Sign In to Follow Application
View All Documents & Correspondence

Baffle For Use With A Treatment Machine

Abstract: A baffle for use with a treatment machine wherein the treatment machine is configured to treat substrates in the presence of solid particles and wherein the treatment machine comprises a drum and a door for loading a substrate into the drum. The baffle comprises a tub connector portion connecting the baffle to a tub of the treatment machine. The baffle also comprises a door contacting portion for contacting the door of the treatment machine when in use and the door is in a closed configuration. The baffle also comprises a barrier extending between the tub connector portion and the door contacting portion; and wherein the barrier is inclined so that when in use, solid particles deposited on the barrier are diverted into the drum of the treatment machine. There is also provided a treatment machine comprising the baffle and a method of treating a substrate in said treatment machine.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
16 February 2022
Publication Number
14/2022
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
Parent Application

Applicants

XEROS LIMITED
Unit 2 Evolution Advanced Manufacturing Park Whittle Way Catcliffe Rotherham, South Yorkshire S60 5BL

Inventors

1. JONES, Gareth Evan Lyn
The PI Partnership Bath Brewery Toll Bridge Road Bath BA1 7DE
2. ROBERTS, Liam
c/o Xeros Limited Unit 2 Evolution Advanced Manufacturing Park Whittle Way Catcliffe Rotherham, South Yorkshire S60 5BL
3. MATTLEY, Joseph
c/o Xeros Limited Unit 2 Evolution Advanced Manufacturing Park Whittle Way Catcliffe Rotherham, South Yorkshire S60 5BL
4. COBB, Thomas, Andrew
c/o Xeros Limited Unit 2 Evolution Advanced Manufacturing Park Whittle Way Catcliffe Rotherham, South Yorkshire S60 5BL

Specification

Baffle for use with a Treatment Machine

The present disclosure relates to a baffle and to a treatment machine comprising the baffle. The present disclosure also relates to the use of a treatment machine, and to a method of treating a substrate with such.

Background

Conventional methods for treating and cleaning of textiles and fabrics typically involve aqueous cleaning using large volumes of water. These methods generally involve aqueous submersion of fabrics followed by aqueous soil suspension, soil removal and water rinsing. The use of solid particles to provide improvements in, and advantages over, these conventional methods is known in the art. For example, PCT patent publication W02007/128962 discloses a method for cleaning a soiled substrate using a multiplicity of solid particles. Other PCT patent publications which have related disclosures of cleaning methods include: WO2012/056252; WO2014/006424; WO2015/004444; WO2014/147390;

WO2014/147391 ; WO2014/006425; WO2012/035343; WO2012/167545; WO201 1/098815; WO201 1 /064581 ; WO2010/094959; and WO2014/147389. These disclosures teach apparatus and methods for treating or cleaning a substrate which offer several advantages over conventional methods including improved treating/cleaning performance, reduced water consumption, reduced consumption of detergent and other treatment agents, and better low temperature treating/cleaning (and thus more energy efficient treating/cleaning).

Conventional treatment machines, such as washing machines may typically comprise a baffle that extends from the tub to the casing at the door opening. This baffle typically comprises rubber and prevents water in the drum from exiting the tub or door during a treatment cycle. The baffle is typically shaped with a bellows or U-shaped bend to accommodate motion of the tub relative to the casing so that transmission of vibrations to the casing is reduced and that a seal is retained during motion.

The washing machine, the solid particles and the wash cycles have all been significantly developed over the years by the present applicant such that at the end of the wash cycle the solid particles have been successfully removed from the wash region of the drum and from the fabrics.

That said, the present inventors have discovered that when solid particles are employed with treatment machines that comprise a baffle there is an undesirable problem originating from a tendency for the solid particles to be retained in, on or around the baffle surfaces. This was found to lead to incomplete recovery of the solid particles by the treatment machine.

Additionally, the inventors observed that the solid particles retained in the baffle would often be dislodged when opening and closing the door. Such dislodged solid particles would enter the drum and fall onto the washed fabrics. Thus, the user of the washing machine noted the undesirable presence of solid particles.

It is an object of the present invention provide improvements generally and/or to address, at least in part, the abovementioned problem.

Summary of the invention

According to a first aspect, there is provided a baffle for use with a treatment machine wherein the treatment machine is configured to wash substrates in the presence of solid particles and wherein the treatment machine comprises a drum and a door for loading a substrate into the drum. The baffle comprises a tub connector portion connecting the baffle to a tub of the treatment machine. The baffle also comprises a door contacting portion for contacting the door of the treatment machine when in use and the door is in a closed configuration. The baffle also comprises a barrier extending between the tub connector portion and the door contacting portion; and wherein the barrier is inclined so that when in use, solid particles deposited on the barrier are diverted into the drum of the treatment machine.

According to a second aspect there is provided a treatment machine comprising the baffle of the first aspect.

According to a third aspect, there is provided a treatment machine comprising: a casing; a tub moveably mounted within the casing; a drum rotatably mounted within the tub; and a door for loading a substrate into the drum, wherein the door is mounted to the casing and operable between open and closed configurations. The treatment machine is configured to dispense solid particles into the drum and to extract solid particles from the drum. The treatment machine further comprises a baffle, the baffle comprising: a tub connector portion connecting the baffle to the tub of the treatment machine; a door contacting portion for contacting the door of the treatment machine when the door is in a closed configuration; and a barrier extending between the tub connector portion and the door contacting portion and inclined so solid particles deposited on the barrier are diverted into the drum of the treatment machine.

Aspects of the present disclosure provide a baffle or a treatment machine such that solid particles added to the drum of a treatment machine are prevented by the baffle from accumulating on the baffle or adjacent to the door and are instead moved into the drum.

