Sign In to Follow Application
View All Documents & Correspondence

Brine Seal For A Filtration Device

Abstract: A filtration device having a tubular pressure vessel and a tubular filter assembly is provided. The tubular filter assembly is housed within the tubular pressure vessel and includes a filter element and a split ring seal circumscribing the filter element. The split ring seal has an annular body that includes a first end, a second end opposite the first end and slidably engaged with the first end, and an opening extending through the annular body.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
31 July 2012
Publication Number
12/2013
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
Parent Application

Applicants

HYDRANAUTICS
401 Jones Road Oceanside, CA 92058 UNITED STATES OF AMERICA

Inventors

1. SHELBY, Irving
11463 Heartwood Way San Diego, CA 92131 UNITED STATES OF AMERICA
2. BARTELS, Craig, R.
18910-9 Caminito Cantilena San Diego, CA 92128 UNITED STATES OF AMERICA
3. DEWINTER, Dirk
1750 So. Santa Fe Avenue Vista, CA 92084 UNITED STATES OF AMERICA

Specification

TITLE OF THE INVENTION
[0001] Brine Seal For A Filtration Device
BACKGROUND OF THE INVENTION
[0002] The present invention generally relates to water filtration apparatuses. In particular,
the present invention relates to a cross-flow water filtration apparatus that includes a brine seal
having a bypass. Filters to which the present invention is applicable include reverse osmosis,
ultrafiltration, nanofiltration and microfiltration filters.
[0003] Typical filter apparatuses 1000 (Figs. 1 and 2) of the prior art include one or more
tubular filter assemblies 1002 housed within a tubular pressure vessel 1004. Such tubular filter
assemblies have replaceable filter elements, such as a spirally wound reverse osmosis or
ultrafiltration filters. Typical tubular filter assemblies 1002 are manufactured in a variety of
sizes, such as 4, 6, 8 and 16 inch diameters. In operation, the tubular filter assemblies are
housed within the tubular pressure vessel at elevated pressures to prevent mixing of feed and
brine water with clean permeate water, as shown in Fig. 1. To maintain the effectiveness of the
tubular filter assemblies and keep the cost of the filter apparatus as low as possible, the tubular
filter assemblies are connected together in series within a single tubular pressure vessel. The
tubular filter assemblies include a brine seal 1006 at an end of each tubular filter assembly
1002.
[0004] Brine seals 1006 are needed on the tubular filter assemblies 1002 to direct feed water
into the filter element of the filter apparatus 1000 and prevent feed flow from bypassing a
tubular filter assembly. Such brine seals 1006 are attached to the ends of the tubular filter
assembly and preferably about its anti-telescoping device (ATD) on its feed-side to prevent the
bypass of feed liquid between the tubular filter assembly 1002 and the tubular pressure vessel
1004. The brine seal is typically designed to extend or expand when feed liquid flows into the
brine seal to form a water-tight seal. Such brine seals are formed from flexible rubber materials
to adjust for minor tolerance differences between the internal diameter of the tubular pressure
vessel and the outside diameter of the brine seal/tubular filter assembly.
[0005] The configuration of conventional brine seals is problematic, since tubular filter
assemblies with conventional brine seals can only be inserted and passed through a tubular
pressure vessel in a single direction. Thus, should a single tubular filter assembly need to be
replaced, the entire series of tubular filter assemblies within a single pressure vessel in front of
the direction of travel of the problematic tubular filter assembly would need to be removed for
the exchange. In addition, conventional rubber brine seals produce a significant amount of
friction when dragging/pushing the filter assembly into or out of the tubular pressure vessel.
Thus, when a tubular filter assembly is particularly heavy, such as with a 16" diameter filter
assembly, it makes the removal of the tubular filter assembly difficult.
[0006] Conventional brine seals are also generally configured as a U-cup brine seal 1006.
The U-cup brine seal 1006 has a bottom portion of the "U" pointing in the direction of feed
flow. As such, the U-cup brine seal allows easy movement in the direction of flow of the feed
liquid. That is, when the tubular filter assembly is moved in the feed flow direction, the U-cup
brine seal naturally folds on itself. However, if the tubular filter assembly 1002 is pulled in the
opposite direction, the U-cup brine seal will open up and create much more friction and
resistance to movement in the direction opposite to the feed flow direction. Because of this
issue, many plants load pressure vessels from the feed-side and remove the tubular filter
assemblies from the brine-side of the tubular pressure vessel. This, however, results in a greater
need for plant floor space to accommodate this type of action about both ends of the tubular
pressure vessel.
