresponding conduit related to exact position and velocity of each grade of
conveying object accurately in real time, as the object cuts the multiple rays of corresponding
said sensor layers, thereby anticipating the exact position, velocity of each conveying object
during its trajectory in corresponding conduit by deciding its grading point and further said
master controller sends signals related to ejection of said conveying objects in corresponding
conduit when said conveying object reaches to its grading point in corresponding conduit;
5
10
15
-at least one ejector unit comprising of arrays of multiple ejectors in combination with multiple
vacuum creators and said ejectors and said vacuum creators are located in each conduit in
addition to said sensor network, wherein said ejectors are single–angled ejectors or multi-angled
ejectors in each said conduit, wherein said ejectors are located at same level near each grading
point in corresponding conduit and further when said conveying object reaches to its grading
point, said signals related to ejection of said conveying objects from said master controller are
received by corresponding ejector of said corresponding conduit, thereby ejecting a jet of predefined
duration of high pressure air or high pressure fluid directed towards said conveying
object across its trajectory at its grading point in corresponding conduit and ejecting the
corresponding multiple grades of objects from its conveying path in corresponding conduit, and
wherein said at least one vacuum creator is located respectively opposite to each corresponding
ejector throughout each said conduit for predictable exit or ejection of said conveying object
from said corresponding conduit;
20
-multiple collecting chutes to convey said corresponding multiple grades of objects from said
corresponding conduit ejected by said ejectors in cooperation with said vacuum creators for
29
collecting purpose, wherein said vacuum creators generate vacuum at each of said collecting
chute based on the signals communicated by at least one sensor layer controller through network
controller of sensor network of corresponding conduit; and
-multiple collecting locations for collecting said corresponding multiple grades of objects into
5 multiple grades in a single pass.
10
2. The grading machine of claim 1, wherein each said feed controller of corresponding feeder is
also coupled to said master controller to control rate of flow of objects into said corresponding
optics unit and further from said optics unit into corresponding conduit based on the need of
number of objects to be fallen in particular conduit as said master controller is coupled to sensor
network to receive signals related to rate of flow of objects in said corresponding conduit and
after receiving signals from said master controller, said feed controller of corresponding feeder
releases controlled number of objects in corresponding optics unit and said corresponding
conduit as per the need for effective grading.
3. The grading machine of claim 1, wherein each said conduit is either a vertical tube with
gravity as conveyance or a slant surface or a horizontal surface or conveying opposite to gravity,
and wherein each said corresponding conduit is arranged in any direction, thereby enabling one
or multiple said sensor layers of corresponding conduit to track the trajectory of each said
conveying object continuously, and further wherein each said sensor layer is connected to single
sensor layer controller of corresponding conduit, and still further wherein said all sensor layer
controllers of corresponding conduit are connected to at least one network controller of
corresponding conduit which receives signals related to at least position and velocity of said
conveying object from said all sensor layer controllers of corresponding conduit, thereby the
trajectory of said conveying object is tracked continuously in real time, and wherein said
15
20
30
network controller of sensor network of corresponding conduit sends said signals to said master
controller for deciding the grading point of said conveying object, and said master controller
decides the accurate grading point of each conveying object in real time;
4. The grading machine of claims 1, wherein said signals from each sensor layer of
corresponding conduit related to position and velocity of each said conveying object is analyzed
by all sensor layer controllers of corresponding conduit accurately in real time as all sensor layer
controllers are always active during the grading process to receive said signals from one or
multiple sensor layers of corresponding conduit to sense each grade of said conveying object
which can randomly come across any sensor of corresponding conduit.
5
10
15
20
5. The grading machine of claim 1, wherein when said any sensor layer of corresponding conduit
sense any hollow or damaged conveying object in corresponding conduit, to decide different
properties including specific gravity and hollowness of said hollow or damaged conveying object
intelligently by network controller of corresponding sensor network of corresponding conduit
depending on velocity variation of any said hollow or damaged conveying object, and wherein
said network controller of sensor network signals related to said properties of said hollow or
damaged conveying object to said master controller and further wherein said master controller
further decides the accurate position and velocity of each said hollow or damaged conveying
object to reach to its grading point in real time.
6. The grading machine of claim 1, wherein at each grading point of corresponding conduit, there
exists at least single-angled ejectors or multi-angled ejectors; and at least one collecting chute
along with corresponding collecting location; and wherein said single-angled ejectors or multiangled
ejectors are installed in said grading machine according to properties including specific
gravity and hollowness of said conveying objects to be graded, wherein said grading machine
31
further comprises of customized manifold for easy ejection of differently sized said conveying
objects.
7. The grading machine of claim 1, wherein said hopper, said feeding unit, said optics unit, said
conduit or other parts of said machine are made from a group consisting of polyurethane, food
5 grade acrylic, ionized elements and teflon coated material.