Aspects of the present disclosure may comprise any of the following optional features.

When in use, the barrier of the baffle may bias the door contacting portion against the door of the treatment machine when the door of the treatment machine is in the closed configuration. The biasing of the door contacting portion against the door by the barrier may further reduce the likelihood of solid particles moving between the door contacting portion and the door.

The barrier may be shaped so that at least 75 %, or at least 80 %, or at least 90 % of the barrier, measured from the tub connector portion to the door contacting portion is linear or monotonically curved. A non-linear or non-monotonic portion may be positioned proximal to the tub connector portion. The barrier may comprise a single arc curved approximately towards the rotational axis of the drum; the curved arc may extend into a non-monotonic portion.

The barrier may be shaped so that the barrier extends in a linear or monotonically curved manner between the tub connector portion and the door contacting portion. Such shapes are free from protuberances or troughs that may retain solid particles.

The tub connector portion may comprise attachment means for attachment to the tub. The attachment means may comprise a feature to cooperate with a corresponding feature on the tub. The attachment means may comprise a feature to attach to a corresponding feature on the tub, for example, one or more protrusions, lips or rims to cooperate with a corresponding lip, flange or other structure on the tub, or a bead and eyelet. The attachment means may comprise any of hooks, loops, pins, screws, clips and other known mechanical retention devices. Alternatively, the attachment means may comprise an adhesive or melt bonding of the baffle to the tub. The tub connector portion may be integrally formed with the barrier or may comprise separate connection means for connecting the tub connector portion to the barrier. The separate connection means may be attached to the barrier.

The door contacting portion may comprise a portion of the baffle that contacts the door when in use. The door contacting portion may comprise a surface adapted to contact the door, which may for example, comprise an angled surface to contact a corresponding surface of the door when the door is in a closed configuration. The door contacting portion may have a higher stiffness than the barrier, and may, for example, comprise a rigid or semi rigid annulus to maintain the door contacting portion in an annular shape to cooperate with the shape of the door.

The tub connector portion may comprise an annulus positioned or positionable between the drum and tub. The annulus may reduce the gap between the tub and the drum to prevent or reduce the likelihood of solid particles passing through the gap. The annulus may reduce the gap to no greater than 10 mm, or no greater than 8 mm or no greater than 7 mm or no greater than 5 mm or no greater than 2 mm. The gap may be at least 5 mm, or at least 2 mm, or at

least 1 mm, or at least 0.5 mm. The annulus may be formed from a rigid or semi-rigid material, e.g. a metal such as aluminium or stainless steel or a polymer such as nylon or polyethylene. The annulus may comprise a smooth or low friction coating on the side facing the drum. The annulus may be secured in position by a connection to the tub connector portion. The annulus may alternatively be positioned radially inwards from the tub or drum and axially aligned with the gap and may optionally comprise a lip extending towards or into the drum.

The treatment machine may have a rotational axis aligned with the centre of rotation of the drum. The baffle may be annular in form and thus may also have an axis through the annular centre of the baffle. The axis of the baffle may be coincident with the axis of rotation of the treatment machine when the baffle is applied to the treatment machine. Alternatively, the axis of the baffle may be parallel to and close to axis of rotation of the treatment machine when the baffle is applied to the treatment machine. Close to in this context may refer to a spacing between axes no greater than 5 centimetres.

The baffle may be inclined relative to the horizontal plane so that when applied to a treatment machine, the barrier may be inclined at an average angle to the horizontal between 10 and 90 degrees, or between 15 and 60 degrees, or between 20 and 30 degrees, or any range formed from any of these endpoints. A hypothetical line extends from a point where the barrier contacts the tub connector portion at its lowermost point and the point where the barrier contacts the door contacting portion at its lowermost point. The average angle is that between the hypothetical line and the horizontal.

The barrier of the baffle may have a length measured parallel to the axial direction from the tub connector portion to the door contacting portion. When the door is in an open configuration (i.e. the door contacting portion does not contact the door and the baffle is unloaded in the axial direction) the length may be between 10 and 65 mm, or between 15 and 50 mm, or between 20 and 40 mm, or between any range formed from any of these endpoints. When the door is in a closed configuration, the length of the baffle may decrease by 5 to 20 mm, or by 7 to 15mm, or a range formed from any combination of these end points.

The door contacting portion of the baffle, when applied to a treatment machine, may impart a force in the axial direction against the door of the treatment machine when the door is in a closed configuration. The force may be between 2 and 20N, or between 3 and15N, or between 4 and 10N, or between 5 and 8N, or any range of any combination of the aforesaid endpoints.

The door of the treatment machine may comprise a dome or truncated cone extending into the drum when the door is in a closed configuration. The door contacting portion of the baffle may contact the dome or cone when the door is in a closed configuration.

Use with a dome or cone may assist in self-centring the door contacting portion of the baffle around the door. This may further improve the distribution of axial force of the door contacting portion against the dome or cone.

The door of the treatment machine may comprise an inwardly projecting element. The inwardly projecting element may be transparent and may be formed from a glass or a transparent polymer. The inwardly projecting element may be a dome or cone as referred to above. The inwardly projecting element, dome or cone may additionally comprise a deviation formed on the drum facing side of the inwardly projecting element. The deviation may be in the form of rib, ridge, thickened portion, fold, bend or shoulder on the drum facing side of the inwardly projecting element. The deviation may be formed integral with the inwardly projecting element or may be affixed thereto. The deviation may extend annularly around the drum facing side of the inwardly projecting element. The deviation may be shaped to match the door contacting portion of the baffle. The deviation may present a feature or surface against which the door contacting portion of the baffle may contact when the door is in a closed configuration. In particular the deviation may present an inclined surface, at a different angle to adjacent regions of the inwardly projecting element. The inclined surface may be closer to vertical than adjacent regions of the inwardly projecting element or may be aligned vertically. The deviation may present a surface the door contacting portion can impart a force against when the door is in a closed configuration. The deviation may further reduce any oscillatory motion, in particular in the horizontal/lateral direction of the door contacting portion against the inwardly projecting element, when the treatment machine is in use.