[0007] Further, conventional rubber brine seals must also be lubricated to allow the tubular
filter assembly to efficiently slide within the tubular pressure vessel. However, such lubricants
can detrimentally contaminate the filter assembly's filter element.
[0008] Furthermore, the areas directly behind traditional brine seals are not exposed to
turbulent flow conditions. Thus, the stagnant nature of fluid behind the brine seal allows for the
formation of biofoul growth, which is detrimental to the operation of filter apparatus.
[0009] Accordingly, there is still a need for a filter assembly that can be loaded and removed
from a pressure vessel about a single end, a filter assembly having a brine seal which reduces
the amount of physical force necessary for multiple filter assembly installation and/or
extraction, and eliminates the use of lubricants.
BRIEF SUMMARY OF THE INVENTION
[0010] In a first aspect, the present invention provides a filtration device that includes a
tubular pressure vessel and a tubular filter assembly. The tubular filter assembly is housed
within the tubular pressure vessel. The tubular filter assembly includes a filter element and a
split ring seal. The split ring seal circumscribes the filter element and includes an annular body
formed from a hard polymer. The annular body includes a first end, a second end opposite the
first end and slidably engaged with the first end, and an opening extending through the annular
body in a direction substantially parallel to a longitudinal axis of the annular body.
[0011] In a second aspect, the present invention provides an anti-telescoping device for a
spiral wound element that includes a cylindrical body and a brine seal. The cylindrical body
includes a gland circumscribing the cylindrical body. The brine seal is positioned within the
gland and extends radially outwardly from the gland. The brine seal also includes an annular
body having a lateral surface, a medial surface opposite the lateral surface, and an opening
extending through the brine seal to allow fluid communication from the lateral surface to the
medial surface.
[0012] In a third aspect, the present invention provides a filtration device that includes a
tubular pressure vessel and a tubular filter assembly. The tubular pressure vessel includes an
outer surface and an inner surface. The tubular filter assembly is housed within the tubular
pressure vessel and includes a filter element and a brine seal. The brine seal circumscribes the
filter element and includes an annular body formed from a hard polymer. The brine seal is
spaced apart from the inner surface of the tubular pressure vessel.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
[0013] The foregoing summary, as well as the following detailed description of the preferred
embodiments of the invention, will be better understood when read in conjunction with the
appended drawings. For the purpose of illustrating the invention, there are shown in the
drawings embodiments of the invention which are presently preferred. It should be understood,
however, that the invention is not limited to the precise arrangements and instrumentalities
shown. In the drawings:
[0014] Fig. 1 is a schematic representation showing a partial, cross-sectional, side
elevational view of a conventional filter apparatus having multiple filter assemblies installed
within a pressure vessel;
[0015] Fig. 2 is a partial perspective view of a conventional U-shaped brine seal assembled
to a filter assembly;
[0016] Fig. 3 is a partial, cross-sectional, side elevational view of a filter apparatus in
accordance with a first aspect of the present invention;
[0017] Fig. 3A is an enlarged, partial, cross-sectional, side elevational view of a detail of the
filter element of the filter apparatus of Fig. 3;
[0018] Fig. 4A is a front elevational view of one embodiment of an anti-telescoping device
of the filter apparatus of Fig. 3;
[0019] Fig. 4B is a cross-sectional, side elevational view of the anti-telescoping device of
Fig. 4A;
[0020] Fig. 4C is a cross-sectional, side elevational view of the anti-telescoping device of
Fig. 4A assembled with a brine seal according to one embodiment of the present invention;
[0021] Fig. 4D is an enlarged, partial, cross-sectional, side elevational view of the antitelescoping
device of Fig. 4C;
[0022] Fig. 5A is a front elevational view of a split ring seal in accordance with the first
aspect of the present invention;
[0023] Fig. 5B is an enlarged, partial, side elevational view of the split ring seal of Fig. 5A;
[0024] Fig. 5C is a side elevational view of the split ring seal of Fig. 5A;
[0025] Fig. 5D is an enlarged, partial, side elevational view of the split ring seal of Fig. 5C;
[0026] Fig. 6 is an enlarged, partial perspective view of a split ring seal in accordance with
