Sign In to Follow Application
View All Documents & Correspondence

"Arrangement For A Jet And Description Of The Prior Art"

Abstract: The combustion chamber comprises a chamber endwall (16) perforated by at least one passage hole (62). An injection system is mounted so that it car. slide diametrically with respect to the passage hole (62). A deflector (50) is mounted on the chamber endwall. The deflector comprises a fitting ring (64) bearing first tenons (66). A sleeve (48) which is coaxial to the fitting ring (64) bears second tenons (72). The first and the second ter.ons allow the passage of the first tenons between the second ter.cns and then the engagement of the first tenons behind the second tenons. The injection systen is slidably mounted in the sleeve (48) . Antirotation means are provided to prevent a rotation of the injection system with respect to the sleeve.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
26 February 2007
Publication Number
35/2007
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
Parent Application

Applicants

SNECMA
2 BOULEVARD DU GENERAL MARTIAL VALIN, 75015 PARIS,FRANCE

Inventors

1. DIDIER HIPPOLYTE HERNANDEZ
38 RUE SAINT MARTIN, 77720 QUIERS, FRANCE
2. THOMAS OLIVIER, MARIE NOEL
50 RUE DU FAUBOURG SAINT ANTOINE, 75012 PARIS, FRANCE

Specification

ARRANGEMENT FOR A JET ENGINE COMBUSTION CHAMBER
DESCRIPTION TECHNICAL FIELD
Background of the invention and description of the prior art
The invention relates to an arrangement for a jet engine combustion chamber, said chamber comprising a chamber endwall perforated by at least one circular passage hole, the arrangement comprising an injection system associated with said at least one passage hole and mounted so that it can slide diametrically with respect to the circular passage hole in the chamber endwall, and a deflector mounted fixedly on a chamber endwall inside the combustion chamber.
The combustion chambers cf jet engines comprise an inner wall and an outer v/all connected at their upstream ends by an annular endwall so as to define an annular combustion chamber endwall. Injection systems distributed regularly over the periphery of the endwall of the combustion chamber deliver an air/fuel mixture which is ignited to supply combustion gases.
The fuel is supplied to the injection system by an injector mounted on an outer casing wall and of which the heac is centered on the injection system. Furthermore, a deflector protects the chamber endwall from the flames of the combustion chamber. However, there are differential expansions between the combustion chamber and the casing. It is therefore

necessary to provide a mechanism to compensate for this differential expansion.
In a first type of arrangement (see, for example, document EP 1 290 378) the head of the injector is centered or. a sliding feedthrough which can move radially with respect to the injection system so as to compensate for the differential expansion of the combustion chamber wit.-, respect to the casing.
However, there are injector heads which, apar from a central nozzle, comprise peripheral nozzles which discharge into a secondary swirler or exterr.al swirler of the injection system. In this case, i~ is no-admissible to allow a deflection of the injector head with respect to the injection system, since the injector head must be permanently centered with respec-to the injection system. It is thus necessary to compensate for the differential expansions by sliding the injection system with respect to the chamber endwall. The inver.-ion is concerned with an arrangement of this type.
Moreover, according to another imperative, ir. the event of a fracture of one of the brazed joints used to assemble the constitutent parts of the arrangement, it is necessary thai no part can become detached and strike the corr.busticn chamber and the downstream portion of the engine, especially the HP turbine, a situation which might result in ar. engir.e explosion.
Summary of the invention
The subject of the invention is precisely an arrangement for a jet engine combustion chamber which