The door contacting portion of the baffle may comprise an annulus. Preferably, the door contacting annulus is rigid or semi-rigid. The door contacting annulus may be formed from a rigid or semi-rigid material, e.g. a metal such as aluminium or stainless steel or a polymer such as nylon or polyethylene. The door contacting annulus may have a length in the axial direction of between 0.5 and 20 mm, or between 0.75 and 8 mm, or between 1 and 5 mm, or range of any of the aforesaid endpoints. A door contacting annulus, particularly where the door contacting annulus is rigid, may provide further improved distribution of force against the door and thus may provide further improved retention of solid particles in the drum.

The barrier may comprise a resilient material, such that the resilience of the barrier provides a biasing force on the door. For example, the barrier may comprise, amongst others, polymers (including polyethylene, aramid etc), rubbers (including EPDM rubber, neoprene and silicone rubber). The material may be formed as a mesh or sheet. The sheet may comprise slits or pores. The material may have a thickness between 0.2 mm to 6 mm or between 0.5 mm to 4 mm, or between 1 mm and 2 mm, or between any range comprising any of the preceding endpoints. The barrier of the baffle may comprise an extensible material such as neoprene, a porous polymer sheet, a polymer or metallic mesh, latex rubber or other highly elastic materials or spring elements.

The baffle may be formed from a single resilient material. The barrier may comprise, amongst others, polymers (including polyethylene, aramid etc), rubbers (including EPDM rubber, neoprene and silicone rubber). The thickness of the baffle material may vary in different regions of the baffle. Regions of lower thickness may provide increased baffle flexibility to reduce transmission of vibrations. The regions of comparatively greater thickness may provide greater resistance to wear and deformation. The baffle may comprise reduced thickness at the barrier, and/or adjacent to the door contacting portion. The baffle may comprise reduced thickness at any angle, fold, or bend in the baffle, in particular at any angle, fold or bend in the baffle between the tub connector portion and the door contacting portion. A lower thickness region may be considered to be a region of the baffle where the thickness is lower than other regions of the baffle. In some embodiments the door contacting portion may present a reduced opening through which a user unloads and loads the treatment substrate. A baffle that comprises lower thickness in the barrier or either side of the door contacting portion may enable the door contacting portion to readily deflect when contacted by the user. A lower thickness region may comprise a material thickness of 0.8 to 1 .8 mm and greater thickness regions may have a thickness of from 2.0 mm to 5mm. These values are particularly applicable where the baffle is formed from a rubber, (e.g. EPDM rubber).

In some embodiments, the baffle may comprise stiffening ribs. The stiffening ribs may be positioned at regions of lower thickness. The stiffening ribs may be positioned at any angle, fold, or bend in the baffle. The stiffening ribs may be circumferentially spaced around baffle. In particular, the stiffening ribs may be positioned at an angle of intersection between a length of baffle extending from the door contacting portion and from the tub contacting portion. Stiffening ribs may provide increased localised stiffness to help the baffle to maintain its shape whilst still being readily deformable by a user loading the machine. Stiffening ribs may comprise thickened portions of the baffle. For example, the stiffening rib may be a rib of 0.5 to 5mm width. The ribs may be formed of a stiff material, such as rubber. The stiffening ribs may extend in the radial direction.

The barrier may be porous to fluids. This may further improve drying of the baffle in between washes. The barrier may comprise a plurality of pores. The size of the pores may prevent passage of the solid particles. The size of the pores may be between 0.1 mm and 15 mm in width, or between 3 mm and 10 mm in width, or between 3 mm and 7 mm in width, or between any range formed from any of the aforesaid end points. Pore size may refer to the largest linear dimension of the pores. In the case of openings in the form of a circular hole the smallest linear dimension corresponds to the diameter of the circular hole.

The baffle may comprise a seal. The seal may be positioned radially outwards of the barrier. The seal may extend from the tub to the casing. The seal may comprise rubber. The seal may further prevent water passing around or through the baffle from exiting the drum and the tub.

The baffle may comprise a casing connection, the casing connection may be connectable to the casing of the treatment machine. The casing connection may be joined to the door contacting portion of the baffle by an extension of the seal or barrier extending therebetween. This may provide further stability for the door contacting portion.

Alternatively, the door contacting portion may be comprised as part of the barrier and the baffle may comprise a casing connection to connect the baffle to the casing. The door contacting portion may be positioned between the tub connector portion and the casing connection. The barrier may be arranged as a zigzag, sinusoid or U-shape when viewed in cross section through the radial direction. The door contacting portion may be positioned close to or on a door facing part of an apex or highest point of the zigzag, sinusoid or U-shape. The highest point may be relative to the vertical direction at bottom dead centre of the drum. In these embodiments, the barrier may comprise a non-porous material, and optionally may comprise rubber (examples include EPDM rubber).

In embodiments, the barrier of the baffle may be formed from two or more intersecting frustoconical sections of material. At the point of intersection an angle may be formed between the two intersecting sections. The angle may be defined as the smallest measurable angle between the two intersecting sections, measured at bottom dead centre. When viewed as a radial cross section through the baffle, the frustoconical sections may appear as two approximately linear sections, the intersection forming an angle therebetween. The barrier of the baffle may comprise two sections with a single angle of intersection, or three sections with two angles of intersection or four sections with three angles of intersection etc. The angles may be between 135 and 15 degrees, or 105 and 30 degrees, or 90 and 45 degrees, or 75 and 60 degrees, or any range of any combination of these end points. A barrier formed from two or more intersecting sections as described above may flex to permit lengthening between the door contacting portion and the tub connection. The barrier may flex around the angle or angles of intersection. One or more of the intersecting sections of the barrier may be angled relative to the shortest line extending from the door contacting portion to the tub connection at bottom dead centre, so that the one or more sections may flex as the tub moves relative to the door. The same construction as described above may also be used for the baffle between the door contacting portion and a casing connection.