another aspect of the present invention;
[0027] Fig. 7 is an enlarged, partial perspective view of a split ring seal in accordance with
yet another aspect of the present invention;
[0028] Fig. 8A is a front elevational view of another embodiment of an anti-telescoping
device in accordance with another aspect of the present invention;
[0029] Fig. 8B is a cross-sectional, side elevational view of the anti-telescoping device of
Fig. 8A; and
[0030] Fig. 8C is a cross-sectional, side elevational view of the anti-telescoping device of
Fig. 8A assembled with a brine seal according to one embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0031] Referring to Fig. 3, in a first aspect, the present invention provides a filtration device
10 that includes a pressure vessel 12, a filter assembly 14 and a split ring seal 16. The pressure
vessel 1 is preferably a tubular pressure vessel with opposite ends forming an inlet and an
outlet of the pressure vessel. The filter assembly 14 is preferably a tubular filter assembly that
is housed within the tubular pressure vessel 12 and inserted into the tubular pressure vessel
through its inlet end 11. Since tubular pressure vessels are known in the art, a detailed
description of its structure and operation is not necessary for a complete understanding of the
present invention. However, exemplary tubular pressure vessels include those manufactured
e.g., by Bekaert of Vista, CA, Pentair of Minneapolis, MN and Bel Composite of Beer Sheva,
Isreal.
[0032] The tubular filter assembly 14 includes a filter element 15 (Fig. 3A) and a split ring
seal 16. The filter element 15 can be any water filter element, such as a reverse osmosis filter,
an ultrafiltration filter, a nanofiltration filter, or a microfiltration filter. Such tubular filter
elements are known in the art and thus a detail description of their structure and function is not
necessary for a complete understanding of the present invention. However, an exemplary filter
element of the filter assembly 14 is described in U.S. Patent Application Publication No.
US2009/0314713, the entire disclosure of which is hereby incorporated herein by reference.
[0033] The tubular filter assembly 14 also includes an anti-telescoping device (ATD) 18
(Figs. 3A and 4A-4D) about opposite ends of the tubular filter assembly. The ATD 18 is
generally configured, as shown in Figs. 4A-4D and attached to the filter element 15 about the
end of the filter element to cap off the tubular filter element and prevent any telescoping of the
tubular filter element that can potentially occur, such as with spiral wound tubular filter
elements.
[0034] The ATD 18 is preferably formed to have a disc-like shape having a cylindrical body
18a and a "spoke and wheel" configuration, as shown in Fig. 4A. A central aperture 18b
extends through the ATD in a direction parallel to a central longitudinal axis A (see Fig. 4B).
The central aperture 18b extends from a lateral surface 18c to a medial surface 18d.
[0035] The ATD 8 also includes a circumferential gland 20 that circumscribes the
cylindrical body 18a. The ATD attaches to an end of the filter assembly 14 such that the gland
20 is proximate an end of the filter assembly. The gland 20 includes a first surface 22 that is
substantially parallel to the longitudinal axis A of the ATD. The first surface 22 also defines an
exterior surface of the gland. The gland also includes a first wall 24 and a second wall 26 that
each extends radially outwardly from the first surface 22. The first wall 24 is spaced apart from
the second wall 26. In general, the gland 20 is configured to have a substantially, U-shaped
cross-section when viewed along a plane extending through a longitudinal axis of the ATD or
the split ring seal. The gland is generally sized and configured to house and receive the split
ring seal 16, as best shown in Figs. 3A and 4C.
[0036] The split ring seal 16 is configured, as best shown in Figs. 5A-D. Preferably, the
split ring seal 16 is formed as a unitary structure to reduce the complexity of the overall tubular
filter assembly 14. The split ring seal 16 includes a substantially annular body 28. The annular
body 28 has a planar inner surface 30, a convex outer surface 32, a lateral surface 33a, and a
medial surface 33b. Preferably, at least one of the lateral surface 33a and the medial surface
33b of the split ring seal is spaced apart from either the first wall 24 or second wall 26 of the
ATD. More preferably, both the lateral surface 33a and the medial surface 33b of the split ring
seal are spaced apart from the first wall 24 and the second wall 26, respectively. Spacing the
split ring seal 16 from the first and/or second wall 24, 26 advantageously allows for the flow of
feed liquid along and around the gland.