makes it possible to achieve these objectives. Firstly, this arrangement must allow the injection system to slide with respect to the chamber endwall. Secondly, it must be designed in such a way that none of the parts is able to leave in the downstream direction in the event of a fracture of a brazed joint.
These aims are achieved, according to the invention, through the fact that the deflector comprises a fitting ring bearing first tenons which are spaced circumferentially and project radially, and in that the arrangement comprises a sleeve which is coaxial to the fitting ring of the deflector and bears second -er.ons which are spaced circumferentially and project radially/ the first and the second tenons being sufficiently spaced to allow the passage of the first tenons between the second tenons and then, through a rotation, the engagement of the first tenons behind the second tenons in such a way as to prohibit the deflector and the sleeve from separating in an axial direction, the injection system being slidably mounted in the sleeve, antirotation means being provided to prevent a rotation of the injection system with respecz to the sleeve.
3y virtue of these features, differential expansions of the casing with respect to the combustion chamber are compensated for at the chamber endwall, and none of the parts is able to strike the combustion chamber or the turbine in the even" of a fracture of a brazed joint.
In one particular embodiment, the injection system comprises a floating ring slicably mounted in the sleeve.
In another particular embodiment, the sleeve takes the form of a cup having an end seat on which ~he floating ring can slide and a rim, the sliding ring being retained by a closure ring welded to the rim.
Advantageously, the fitting ring passes through the passage hole in the chamber enc.wall.
Preferably, the first tenons are directed radially outward and -he second zer.ons are directed radially inward.
Advantageously, the antirotation means which prohibit a rotation of the injection system with respect to the sleeve are formed by a tongue for the orientation of the floating ring and by a slot formed in the rim of the sleeve, the orientation tongue being introduced into the slot.
In 2 preferred enbodiment, the arrangement comprises an orientation finger which passes through the chairber endwall and which engages, at one end, into a slot for the orientation of the deflector and, at another end, into a slot for the orientation cf the sleeve, zhis orientation finger imposing a defined angular orientation of the deflector and of the sleeve with respeci. to the chamber endwall and, therefore, a defined angular orientation of the sleeve and of the deflector with respect to one another.
Preferably, the floating ring is provided with a multitude of ventilation holes passing through it.
Preferably again, the ventilation holes in the floating ring are arranged in such a way that they are opposite
the deflector in a region where there is a clearance between the injection system and the deflector that is below a limit value and are disengaged from the deflector in a region where the clearar.ee between the injection system and the deflector is above this limit value.
Moreover, the invention relates to a jet engine comprising an arrangement according to the invention, and also to a sleeve, an injection system and a deflector fcrning part cf the arrangement.
Brief description of the drawings
Other features and advantages of the invention will become apparent on reading the description below of exemplary embodiments given by way of illustration with reference to the appended figures. In these figures:
figure 1 is a general view cf a combustion chamber comprising an arrangement according to the invention;
figure 2 is a detail view of the injection system forming part of -he arrangement of figure 1;
figure 3 is a sectional view of the ir.jector head mounted on the injection system of the invention;
figure 4 is an exploded view showing the mounting of the sleeve on the deflector;
figure 5 is a detail view of a finger for zhe orientation of the sleeve and the deflector with respect to the chamber endwall;
figure 6 is an exploded perspective view of the arrangement of the invention;
figure 7 is an assembled perspective viaw of the arrangement of the invention;
figures 8 to 10 are three detail views which show the operation of the ventilation holes in the floating
ring.
Description of the preferred embodiments
Figure 1 shows a partial schematic sectional view of a jet engine combustion chamber denoted by the general reference 2 comprising an arrangement according to the present invention. The combustion chamber 2 has a shape with longitudinal symmetry of revolution with respect to a general axis of ~he turbine (not shown) . It comprises an inner casing wall 4 and an outer casing wall 6. An inner chamber wall 8 delimits a passage 10 with the inr.er casing wall 4, and an outer chamber wall 12 delimits a passage 14 with the outer casing wall 6.
The inner chamber wall 8 and outer chamber wall 12 are connected by a chamber endv/all 16 at their upstream ends. A plurality of injection systems 13, for example from 14 to 22, with a regular angular spacing (only one injection system has been shown in figure 1) are provided on the chamber endwall 16. For each injection system 18 an injector 2C is mounted on the outer casing wall 6. The injector ccmprlses an injector head 22 cer.-ered on the injection system 18 of axis XX.
The way in which the combustion chamber module operates is as follows. The pressurized air from the compressor
enters the combustion chamber through the passage 26, as depicted by the arrow 28. Some of the air passes through the central opening in the cowl 30, while the remainder of the air stream is directed via the outside of the cowl toward the passages 10 and 14, as depicted by the arrows 34 and 36. Openings (not shown) are provided in the inner wall 8 and outer wall 12 of the combustion chamber to allow air to enter from the passages 10 and 14.
The air which enters the cowl 30 is rotated, in the primary swirler 38 cf the injector head 22 and in the secondary swirler 40 of the injection system 18. It mixes with the fuel delivered by the injector head 22. The gaseous mixture enters the combustion chamber, in which it is ignited.
Figure 2 shows a detail view of the injection system 18. It consists of a bowl 42, of the aforementioned secondary swirler or external swirler 40, and of the centering ring 44. The latter is designated thus because it enables the injector head 22 to be centered with respect tc the injection system 18. The injection system 18 is slidably mounted with respect tc the chamber endwall 16 by way of a floating ring 46 which is formed in a single piece with the bowl 42 and which slides in a sleeve 48 secured to the chamber endwall 16.
The deflector 50 protects the chamber endwall 16 from the flames of the combustion chamber.
Figure 3 is a view on an enlarged scale of trie injector head 22 mounted on the injection system 18. As explained above, the injector head 22 comprises a