8. A novel process for grading objects into multiple grades in a single pass by continuously
tracking the trajectory of objects based on external characteristics, wherein the process comprises
the steps of:
- providing the grading machine of claim 1;
10 -feeding objects to be graded in a hopper;
15
-Conveying of objects from said hopper into a feeding unit, wherein said feeding unit is operated
and controlled by multiple feed controllers to control rate of feeding of said objects in a
systematic way, wherein said feed controllers are coupled to a master controller for effective
feeding as said feed controller receives signals from a network controller of sensor network of
corresponding conduit through said master controller;
-conveying of said objects from multiple feeders of said feeding unit into corresponding multiple
optics units, wherein viewing of said objects by multiple programmable cameras of said optics
unit from multiple sides and/or multiple angles and capturing images of said objects from at least
six directional view and analyzing each object three dimensionally (3D) is carried out by said
20 cameras which are correlated to each other along with multiple light sources of said optics unit
and further processing of captured image data is carried out by said cameras of said optics unit to
decide the exact grade of each analyzed object, thereby each said optics unit decides the exact
grade of each said object;
32
-sending signals related to the exact grade of each analyzed object by said optics unit to said
master controller and receiving said signals from said optics unit by said master controller to
decide the exact, accurate, final grade of each said analyzed object based on signals provided by
each said optics unit;
-flowing of objects from said each said optics unit into corresponding conduits as each said
conduit is considered as one separate channel for grading said objects, thereby facilitating multichanneled
grading of objects;
5
10
-conveying of said objects from said each optics units into corresponding said conduits, wherein
each conduit comprises of a single sensor network comprising of multiple sensor layers, multiple
sensor layer controllers, at least one network controller and said conduit also comprises of arrays
of multiple single-angled ejectors or arrays of multi-angled ejectors, and wherein said multiple
sensor layers of said each conduit continuously track the position and velocity of each conveying
object in its trajectory in real time, and trigger signals to said corresponding sensor layer
controller about the position and velocity of each conveying object in real time;
-receiving signals from each sensor layer controllers of corresponding conduit related to the
position and velocity of each conveying object in real time to determine the exact position and
velocity of each conveying object accurately in real time in said corresponding conduit by said
network controller of said sensor network of corresponding conduit;
15
20
-sending said signals from said corresponding network controller of said sensor network to said
master controller as each said network controller of each conduit is coupled to said master
controller;
-receiving of said signals from said network controller of said sensor network of corresponding
conduit by said master controller and as said object cuts the multiple rays of corresponding said
33
34
5
10
sensor layers, thereby anticipating the exact position and velocity of each said conveying object
accurately in real time before the arrival of grading point of each conveying object during its
trajectory in corresponding conduit by deciding grading point of each said conveying object;
-sending signals related to ejection of said conveying object by said master controller to arrays of
single-angled ejectors or arrays of multi-angled ejectors of each said corresponding conduit when
each said conveying object reaches at its grading point for ejecting corresponding multiple
conveying objects from corresponding conduit;
-receiving signals from said master controller about exact position and velocity of each
conveying object by said arrays of single–angled ejectors or arrays of multi-angled ejectors;
-opening a valve of the particular ejector of corresponding conduit and directing a jet of a predefined
duration of high pressure air or high pressure fluid towards each said conveying object
across its trajectory near the grading point in corresponding conduit when each said conveying
object reaches to its grading point in corresponding conduit;
-ejecting the particular accurate grade of each said conveying object from said corresponding
conduit, wherein said conveying object is ejected with assistance of said vacuum creators placed
respectively opposite to each said ejector throughout each conduit for easy grading, and further
wherein said pressure of air or fluid vary according to said properties including specific gravity
and hollowness of said conveying objects to be graded;
15
20
-ejecting multiple accurate grades of said objects from said corresponding conduit by said
ejectors and convey further through multiple collecting chutes; and
-collecting multiple grades of said objects multiple collecting chutes into multiple collecting
locations in a single pass.
10
9. The novel process for grading objects of claim 8, wherein said step of ejecting said conveying
objects is improved by adding customized manifolds at said ejector side or said vacuum creator
at the collecting location, thereby providing refined grading location for said conveying objects.