[0037] The convex outer surface 32 advantageously allows for the filter assembly 14 to be
inserted or removed from the tubular pressure vessel 12 in either direction, i.e., feed flow
direction or opposite the feed flow direction. The split ring seal also includes a first end 34 and
second end 36 that forms a split or overlap within the split ring seal. The first and second ends
34, 36 are mutually engageable with each other or can be nested in a variety of ways.
Preferably, the first and second ends 34, 36 are slidably engageable with each other, such that
the first end slides along and in contact with the second end. The split ring seal is movable
between a first position having a first diameter and a second position having a second diameter.
The split ring seal also has a thickness in a direction parallel to a longitudinal axis of the
annular body of Ts. Preferably, the thickness Ts of the split ring seal is about 0.2 to about 0.5
inches.
[0038] The split ring seal is preferably formed from a hard polymer, such as a high
durometer elastomer or a rigid plastic having a Shore hardness of D or higher. Preferably, the
hard polymer is formed from, but not limited to polypropylene, ultrahigh molecular weight
polyethylene, polyphenylene oxide, polycarbonate, polystyrene, polyvinylchloride,
acrylonitrile-butadiene-styrene, styrene-acrylonitrile, polyethylene terephthalate, melamine
formaldehyde and/or combinations thereof. The hard polymer advantageously provides for
lower frictional forces in sliding a tubular filter assembly in or out of a tubular pressure vessel,
accurate dimensioning of the split ring seal to ensure alignment with the tubular pressure vessel,
and consequently removes the need for lubricants on the split ring seal.
[0039] Due to the configuration and rigid nature of the split ring seal formed from a hard
polymer, the split ring seal retains its annular shape. Thus, the split ring seal can be flexed to
move between the first position having a first diameter and the second position having a second
diameter. That is, the split ring seal can flex for assembly onto the tubular filter assembly and
collapse about the circumference of the tubular filter assembly owing to the slidably engageable
first and second ends of the split ring seal. However, due to the resilient nature of the split ring
seal, when assembled to the tubular filter assembly (e.g., the tubular filter assembly's glad) the
split ring seal is biased and springs radially outwardly to fill an annular gap formed between the
tubular filter assembly 14 and the inner wall of the tubular pressure vessel 12. Preferably, the
split ring seal springs radially outwardly to fill a majority of the annular gap between the
tubular filter assembly and the tubular pressure vessel and more preferably so as to directly
contact an inner circumferential surface of the tubular filter assembly. The split ring seal's
flexibility advantageously allows it to collapse and reduce its overall diameter to conform to the
tubular pressure vessel's inside diameter, which may vary from one vessel to another due to
manufacturing tolerances.
[0040] As shown in Figs. 3A and 4C, the split ring seal 16 is configured to extend proud of
an outermost surface of the tubular filter assembly 14. For example, a typical 16" diameter
tubular filter assembly can be configured to have an outside diameter of about 15.75 inches and
assembled with a split ring seal having an outside diameter from about 15.83 to 15.90 inches.
Thus, the split ring seal is configured to extend in the radial direction T from the outer most
surface of the filter element about 0.080 to about 0.250 inches, or about 0.5% to about 1.5% of
the tubular filter assembly's outside diameter.
[0041] The outermost surface of the tubular filter assembly 14 can also be considered the
ATD's first and second wall's outer most surfaces 24a, 26a (Fig. 4D). The split ring seal
extends in the radial direction from the outer most surface of the ATD. Preferably, the split
ring seal extends from the outermost surfaces 24a, 26a about 0.5% to about 1.5% of the ATD's
overall diameter.
[0042] Figs. 3, 4C and 4D illustrate the split ring seal 16 mounted within the gland 20 of the
ATD 18. When mounted within the gland, the split ring seal has its inner surface 30 in contact
with the first surface 22 of the gland. Moreover, as best shown in Fig. 5B, the split ring seal has
an opening 38 that extends through the annular body 28 in a direction substantially parallel to a
longitudinal axis of the annular body. The opening 38 allows for a diminutive amount of liquid
feed flow to bypass around the tubular filter assembly's exterior. In other words, the opening is
sized to control a certain amount of liquid feed flow to continually travel through the tubular
pressure vessel thereby preventing any languishing or stagnant liquid that can amass or form
biological residuals. As a result, the opening inhibits biofouling growth and accumulation
behind the split ring seal. Preferably, the opening is sized to allow about 0.1% to about 5.0% of
the liquid feed flow rate Q passing through the tubular pressure vessel to pass through.