In embodiments, the baffle may extend from door the contacting portion to the casing connection. The extension from the door contacting portion to the casing connection, at bottom dead centre may comprise a region of a minima i.e. a lowest point or trough shape between the door contacting portion and the casing connection. This shape may help attenuate the transmission of vibrations. The baffle may comprise a drain to drain liquid accumulating on the baffle. The drain may be located at the minima. The drain may drain liquid into the tub, or to the water outlet of the treatment machine, or to any other liquid carry apparatus in the treatment machine. The drain may comprise a conduit that connects from the baffle to any of the aforesaid apparatus of the treatment machine. The conduit may comprise piping or tubing amongst others. The conduit may empty into, amongst others, the tub, sump, drain hose or the filter of a treatment machine. The baffle may drain under the influence of gravity. The conduit may extend downwardly from the baffle to the bottom of the machine, or may be inclined towards the tub. A screen may be positioned in the baffle above the drain to prevent solid particles and/or debris (e.g. lint, dirt etc.) from blocking the drain. The screen may comprise a mesh or apertured member. The screen may be located at the minima adjacent to the conduit.

The treatment machine may be configured to dispense solid particles into the drum and to extract solid particles from the drum. The treatment machine may comprise a storage chamber for storing solid particles within the casing of the treatment machine. The treatment machine may comprise a dispensing pathway for dispensing solid particles into the drum from within the casing of the treatment machine, or preferably from within a storage chamber within the casing. The treatment machine may comprise solid particle collection apparatus for removing solid particles from the drum into a different location within the casing of the treatment machine, preferably into a storage chamber.

The treatment machine may be configured to dispense solid particles into the drum through a port in the rear wall of the drum, the port may optionally be aligned with the centre of rotation of the drum. The treatment machine may be configured to extract solid particles through lifters located within the drum.

The baffle of the present disclosure is especially suited for use in treatment machines, especially washing machines having a load capacity of less than 100Kg, especially less than 50Kg and particularly less than 25Kg. The load capacity is typically at least 0.1 or at least 1 Kg. The load capacity may be the weight of the total dry substrate or substrates which can be placed into a single treatment cycle.

The baffle of the present disclosure is especially suited for use in treatment machines in which the drum and tub are movably mounted relative to a casing and door which is static.

In a fourth aspect there is a use of a treatment machine of the preceding aspect for treating a substrate in the presence of solid particles.

The substrate may comprise a textile. The solid particles may comprise a polymer and optionally may have an average particle size between 1 mm and 20 mm.

In a fifth aspect there is method of treating a substrate in a treatment machine of the third aspect, the method comprising: loading the drum of the treatment machine with the substrate, solid particles and a liquid medium; rotating the drum to agitate the substrate, solid particles and liquid medium.

The method may further comprise: draining the liquid medium from the drum; and rinsing the solid particles and substrate, and optionally repeatedly rinsing the solid particles one or more times. Loading the drum may further comprise adding a treatment formulation, such as a detergent, to the drum. The solid particles may then be reused in one or more further repetitions of the method. Dispensing the solid particles into the drum may comprise dispensing via solid particle dispensing apparatus. The method may comprise collecting the solid particles from the drum via solid particle collection apparatus. The method may comprise dispensing from a storage means into the drum and/or collecting the solid particles from the drum to a storage means.

The substrate may comprise a textile or animal skin amongst others. A particularly preferred substrate is a textile. The treatment may comprise any of washing or cleaning the substrate; dyeing the substrate, tanning the substrate; abrading the substrate; stonewashing the substrate; de-sizing the substrate. The treatment machine of the second to fifth aspects may comprise any one of textile dyeing apparatus, tanning apparatus, stonewashing apparatus; textile abrading apparatus and washing machines. A particularly preferred treatment machine is a washing machine.

In operation with the treatment machine the solid particles may not appreciably become associated or affixed to the substrate. Thus, for example the solid particles do not coat, impregnate or bind to the substrate.

T reatment machines typically comprise a casing, a drum and a tub. The casing forms the outer structure of the treatment machine and provides rigid mounting points for components of the treatment machine. The drum and tub are contained within the casing of the treatment machine. Treatment machines also typically comprise a door for loading a substrate into the drum, which is closable to prevent the contents of the drum and tub from exiting the treatment machine during operation. The door is openable to allow substrates to be treated to be added or removed from the drum. Typically, the drum is perforated and cylindrical to contain the load items to be treated, treatment formulation and liquid medium, such as water. The drum rotates around a rotational axis to agitate/spin the substrate items to be treated. The inner circumference of the drum may comprise a plurality of lifters or vanes which extend in the axial direction and radially inwards towards the centre of the drum. The purpose of the lifters is to lift the substrate items during a treatment cycle to improve the tumbling action. The drum is typically mounted within the tub and driven via a motor for rotating the drum. The tub is typically suspended or mounted within the casing of the treatment machine. The tub may be suspended or mounted by means including, amongst others, springs and damping units. During operation of the treatment machine rotation of the drum may cause vibrations which may also cause the tub to vibrate. The suspension of the tub within the casing provides some mechanical isolation from the casing so that transfer of vibrations to the casing is prevented or reduced. This prevents or reduces motion of the treatment machine during use.