Dated: 14tr day of March,2016
Agent forApplicant
Dr. Mohini S. Gaikwad
(rN/PA/2023)
15
20
35
A NOVEL INTELLIGENT GRADING MACHINE WITH TRAJECTORY TRACKING
SENSOR NETWORK AND A PROCESS THEREOF
The present invention discloses a novel intelligent and multi-channeled grading machine with
trajectory tracking sensor network for grading objects into multiple grades in a single pass based
on external characteristics viz. size, shape, color, texture, surface properties or any other possible
external characteristics by continuously tracking the trajectory of objects. The novel grading
machine comprises of hopper; at least one feeding unit; multiple optics units multiple conduits;
multiple sensor networks in multiple conduits; at least one master controller; at least one ejector
unit comprising of arrays of single–angled or multiple angle ejectors in each conduit; multiple
vacuum creators placed respectively opposite to each ejector; multiple collecting chutes; and
multiple collecting locations. The novel grading machine is extremely simple, accurate, and
automated, power-efficient and cost-effective. The present invention also discloses a novel
process for grading objects into multiple grades in a single pass by continuously tracking the
trajectory of objects based on external characteristics
| # | Name | Date |
|---|---|---|
| 1 | 1291-CHE-2015 POWER OF ATTORNEY 16-03-2015.pdf | 2015-03-16 |
| 1 | 1291-CHE-2015-IntimationOfGrant03-04-2023.pdf | 2023-04-03 |
| 2 | 1291-CHE-2015 FORM-5 16-03-2015.pdf | 2015-03-16 |
| 2 | 1291-CHE-2015-PatentCertificate03-04-2023.pdf | 2023-04-03 |
| 3 | 1291-CHE-2015-AMMENDED DOCUMENTS [23-02-2023(online)].pdf | 2023-02-23 |
| 3 | 1291-CHE-2015 FORM-2 16-03-2015.pdf | 2015-03-16 |
| 4 | 1291-CHE-2015-Annexure [23-02-2023(online)].pdf | 2023-02-23 |
| 4 | 1291-CHE-2015 FORM-1 16-03-2015.pdf | 2015-03-16 |
| 5 | 1291-CHE-2015-FORM 13 [23-02-2023(online)].pdf | 2023-02-23 |
| 5 | 1291-CHE-2015 DRAWINGS 16-03-2015.pdf | 2015-03-16 |
| 6 | 1291-CHE-2015-MARKED COPIES OF AMENDEMENTS [23-02-2023(online)].pdf | 2023-02-23 |
| 6 | 1291-CHE-2015 DESCRIPTION (PROVISIONAL) 16-03-2015.pdf | 2015-03-16 |
| 7 | 1291-CHE-2015-Written submissions and relevant documents [23-02-2023(online)].pdf | 2023-02-23 |
| 7 | 1291-CHE-2015 CORRESPONDENCE OTHERS 16-03-2015.pdf | 2015-03-16 |
| 8 | 1291-CHE-2015-Correspondence to notify the Controller [08-02-2023(online)].pdf | 2023-02-08 |
| 8 | OTHERS [16-03-2016(online)].pdf | 2016-03-16 |
| 9 | 1291-CHE-2015-FORM-26 [08-02-2023(online)].pdf | 2023-02-08 |
| 10 | 1291-CHE-2015-US(14)-HearingNotice-(HearingDate-10-02-2023).pdf | 2022-12-08 |
| 10 | Description(Complete) [16-03-2016(online)].pdf | 2016-03-16 |
| 11 | 1291-CHE-2015-ABSTRACT [12-01-2021(online)].pdf | 2021-01-12 |
| 11 | Petition Under Rule 137 [06-12-2016(online)].pdf | 2016-12-06 |
| 12 | 1291-CHE-2015-CLAIMS [12-01-2021(online)].pdf | 2021-01-12 |
| 12 | Other Document [06-12-2016(online)].pdf | 2016-12-06 |
| 13 | 1291-CHE-2015-DRAWING [12-01-2021(online)].pdf | 2021-01-12 |
| 13 | 1291-CHE-2015-FORM 3 [17-01-2018(online)].pdf | 2018-01-17 |
| 14 | 1291-CHE-2015-FER_SER_REPLY [12-01-2021(online)].pdf | 2021-01-12 |
| 14 | 1291-CHE-2015-FORM 3 [29-01-2018(online)].pdf | 2018-01-29 |
| 15 | 1291-CHE-2015-FORM 3 [13-09-2018(online)].pdf | 2018-09-13 |
| 15 | 1291-CHE-2015-OTHERS [12-01-2021(online)].pdf | 2021-01-12 |