[0043] Referring back to Fig. 3A, the split ring seal 16 can alternatively be configured with
or without an opening 38 and with its convex outer surface 32 being spaced apart from an
interior surface 42 of the pressure vessel 12. Preferably, the split ring seal is spaced apart from
the interior surface about 0.01 inches to about 0.03 inches. More preferably, the split ring seal
is spaced apart from the interior surface sufficient to form a gap opening about 0.0% to about
1.5% of the total cross-sectional surface area taken along a plane perpendicular to a longitudinal
axis of the tubular pressure vessel. Alternatively, the split ring seal is spaced apart from the
interior surface of the pressure vessel to allow about 0.0% to about 5.0% of the liquid feed flow
rate Q passing through the pressure vessel to pass through. Having the split ring seal slightly
spaced apart from the interior surface of the pressure vessel advantageously allows for fluid
feed flow through the tubular pressure vessel about the region of the split ring seal so as to
inhibit stagnant liquid and consequential biofouling growth and accumulation. Moreover, the
structural and resilient nature of the split ring seal allows it to spring outwardly to further
reduce the annular gap formed between the tubule filter assembly and the tubular pressure
vessel.
[0044] Referring back to Fig. 5B, the split ring seal 16 has a first end 34 that includes a first
surface 44 and first flange 46 that extends from the first surface 44. The split ring seal's second
end 36 includes a second surface 48 and a second flange 50 extending from the second surface
48. The first surface 44 is preferably configured to substantially face the second surface 48.
The first flange is configured to slidingly engage the second flange to allow variations within
the split ring seal's diameter and for assembly onto the ATD. However, each of the first and
second flanges are preferably configured such that the first flange 46 is spaced apart from the
second surface 48 and/or the second flange 50 is spaced apart from the first surface 44. As a
result, the spacing between the first flange 46 and the second surface 48 or the second flange 50
and first surface 44 define the opening 38.
[0045] Fig. 6 illustrates a split ring seal 116 in accordance with another aspect of the present
invention. The split ring seal 116 includes a first end 134 and a second end 136. The first end
134 includes a first surface 144 and a groove 146 extending from the first surface 144. The
second end 136 includes a second surface 148 and a flange 150 extending from the second
surface 148. The groove 146 and flange 150 are configured to nest in a tongue and groove
configuration. The first surface 144 substantially faces the second surface 148.
[0046] Alternatively, the split ring seal can be configured as a quad ring 216, as shown in
Fig. 7.
[0047] In the fully assembled state, as best shown in Figs. 3 and 3A, the split ring seal 16
circumscribes the tubular filter assembly 14 and extends proud of an outer most surface of the
tubular filter assembly to provide a barrier against feed flow through the tubular pressure
vessel. However, due to the split ring seal's opening 38 and/or spacing from the tubular
pressure vessel's interior wall surface, the split ring seal advantageously allows for a certain
degree of play such that the split ring seal does not completely hinder the passage of feed flow
about the exterior of the tubular filter assembly. As such, the split ring seal inhibits potential
biofouling about locations proximate the split ring seal due to e.g., stagnant or non-turbulent
flow of feed flow.
[0048] In accordance with yet another aspect, the present invention provides an antitelescoping
device 118 for a spiral wound filter element, as shown in Figs. 8A-8C. The antitelescoping
device 118 includes a cylindrical body 118a and is generally configured to have a
disc-like shape as similarly described above for ATD 18. The cylindrical body 118a includes a
gland 1 0 that circumscribes the cylindrical body 118a. The gland 120 is similarly configured
as gland 20 described above for ATD 18.
[0049] The anti-telescoping device 118 also includes a brine seal 116 positioned within the
gland. The brine seal 16 can be configured as described above for the split ring seal 16, or be
configured as an O-ring seal 116 that is molded directly into the gland so as to be integrally
formed as part of the anti-telescoping device thereby greatly reducing complexity of handling in
a field/use environment. The gland includes a first wall 124 and a second wall 126 that extends
radially outwardly from a first transverse surface 122. The first transverse surface 122 extends
parallel to a longitudinal axis of the anti-telescoping device. The brine seal 116 includes a
lateral surface 133a and a medial surface 133b, and is preferably configured to have at least one
of the lateral surface 133a and the medial surface 133b of the brine seal spaced apart from
either the first wall 124 or the second wall 126. More preferably, both the lateral surface 133a
and the medial surface 133b of the brine seal are spaced apart from the first wall 124 and the
second wall 1 6, respectively.