central nozzle 52 and peripheral injection points 54 which discharge into the secondary swirler 40. It is thus necessary for the injector head 22 to be permanently and perfectly centered with respect to the injection systeir. 18. This is the reason why it cannot be slidably mounted with respect to the injection system, as is zhe practice in some arrangements. The injector head is thus centered on the centering ring 44 of the injection system 18 and it is the assembly consisting of the injector head and the injection systeir. that is slidably mounted with respect to the chamber endwall 16 in the sleeve 48. To this end, the floating ring 46 secured to the bowl 42 is slidably mounted in the sleeve 48 closed by the closure ring 56. Antirotation means are provided tc prevent a rotation of the injection system with respect to the sleeve 46. In ~he exemplary embodiment described, these means consist of £ tongue 58 which forms part of the floating ring 46 and which is inserted into a slot 60 formed in a rim of the sleeve.
Consequently, the injection syscem is abla to move radially with respect to the deflector 50 and with respect to the chamber endwall 16. In figure 3, the injection system has been shewn in the centered position, it being understood, however, that the injection system can move between a first off-centered position in which the clearance at one of the ends, fcr example the inner end, is zero, and a second off-centered position in which the clearance at the other end is zero.
The deflector 50 is mounted fixedly on zhe chamber endwall 16 inside the combustion chamber. Figure 4 shows a preferred embodiment of the fixing of the
defleczor on the chamber endwall. The chamber endwall 16 comprises a circular passage hole 62, The deflector 50 conprises a fitting ring 64 which encages into the passage hole 62. The fitting ring comprises regularly distributed tenons 66, for example six in ~he exemplary embodiment represented. The sleeve 48 takes the forn of a cup having an end seat or. which the floating ring can slide and a rim 68 in which there is formed a slot 60 for accommodating the tongue 58 of the floating ring 46.
The tenor.s 66 alternate with slots 67. In the exanple represented, the length of the tenons 66 is equal to that of the slots 67. In other words, given the fact that there are six tenons and six slots in the example, each te:"cn and each slot extends over an angle at the center of 15°. Finally, the deflector 50 comprises an orisr.zation slot 69.
Similarly to what has been described ir. relation to the fitting ring 64, the sleeve 48 comprises six tenons 72 with a regular angular distribution alternating with six slots 74 whose length is equal to that of the tenons in the example represented. In other words, as in the case of the fitting ring 64, each of the tenons 72 and each of the slo~s 74 extends over an angle at the center of 15°. The sleeve 48 also comprises an orientation slot 76. Moreover, an orientation slot 78 is formed in the circular passage hole 62 cf the chamber endwall 16.
The dsflector 5C is mounted on the chamber endwall 16 in the following way. First of all, the fitting ring 64 of the deflector 50 is introduced into the circular passage hole 62 such that the tenons 66 protrude with
respect ~o the chamber endwall 16. Next, starting from the position represented in figure 4, in which the slots 69 for the orientation of the deflector 50, the slot 76 for the orientation of the sleeve 48 anc the slot 78 for the orientation of the chamber endwall 16 are aligned, the sleeve 48 is rotated in one or other direction by a fraction of a turn such that the tenons 72 of the sleeve 48 are situated opposite slots 67 of the fitting ring 64. In the example described, it is thus required to rotate the sleeve 48 through an angle of 15° in the clockwise direction or in the counterclockwise direction. The sleeve is then engaged onto the fitting ring of the deflector, the tenons 72 of the sleeve 48 passing between the tenons 66 of the fitting ring 64. With the sleeve having been fully engaged, it is rotated by a fraction of a turn in tr.e opposite direction to the preceding direction such tha~ the three orientation slots are once more aligned. An orientation finger 80 is then inserted into the three slots 76, 78 and 69 so as to immobilize these three parts in a relative position with respect to one another. With a correct angular orientation being guaranteed by the insertion of the orientation finger 80, it is then possible to start brazing tr.e assembly. It will be understood that even in the event cf a fracture of the brazed joint, the deflector 50 will be retained by these tenons 66 engaged behind the tenons 72 of the sleeve 48. Thus, even in the event of a defective brazed joint, the deflector cannot be sucked ir.to the combustion chamber, according to one of -he essential features of the invention.
Figure 5 represents a detail view showing the insertion of. the orientation finger 80 into the slots for the
respective orientation of the sleeve 48, the chamber endwall 16 and the deflector 50.
Figure 6 represents an exploded perspective view of ~he deflector, the chamber endwall 16, the sleeve 48, the injection system 18, the closure ring 56 and the injector 20 with its injection head 22. In figure 7, these various parts have been represented in the assembled position.
The mounting operation takes place in the following way. With the deflector having been nounted fixedly on the chamber endwall 16, and brazed in zhis position as has been explained above, the floating ring 46 of the injection system 18 is introduced into the sleeve 48, the orientation tongue 58 being introduced into the slot 60 of the sleeve 43. The closure ring is then introduced into the sleeve and is welded in this position by means of three cr four circumferentiaily distributed welding beads. Consequently, it is easy to replace the injection system if necessary. For that purpose i~ is required merely tc grind the welding beads and to remove the closure ring and then the injection system.
With the injection system being retained by the closure ring, said system can slide freely in a radial direction within the limit of the clearance between the bowl and the sleeve 48. The head 22 of the injector is ~hen introduced into the centering ring of tne injection system.
Figures 6 and 7 show the tongue 58. introduced into the slot 63 of the sleeve 48. The presence of ventilation holes 82 formed in the floating ring 46 can also be
seen. As can be observed in figures 6, 9 and 10, the function of the ventilation holes 82 is to cool the deflector 50. Figure 8 shows the injection system in a nominal position in which it is centered with respect to the deflector; figure 9 shows a region in which there is a minimum clearance between the deflector and the injection system (more precisely the bowl), and figure 10 shows an off-centered position of the injection system with respect tc the deflector 50 in which there is a maximum clearance between these two parts. In the position shown in figures 8 and 9, that -s to say in the centered position and in the minimurr. clearance position, the deflector 50 is sufficiently cooled by an air stream from the ventilation holes 34 that sweeps over it. This is the reason why, in figures 8 and 9, the ventilation holes 82 in the floating ring 46 are blocked off because they are opposite the deflector 50. Therefore, in these positions, there is no ventilating air flow flowing through the ventilation holes 32. By contrast, in the position represented in figure 10, the ventilation holes 82 are disengaged from the deflector 50. Therefore, an air flow flows through these holes so as to cool the deflector 50.