The baffle comprises a tub connector portion for connecting the baffle to the tub. The baffle also comprises a door contacting portion which is a portion of the baffle that contacts the door of the treatment machine when the door is closed. The baffle comprises a barrier that extends between the tub connector portion and the door contacting portion. The baffle, when applied to a treatment machine and the door is in a closed configuration forms a surface shaped and inclined such that any solid particle deposited on the baffle during a treatment cycle will slide or roll down the barrier and re-enter the drum.

The tub connector portion may comprise an annular structure attached to the tub and optionally positioned or positionable between the drum and the tub, or optionally comprising a portion positioned or positionable between the drum and the tub. The annular structure may reduce the gap between the tub and the drum to prevent solid particles from passing through the gap. The tub connector portion may comprise a connection means for connecting the baffle to the tub. For example, the connection means may comprise a pair of protrusions configured to contact either side of the tub, on the internal and external surfaces of the tub. The protrusion contacting the outer surface of the tub may also comprise an abutment that cooperates with a flange of the tub. The pair of protrusions and abutment may form a removable mechanical connection to the tub. The pair of protrusions may resist axial motion of the tub connector portion and the abutment and flange may resist radially inward motion. In other embodiments, the baffle may comprise alternative connection means such as alternative configurations comprising one or more protrusions, rims or other structures to optionally cooperate with a corresponding structure of the tub. The attachment means may comprise any of hooks, loops, pins, screws, clips and other mechanical retention devices. The tub connector portion may be integrally formed with the barrier or may comprise connection means for connecting the tub connector portion to the barrier.

The door contacting portion may comprise a portion of the baffle that contacts the door when in use. The door contacting portion may comprise a surface adapted to contact the door. The surface may be contoured to match a corresponding inner surface of the door, in particular,

the surface may be frustoconical or frustoconical with curved vertices to cooperate with a correspondingly shaped dome (or cone) on the inner surface of a treatment machine door. The door contacting portion may have a higher stiffness than the barrier, and may, for example, comprise a rigid or semi rigid annulus to maintain the door contacting portion in an annular shape to cooperate with the shape of the door. For example, the door contacting portion may comprise a generally annular structure which may, for example, comprise nylon or polyethylene, amongst others. The door contacting portion may be integrally formed with the barrier or may comprise connection means for connecting the door contacting portion to the barrier.

The barrier extends between the tub connector portion and the door contacting portion and prevents passage of the solid particles through the barrier. The barrier is inclined so that the likelihood of solid particles accumulating on the barrier is reduced, and solid particles are directed into the drum. The barrier may be shaped such that the radially inner surface of the barrier, when viewed in cross section, comprises a line or curve inclined towards the drum. The baffle may be shaped to comprise one or more of flutings, steps, troughs or bumps on the surface, provided none of these shapes comprise regions where solid particles may accumulate, and the radially inner surface of the barrier maintains a generally linear or curved shape overall.

The barrier is inclined towards the drum so that solid particles are diverted into the drum. The barrier may be inclined at an average angle between 10 to 90 degrees. A hypothetical line extends from a point where the barrier contacts the tub connector portion at its lowermost point and the point where the barrier contacts the door contacting portion at its lowermost point. The average angle is that between the hypothetical line and the horizontal.

The barrier may bias the door contacting portion against the door of the treatment machine when the door of the treatment machine is in the closed configuration. The barrier may comprise a resilient material, such that the resilience of the barrier provides a biasing force on the door. For example, the resilient material may comprise, amongst others, polymers (including polyethylene, aramid etc), rubbers (including EPDM rubber, neoprene and silicone rubber). The material may be formed as a mesh or sheet. The sheet may comprise slits or pores. The material may have a thickness between 0.2 mm to 6 mm or between 0.5 mm to 4 mm, or between 1 mm and 2 mm, or between any range comprising any of the preceding endpoints. The barrier may bias the door contacting portion with a force in the axial direction when the door is in a closed configuration, wherein the force is between 2 and 20N, or between 3 and 15N, or between 4 and 10N, or between 5 and 8N, or any range of any combination of the aforesaid endpoints.

The barrier may comprise one or more ribs or stiffening members affixed to the internal or external surface of the barrier. The ribs or stiffening members may take the form of parallel hoops, tapered springs, lattices or spaced bars, amongst others. The ribs or stiffening members may be attached to the barrier by an adhesive or by melt bonding. They may function to increase the stiffness of the barrier and may prevent the barrier from forming folds or creases when the door is in a closed configuration.

The barrier may be pre-stressed along the circumferential direction. For example, prior to application of the barrier to the tub connector portion and/or the door contacting portion, the barrier in an unstressed position may have a circumferential length less than the circumference of the tub connector portion and/or the door contacting portion. Thus, the barrier is strained when applied to the tub connector portion and/or the door contacting portion. The barrier may be strained by between 0.5 to 2 %. The application of pre-stress to the barrier may further reduce sag or the formation of creases in the barrier when the door is in a closed configuration.

When the treatment machine door is in an open configuration, the baffle will be in an unloaded state. In this state, the door contacting portion may extend in the axial direction beyond the point where the door contacting portion is positioned when the door is in a closed configuration. When the door is in a closed configuration, the baffle may be in a loaded configuration with the door contacting portion of the baffle displaced axially rearwards. In this configuration, the barrier may contract, be compressed or may deviate slightly. The contraction or deviation of the barrier may help accommodate motion of the tub such that transfer of vibrations to the door contacting portion by the barrier are minimised.

The barrier has a length measured in the axial direction from the tub connector portion to the door contacting portion, when the door is in an open configuration the length may, for example be between 10 and 65 mm.