[0050] The split ring seal 16 or brine seal 116 of the above embodiments can optionally be
configured to include a biocidal agent to further inhibit biofouling of the filtration device.
Exemplary biocidal agents applicable to the present invention can include, but are not limited
to, biocides based on detergents, dyes, halogens, heavy and precious metals, phenolic
compounds, quaternary ammonium compounds, and silane derivatives. Preferably, the biocidal
agent is 5-chloro-2-(2, 4-dichlorophenoxy)phenol (also known as Triclosan). Such biocidal
agents can be compounded and/or mixed directly into the resin used for molding or forming the
split ring seal 16 or brine seal 116.
[0001] It will be appreciated by those skilled in the art that changes could be made to the
embodiments described above without departing from the broad inventive concept thereof. It is
understood, therefore, that this invention is not limited to the particular embodiments disclosed,
but it is intended to cover modifications within the spirit and scope of the present invention as
defined by the appended claims.
CLAIMS
We claim:
1. A filtration device comprising:
a tubular pressure vessel;
a tubular filter assembly housed within the tubular pressure vessel, the tubular filter
assembly having:
a filter element, and
a split ring seal circumscribing the filter element, the split ring seal includes an
annular body formed from a hard polymer, the annular body includes:
a first end,
a second end opposite the first end and slidably engaged with the first end,
and
an opening extending through the annular body in a direction parallel to a
longitudinal axis of the annular body.
2. The filtration device of claim 1, wherein the split ring seal is configured to extend
radially outwardly from the tubular filter assembly and spaced apart from an interior surface of
the tubular pressure vessel.
3. The filtration device of claim 1, wherein the split ring seal is spaced apart from the
interior surface of the tubular pressure vessel to form an annular gap sufficient to allow about
0.0% to 5.0% of a total fluid flow volume through the filtration device to pass through.
4. The filtration device of claim 1, wherein the split ring seal further comprises a planar
inner surface and a convex outer surface.
5. The filtration device of claim 4, wherein the first end includes a first surface
substantially facing a second surface of the second end, wherein a first flange extends from the
first surface and a second flange extends from the second surface, and wherein the first flange
slidably engages the second flange.
6. The filtration device of claim 5, wherein one of the first and second flanges is spaced
apart from one of the first and second surfaces defining the opening extending through the
annular body.
7. The filtration device of claim 1, wherein the first end includes a first surface
substantially facing a second surface of the second end having a groove, wherein a tongue
extends from the first surface is received within the groove.
8. The filtration device of claim 7, wherein the first surface is spaced apart from the
second surface defining the opening extending through the annular body.
9. The filtration device of claim , wherein the tubular filter assembly further comprises
a circumferential gland proximate an end of the filter assembly for receiving the split ring seal.
10. The filtration device of claim 9, wherein the circumferential gland comprises a Ushaped
cross-section taken along a plane extending through the longitudinal axis of the annular
body, the U-shaped cross-section having:
a first wall extending radially outwardly; and
a second wall spaced apart from the first wall and extending radially outwardly, and
wherein the split ring seal is spaced apart from at least one of the first wall and the second
wall.
11. The filtration device of claim 1, wherein the hard polymer is selected from the group
consisting of polypropylene, ultrahigh molecular weight polyethylene, polyphenylene oxide,
polycarbonate, polystyrene, polyvinylchloride, acrylonitrile-butadiene-styrene, styreneacrylonitrile,
polyethylene terephthalate, melamine formaldehyde and/ combinations thereof.
12. The filtration device of claim 1, wherein the split ring seal comprises a biocidal agent.
13. The filtration device of claim 1, wherein the tubular filter assembly further comprises
a gland, and wherein the split ring seal is mounted within the gland and is biased radially
outwardly to extend from the gland.
14. An anti-telescoping device for a spiral wound element comprising:
a cylindrical body that includes a gland circumscribing the cylindrical body; and
a brine seal positioned within the gland, wherein the brine seal extends radially outwardly
from the gland, the brine seal including an annular body comprising:
a lateral surface;
a medial surface opposite the lateral surface; and
an opening extending through the brine seal to allow fluid communication from
the lateral surface to the medial surface.