CLAIMS
1. An arrangement for a jet engine combustion
chamber, said chamber comprising a chamber endwall
perforated by at least one circular passage hole, the
arrangement comprising an injection system associated
with said circular passage hole and mounted so that it
can slide diametrically with respect to the circular
passage hole in the chamber endwall, and a deflector
mounted fixedly on the chamber endwall insice the
combustion chamber, wherein the deflector comprises a
fitting ring bearing firs- tenons which are spaced
circumferer.-ially and project radially, and wherein the
arrangement comprises a sleeve which is coaxial to the
fitting ring of the deflector and bears second tenons
which are spaced circumferentially and projec
radially, the first and the second tenons being
sufficiently spaced to allow the passage of the first
tenons between the second tenons and then, through a
rotation, the engagement of the first tenons behind the
second tenons in such a way as zo prohibit the
deflector and the sleeve from separating in an axial
direction, the injection system being slidabiy mour.ted
in the sleeve, antirotation means being provided to
prevent a rotation of the injection system with respect
to the sleeve.
2. The arrangement as claimed in claim 1, wherein the
injection system comprises a floating ring slidabiy
mounted in the sleeve.
3. The arrangement as claimed in claim 2, wherein the
sleeve takes the fern of a cup having an end seat on
which the floating ring can slide and a rim, the
floating ring being retained by a closure ring welded to the rim.
4. The arrangement as claimed in one of claims 1 to
3, wherein the fitting ring passes through trie passage
hole in the chamoer endwall.
5. The arrangement as claimed in one of claims 1 tc
4, wherein the first tenons are directed radially
outward and wherein the second tenons are directed
radially inward.
6. The arrangement as claimed in one of claims 3 to
5, wherein the antirotation means which prohibit a
rotation of the injection system with respect to the
sleeve are formed by a tongue for ~he orientation of
the floating ring and by a slot formed in ihe rim of
the sleeve, the orientation tongue being introduced
into the slot.
7. The arrangement as claimed in one of claiir.s 1 to
6, wherein said arrangement comprises an orientation
finger which passes through the chamber endwall and
which engages at one end into a slot for the
orientation of the deflector and at another er.d into a
slot for the orientation of the sleeve, this
orientation finger imposing a defined angular
orientation of the deflector and of the sleeve with
respect to the chamber endwall and, therefore, a
defined angular orientation of the sleeve and of the
deflector v/ith respect to one another.
8. The arrangement as claimed in claim 2 or ir, one of
claims 3 -o 7 when it depends on claim 2, wherein the
floating ring is provided with a multitude of ventilation holes passing through it.
9. The arrangement as clained in claim 8, wherein the
ventilation holes in the floating ring are arranged in
such a way that they are opposite the deflector in a
region where there is a clearance between the injection
system and the deflector that is below a limit value
and are disengaged from the deflector in a region where
the clearance between the injection system and the
deflector is above this limit value.
10. A jet engine which comprises an arrangement as
claimed in one of claims 1 to 9.
11. A sleeve forming part of an arrangement as claimed
in one of claims 1 to 9.
'J2.. An injection system forming part of an arrangement as claimed in one of clains 1 to 9.
13. A deflector forming part of an arrangement as claiir.ed in one of claims 1 to 9.