| 16 | 1291-CHE-2015-NBA Approval Submission(Mandatory) [17-10-2018(online)].pdf | 2018-10-17 |
| 16 | 1291-CHE-2015-FORM 13 [06-11-2020(online)].pdf | 2020-11-06 |
| 17 | 1291-CHE-2015-RELEVANT DOCUMENTS [06-11-2020(online)].pdf | 2020-11-06 |
| 17 | 1291-CHE-2015-Changing Name-Nationality-Address For Service [17-10-2018(online)].pdf | 2018-10-17 |
| 18 | 1291-CHE-2015-AbandonedLetter.pdf | 2019-12-20 |
| 18 | 1291-CHE-2015-RELEVANT DOCUMENTS [29-04-2019(online)].pdf | 2019-04-29 |
| 19 | 1291-CHE-2015-FORM 13 [29-04-2019(online)].pdf | 2019-04-29 |
| 19 | 1291-CHE-2015-FORM 3 [20-12-2019(online)].pdf | 2019-12-20 |
| 20 | 1291-CHE-2015-FER.pdf | 2019-06-17 |
| 21 | 1291-CHE-2015-FORM 13 [29-04-2019(online)].pdf | 2019-04-29 |
| 21 | 1291-CHE-2015-FORM 3 [20-12-2019(online)].pdf | 2019-12-20 |
| 22 | 1291-CHE-2015-AbandonedLetter.pdf | 2019-12-20 |
| 22 | 1291-CHE-2015-RELEVANT DOCUMENTS [29-04-2019(online)].pdf | 2019-04-29 |
| 23 | 1291-CHE-2015-Changing Name-Nationality-Address For Service [17-10-2018(online)].pdf | 2018-10-17 |
| 23 | 1291-CHE-2015-RELEVANT DOCUMENTS [06-11-2020(online)].pdf | 2020-11-06 |
| 24 | 1291-CHE-2015-FORM 13 [06-11-2020(online)].pdf | 2020-11-06 |
| 24 | 1291-CHE-2015-NBA Approval Submission(Mandatory) [17-10-2018(online)].pdf | 2018-10-17 |
| 25 | 1291-CHE-2015-FORM 3 [13-09-2018(online)].pdf | 2018-09-13 |
| 25 | 1291-CHE-2015-OTHERS [12-01-2021(online)].pdf | 2021-01-12 |
| 26 | 1291-CHE-2015-FER_SER_REPLY [12-01-2021(online)].pdf | 2021-01-12 |
| 26 | 1291-CHE-2015-FORM 3 [29-01-2018(online)].pdf | 2018-01-29 |
| 27 | 1291-CHE-2015-DRAWING [12-01-2021(online)].pdf | 2021-01-12 |
| 27 | 1291-CHE-2015-FORM 3 [17-01-2018(online)].pdf | 2018-01-17 |
| 28 | 1291-CHE-2015-CLAIMS [12-01-2021(online)].pdf | 2021-01-12 |
| 28 | Other Document [06-12-2016(online)].pdf | 2016-12-06 |
| 29 | 1291-CHE-2015-ABSTRACT [12-01-2021(online)].pdf | 2021-01-12 |
| 29 | Petition Under Rule 137 [06-12-2016(online)].pdf | 2016-12-06 |
| 30 | 1291-CHE-2015-US(14)-HearingNotice-(HearingDate-10-02-2023).pdf | 2022-12-08 |
| 30 | Description(Complete) [16-03-2016(online)].pdf | 2016-03-16 |
| 31 | 1291-CHE-2015-FORM-26 [08-02-2023(online)].pdf | 2023-02-08 |
| 32 | 1291-CHE-2015-Correspondence to notify the Controller [08-02-2023(online)].pdf | 2023-02-08 |
| 32 | OTHERS [16-03-2016(online)].pdf | 2016-03-16 |
| 33 | 1291-CHE-2015 CORRESPONDENCE OTHERS 16-03-2015.pdf | 2015-03-16 |
| 33 | 1291-CHE-2015-Written submissions and relevant documents [23-02-2023(online)].pdf | 2023-02-23 |
| 34 | 1291-CHE-2015 DESCRIPTION (PROVISIONAL) 16-03-2015.pdf | 2015-03-16 |
| 34 | 1291-CHE-2015-MARKED COPIES OF AMENDEMENTS [23-02-2023(online)].pdf | 2023-02-23 |
| 35 | 1291-CHE-2015 DRAWINGS 16-03-2015.pdf | 2015-03-16 |
| 35 | 1291-CHE-2015-FORM 13 [23-02-2023(online)].pdf | 2023-02-23 |
| 36 | 1291-CHE-2015-Annexure [23-02-2023(online)].pdf | 2023-02-23 |
| 36 | 1291-CHE-2015 FORM-1 16-03-2015.pdf | 2015-03-16 |
| 37 | 1291-CHE-2015-AMMENDED DOCUMENTS [23-02-2023(online)].pdf | 2023-02-23 |
| 37 | 1291-CHE-2015 FORM-2 16-03-2015.pdf | 2015-03-16 |
| 38 | 1291-CHE-2015-PatentCertificate03-04-2023.pdf | 2023-04-03 |
| 38 | 1291-CHE-2015 FORM-5 16-03-2015.pdf | 2015-03-16 |
| 39 | 1291-CHE-2015-IntimationOfGrant03-04-2023.pdf | 2023-04-03 |
| 39 | 1291-CHE-2015 POWER OF ATTORNEY 16-03-2015.pdf | 2015-03-16 |
| 1 | 1291_14-06-2019.pdf |