The baffle may further comprise a seal. The seal may be in a position located radially outwards of the barrier. The seal may be annularly arranged around the rotational axis of the drum. The seal may comprise a connection to the tub. The connection may comprise a protuberance that extends over an internal surface of the tub, from an external surface of the tub. The connection may comprise an abutment portion located under a flange of the tub. However, the connection may take a range of forms, and may for example be integral with the tub connector portion of the baffle. The connection to the tub may be mechanical and may comprise hooks, clips and other mechanical retention devices which may be integrally formed with the seal. The connection to the tub may also be via an adhesive, screw or other fixing means. The

connection to the tub may also be a shared connection with the tub connector portion of the baffle and may optionally be integrally formed therewith.

The other end of the seal may be connected to the casing, in particular, the seal may comprise connection means to connect to the casing immediately adjacent to the door opening. The seal may extend around the exterior of door opening such that when the door is in a closed configuration, a portion of the seal is pressed by an inner wall of the door against an outer surface of the casing to provide a seal therebetween. Alternatively, the seal may extend around the interior of the door opening such that when the door is in a closed configuration, a portion of the seal contacts the door to form a seal therebetween. A portion of the seal may extend radially inwards from the casing and an outer surface of the portion of the seal may contact the door when the door is in a closed configuration. In a further alternative, an outer portion of the seal may contact the door when the door is in a closed configuration and the seal may not be connected to the casing. The seal may connect to the door contacting portion of the baffle. In embodiments where the seal comprises connection means to connect to the casing, the door contacting portion of the baffle may be connected to the casing connection means of the seal. Connection of the seal to the door contacting portion of the baffle may further improve the location of the door contacting portion against the door.

When viewed in cross section taken through the radial direction, the seal may comprise one or more of a loop, deviation or U-shaped portion. The loop, deviation or U-shaped portion is to reduce transmission of vibration from the tub to the door or casing. When using a baffle comprising a seal, solid particles are prevented from accessing the loop, deviation or U-shaped portion, or the horizontal upper surface. Thus, solid particles have a reduced tendency to accumulate on the horizontal surface of or in the loops of the seal. The seal may be made of any flexible material which is impervious to water, non-limiting examples include rubber, silicone and LMWPE amongst others.

In embodiments comprising a seal which is impervious to water, the barrier of the baffle may optionally comprise a porous material as the seal will prevent water passing through the porous material from exiting the treatment machine. The porous material may comprise a mesh, a woven fabric, a slitted material or a material comprising a plurality of spaced pores. Non limiting examples include nylon mesh and neoprene optionally foamed, slitted or with pores.

A seal may be comprised in any of the baffles disclosed herein. The seal may be integrally formed with a baffle disclosed herein.

The baffle may comprise a barrier that extends as a gentle curve or line between the tub connector portion and the door contacting portion. Solid particles contacting the barrier will be diverted down the barrier and back into the drum. The baffle may further comprise a casing connection, the barrier may extend from the door contacting portion to the casing connection radially outwards, then extend in the axial direction, to form a zig-zag/saw tooth shape when viewed in cross section. The region may be formed as a loop, bend or bellows. The barrier and the continuation of the barrier extending in the axial direction may be integrally formed and may comprise a non-porous material. The barrier may prevent water in the drum from passing between the tub and the casing and/or between the casing and the door. When viewed in cross section, the barrier may form a sinusoidal shape between the tub connector portion and the casing connection; a zig-zag shape between the tub connector portion and the casing connection; or the barrier may form at the bottom part of the drum, an inverted U-shape between the tub connector portion and the casing connection (forming a U-shape at the top of the drum); or any other bellows shape. The door contacting portion may be a part of the barrier that is disposed for contact against the door when the door is in a closed configuration. The door contacting portion may alternatively comprise one or more additional structures to improve contact and/or positioning between the baffle and the door. Additional structures may include flaps, thickened regions or surfaces shaped to conform to the inner surface of the door. In embodiments where the barrier is formed as an inverted U shape, the door contacting portion may be located at or close to the highest point of the inverted U shape, preferably on a door facing aspect close to the highest point. In embodiments where the barrier forms a sinusoidal shape, the door contacting portion may also be at or close to the highest point, preferably on a door facing aspect close to the maxima, such that the barrier is predominantly a monotonically rising curve or line between the tub connector portion and the door contacting portion. The sinusoidal,“zig-zag” or inverted U-shape may improve accommodation of motion of the tub relative to the casing and/or the door, this may additionally or separately be without transferring vibrations to the door or casing. Thus, in these embodiments, the barrier may be formed from a less extensible material and as such may be made from flexible and non-porous material, for example, rubber or silicone.

The baffle may comprise a second door contacting portion which may depend from or be attached to the casing connection. The second door contacting portion may form a seal between the door and an external surface of the casing when the door is in a closed configuration, and/or the second door contacting portion may abut against an inner surface of the door when the door is in a closed configuration.

The tub connector portion may comprise an annular structure aligned with the gap between the tub and the drum in the axial direction but radially inwards of the gap. The annular structure may be positioned as a continuance of the incline formed by the barrier, that way solid particles on the barrier move over the gap towards the tub. The annular structure may comprise a lip projecting towards the tub, and the lip may optionally extend into the tub.