Documents

Application Documents

# Name Date
1 386-del-2007-abstract.pdf 2011-08-21
1 abstract.jpg 2011-08-21
2 386-del-2007-claims.pdf 2011-08-21
2 386-del-2007-gpa.pdf 2011-08-21
3 386-del-2007-form-5.pdf 2011-08-21
3 386-DEL-2007-Correspondence-Others.pdf 2011-08-21
4 386-DEL-2007-Form-3.pdf 2011-08-21
4 386-del-2007-description (complete).pdf 2011-08-21
5 386-del-2007-drawings.pdf 2011-08-21
5 386-del-2007-form-2.pdf 2011-08-21
6 386-del-2007-form-1.pdf 2011-08-21
7 386-del-2007-drawings.pdf 2011-08-21
7 386-del-2007-form-2.pdf 2011-08-21
8 386-del-2007-description (complete).pdf 2011-08-21
8 386-DEL-2007-Form-3.pdf 2011-08-21
9 386-DEL-2007-Correspondence-Others.pdf 2011-08-21
9 386-del-2007-form-5.pdf 2011-08-21
10 386-del-2007-gpa.pdf 2011-08-21
10 386-del-2007-claims.pdf 2011-08-21
11 abstract.jpg 2011-08-21
11 386-del-2007-abstract.pdf 2011-08-21