The barrier may additionally comprise resilient elements aligned with and extending along the length of the barrier. The resilient elements may be spaced around the circumference of the baffle. The resilient elements may be positioned radially outwards of the barrier or radially inwards. The resilient elements may impart a force on the door contacting portion biasing it against the door when the door is in a closed configuration. The use of resilient elements in the barrier permits the use of non-resilient material or minimally resilient materials for the barrier material, examples include latex rubber, thin polymeric films and fabrics amongst others. The resilient elements function to maintain the tautness of the barrier so that an angle or curve is maintained from the tub connector portion to the door contacting portion, such that solid particles deposited on the barrier will be diverted into the drum. The resilient elements also maintain contact between the door contacting portion and the door to prevent passage of solid particles therebetween. As the tub vibrates, flexion and/or compression/expansion of the resilient elements accommodates tub vibration whilst maintaining barrier tautness and contact of the door contacting portion. The non-resilient barrier may be highly flexible and prevent passage of solid particles without impeding motion of the resilient elements. The resilient elements may be formed from, amongst others, metals and alloys thereof, or polymers. The resilient elements may comprise, amongst others, leaf springs, coil springs, Belleville springs. The resilient elements may be bonded to the barrier at spaced intervals along the length of the barrier, or they may be connected at the respective ends, or at the door contacting portion and at the tub connector portion.

Alternatively, or in addition, the barrier may comprise bellows which deviate radially outwards from the barrier surface. To prevent solid particles accumulating in the bellows the barrier comprises an extensible cover which maintains the incline or angle of the barrier. The bellows may function to isolate the door contacting portion from tub vibrations. The extensible cover may comprise an extensible material (such as latex rubber, extensible polymeric films and fabrics amongst others), so that flexing of the bellows is accommodated by the extensible cover without the cover transferring vibrations to the door contacting portion. The extensible cover may be joined to the barrier by melt-bonding, adhesives, or mechanical fasteners. Alternatively, or additionally, the extensible cover may comprise features to cooperate with corresponding features on the barrier, in a non-limiting example, this may comprise a beading that is retained by eyelets in the barrier.

Claims

1 . A baffle for use with a treatment machine configured to treat substrates in the presence of solid particles, wherein the treatment machine comprises a drum and a door for loading a substrate into the drum; the baffle comprising:

a tub connector portion for connecting the baffle to a tub of the treatment machine;

a door contacting portion for contacting the door of the treatment machine when in use and the door is in a closed configuration;

a barrier extending between the tub connector portion and the door contacting portion; and wherein the barrier is inclined so that when in use, solid particles are diverted by the barrier into the drum of the treatment machine.

2. A baffle according to claim 1 , wherein the barrier biases the door contacting portion against the door of the treatment machine when in use and the door of the treatment machine is in a closed configuration.

3. A baffle according to claim 1 or claim 2, wherein the barrier extends in a linear or monotonically curved manner between the tub connector portion and the door contacting portion.

4. A baffle according to any preceding claim, wherein the treatment machine is a washing machine.

5. A baffle according to any preceding claim, wherein the tub connector portion comprises an annulus positionable between the drum and tub.

6. A baffle according to any preceding claim, wherein when applied to a treatment machine, the barrier is inclined at an average angle between 10 and 90 degrees, wherein the average angle is measured between the horizontal and a hypothetical line extending from where the barrier contacts the tub connector portion at its lowermost point and where the barrier contacts the door contacting portion at its lowermost point.

7. A baffle according to any preceding claim, wherein the barrier has a length in the axial direction from the tub connector portion to the door contacting portion, when applied to a treatment machine and the door is in an open configuration, and wherein the length is between 10 and 65 mm, or between 15 mm and 50 mm, or between 20 mm and 40 mm.

8. A baffle according to any preceding claim, wherein the door contacting portion imparts a force in the axial direction against the door when in use and the door is in a closed configuration, and wherein the force in the axial direction is between 2 and 20 N.

9. A baffle according to any preceding claim, wherein the door contacting portion comprises a rigid annulus.

10. A baffle according to any preceding claim, wherein the barrier comprises neoprene, a porous polymer sheet, a mesh, latex rubber or spring elements.

1 1 . A baffle according to any preceding claim, wherein the barrier is porous and the pore size is smaller than the size of the solid particles.

12. A baffle according to claim 1 1 , wherein the pore size is between 0.1 and 15 mm.

13. A baffle according to any of claims 1 to 9, wherein the door contacting portion is comprised as part of the barrier and the baffle comprises a casing connection joined to the door contacting portion by the barrier, and when applied to a treatment machine, the casing connection is connected to the casing.

14. A baffle according to claim 13, wherein the barrier is arranged as a zigzag, sinusoid or U-shape when viewed in a cross section through the radial direction.

15. A baffle according to claim 13 or claim 14, wherein the barrier comprises a non-porous material.

16. A baffle according to any of claims 13 to 15, wherein the barrier comprises an elastomer.

17. A baffle according to any preceding claim, wherein the baffle further comprises a seal positioned radially outwards of the barrier.

18. A baffle according to claim 17 wherein the seal comprises rubber.

19. A treatment machine comprising the baffle of any preceding claim, the treatment machine further comprising:

a casing;

a tub moveably mounted within the casing;

a drum rotatably mounted within the tub;

a door for loading a substrate into the drum, wherein the door is mounted to the casing and operable between open and closed configurations.

20. A treatment machine according to claim 19, wherein the treatment machine is configured to dispense solid particles into the drum and to extract solid particles from the drum.

21 . A treatment machine comprising:

a casing;

a tub moveably mounted within the casing;

a drum rotatably mounted within the tub;

a door for loading a substrate into the drum, wherein the door is mounted to the casing and operable between open and closed configurations;

wherein the treatment machine is configured to dispense solid particles into the drum and to extract solid particles from the drum; and wherein the treatment machine further comprises a baffle;

the baffle comprising:

a tub connector portion connecting the baffle to the tub of the treatment machine; a door contacting portion for contacting the door of the treatment machine when the door is in a closed configuration;

a barrier extending between the tub connector portion and the door contacting portion; and wherein the barrier is inclined so solid particles are diverted by the barrier into the drum of the treatment machine.

22. A treatment machine according to claim 21 , wherein the barrier biases the door contacting portion against the door of the treatment machine when the door of the treatment machine is in the closed configuration.

23. A treatment machine according to claim 21 or 22, wherein the barrier extends in a linear or monotonically curved manner between the tub connector portion and the door contacting portion.

24. A treatment machine according to any of claims 21 to 23, wherein the tub connector portion comprises an annulus positioned between the drum and tub.

25. A treatment machine according to any of claims 21 to 24, wherein the barrier is inclined at an average angle between 10 and 90 degrees, wherein the average angle measured between the horizontal and a hypothetical line extending from where the barrier contacts the tub connector portion at its lowermost point and where the barrier contacts the door contacting portion at its lowermost point.

26. A treatment machine according to any of claims 21 to 25, wherein the treatment machine has an axial direction aligned with the centre of rotation of the drum, and the barrier has a length measured in the axial direction from the tub connector portion to the door contacting portion, when the door is in an open configuration the length is between 10 and 65 mm, or between 15 and 50 mm, or between 20 and 40 mm.

27. A treatment machine according to any of claims 21 to 26, wherein the force in the axial direction of the door contacting portion against the door, when the door is in in a closed configuration is between 2 and 20 N.

28. A treatment machine according to any of claims 21 to 27, wherein the door comprises a dome shaped portion extending into the drum when in a closed configuration, and wherein the door contacting portion of the baffle contacts the dome shaped portion.

29. A treatment machine according to any of claims 21 to 28, wherein the door contacting portion comprises a rigid annulus.

30. A treatment machine according to any of claims 20 to 29, wherein the barrier comprises neoprene, a porous polymer sheet, a mesh, latex rubber or spring elements.

31 . A treatment machine according to any of claims 20 to 30, wherein the barrier is porous and the pore size is smaller than the size of the solid particles.

32. A treatment machine according to claim 31 wherein the pore size is between 0.1 mm and 15 mm diameter.

33. A treatment machine according to any of claims 21 to 29, wherein the door contacting potion is comprised as part of the barrier and wherein the baffle comprises a casing connection, the casing connection connected to the casing and joined to the door contacting portion by the barrier.

34. A treatment machine according to claim 33, wherein the barrier is arranged as a zigzag, sinusoid or U-shape when viewed in cross section through the radial direction.

35. A treatment machine according to claim 33 or claim 34, wherein the barrier comprises a non-porous material.

36. A treatment machine according to any of claims 33 to 35, wherein the barrier comprises an elastomer.

37. A treatment machine according to any of claims 21 to 36, wherein the baffle further comprises a seal positioned radially outwards of the barrier.

38. A treatment machine according to claim 37 wherein the seal comprises rubber.

39. A treatment machine according to any of claims 21 to 38, wherein the treatment machine comprises a washing machine, and/or wherein the substrate is a textile.

40. The use of a treatment machine according to any of claims 21 to 39 for treating a substrate in the presence of solid particles.

41 . The use according to claim 40, wherein the treatment machine is a washing machine.

42. The use according to claim 40 or claim 41 , wherein the substrate is or comprises a textile.

43. The use according to any of claim 40 to 42 wherein the solid particles have a size between 1 mm and 20 mm.

44. A method of treating a substrate in a treatment machine of any of claims 21 to 39, the method comprising:

loading the drum of the treatment machine with the substrate, solid particles and a liquid medium

rotating the drum to agitate the substrate, solid particles and liquid medium.

45. The method according to claim 44 further comprising:

draining the liquid medium from the drum; and

rinsing the solid particles and substrate.

46. The method according to claim 45 wherein the rinsed solid particles are reused in a subsequent repeat of the method.

47. The method according to any of claims 44 to 46, wherein the substrate is a textile.

48. The method according to any of claims 44 to 47 wherein loading the drum further comprises adding a detergent to the drum.

49. The method according to any of claims 44 to 48 wherein the treatment machine is a washing machine.

Documents

Application Documents

# Name Date
1 202217008178.pdf 2022-02-16
2 202217008178-TRANSLATIOIN OF PRIOIRTY DOCUMENTS ETC. [16-02-2022(online)].pdf 2022-02-16
3 202217008178-STATEMENT OF UNDERTAKING (FORM 3) [16-02-2022(online)].pdf 2022-02-16
4 202217008178-PRIORITY DOCUMENTS [16-02-2022(online)].pdf 2022-02-16
5 202217008178-NOTIFICATION OF INT. APPLN. NO. & FILING DATE (PCT-RO-105-PCT Pamphlet) [16-02-2022(online)].pdf 2022-02-16
6 202217008178-FORM 1 [16-02-2022(online)].pdf 2022-02-16
7 202217008178-FIGURE OF ABSTRACT [16-02-2022(online)].pdf 2022-02-16
8 202217008178-DRAWINGS [16-02-2022(online)].pdf 2022-02-16
9 202217008178-DECLARATION OF INVENTORSHIP (FORM 5) [16-02-2022(online)].pdf 2022-02-16
10 202217008178-COMPLETE SPECIFICATION [16-02-2022(online)].pdf 2022-02-16
11 202217008178-Proof of Right [17-02-2022(online)].pdf 2022-02-17
12 202217008178-FORM-26 [17-02-2022(online)].pdf 2022-02-17
13 202217008178-Proof of Right [19-02-2022(online)].pdf 2022-02-19
14 202217008178-FORM 3 [02-08-2022(online)].pdf 2022-08-02
15 202217008178-FORM 3 [16-02-2023(online)].pdf 2023-02-16
16 202217008178-Others-120523.pdf 2023-06-21
17 202217008178-GPA-120523.pdf 2023-06-21
18 202217008178-Correspondence-120523.pdf 2023-06-21
19 202217008178-FORM 18 [10-07-2023(online)].pdf 2023-07-10