15. The anti-telescoping device of claim 14, wherein the gland comprises:
a first surface substantially parallel to a longitudinal axis of the anti-telescoping device;
a first wall extending radially outwardly from the first surface;
a second wall extending radially outwardly from the first surface and spaced apart from
the first wall; and
wherein at least one of the lateral surface and the medial surface of the brine seal is
spaced apart from one of the first wall and the second wall.
16. The anti-telescoping device of claim 15, wherein the lateral surface of the brine seal
is spaced apart from the first wall of the gland and the medial surface of the brine seal is spaced
apart from the second wall of the gland.
17. The anti-telescoping device of claim 15, wherein the brine seal is an O-ring seal
integrally formed as part of the anti-telescoping device.
18. The anti-telescoping device of claim 15, wherein the brine seal is formed from a hard
polymer selected from the group consisting of polypropylene, ultrahigh molecular weight
polyethylene, polyphenylene oxide, polycarbonate, polystyrene, polyvinylchloride, acrylonitrilebutadiene-
styrene, styrene-acrylonitrile, polyethylene terephthalate, melamine formaldehyde
and/ combinations thereof.
19. The anti-telescoping device of claim 15, wherein the brine seal comprises a biocidal
agent.
20. A filtration device comprising:
a tubular pressure vessel having:
an outer surface, and
an inner surface;
a tubular filter assembly housed within the tubular pressure vessel, the tubular filter
assembly having:
a filter element, and
a brine seal circumscribing the filter element, the brine seal includes an annular
body formed from a hard polymer,
wherein the brine seal is spaced apart from the inner surface of the tubular pressure
vessel.
21. The filtration device of claim 20, wherein the brine seal is spaced apart from the inner
surface about 0.0% to about 1.5% of a total cross-sectional area of the filtration device taken
along a longitudinal axis of the filtration device.

Documents

Application Documents

# Name Date
1 1976-KOLNP-2012-(02-08-2012)-OTHERS.pdf 2012-08-02
1 1976-KOLNP-2012-AbandonedLetter.pdf 2018-10-01
2 1976-KOLNP-2012-(02-08-2012)-FORM-13.pdf 2012-08-02
2 1976-KOLNP-2012-FER.pdf 2018-02-27
3 1976-KOLNP-2012-(29-01-2013)-ANNEXURE TO FORM 3.pdf 2013-01-29
3 1976-KOLNP-2012-(02-08-2012)-CORRESPONDENCE.pdf 2012-08-02
4 1976-KOLNP-2012-(29-01-2013)-ASSIGNMENT.pdf 2013-01-29
4 1976-KOLNP-2012-(02-08-2012)-AMANDED CLAIMS.pdf 2012-08-02
5 1976-KOLNP-2012.pdf 2012-08-04
5 1976-KOLNP-2012-(29-01-2013)-CORRESPONDENCE.pdf 2013-01-29
6 1976-KOLNP-2012-FORM-18.pdf 2012-09-03
6 1976-KOLNP-2012-(29-01-2013)-PA.pdf 2013-01-29
7 1976-KOLNP-2012-(31-7-2012)-FORM-5.pdf 2012-09-06
7 1976-KOLNP-2012-(29-01-2013)-PRIORITY DOCUMENT.pdf 2013-01-29
8 1976-KOLNP-2012-(31-7-2012)-FORM-3.pdf 2012-09-06
8 1976-KOLNP-2012-(31-7-2012)-CORRESPONDENCE.pdf 2012-09-06
9 1976-KOLNP-2012-(31-7-2012)-FORM-1.pdf 2012-09-06
9 1976-KOLNP-2012-(31-7-2012)-FORM-2.pdf 2012-09-06
10 1976-KOLNP-2012-(31-7-2012)-FORM-1.pdf 2012-09-06
10 1976-KOLNP-2012-(31-7-2012)-FORM-2.pdf 2012-09-06
11 1976-KOLNP-2012-(31-7-2012)-CORRESPONDENCE.pdf 2012-09-06
11 1976-KOLNP-2012-(31-7-2012)-FORM-3.pdf 2012-09-06
12 1976-KOLNP-2012-(29-01-2013)-PRIORITY DOCUMENT.pdf 2013-01-29
12 1976-KOLNP-2012-(31-7-2012)-FORM-5.pdf 2012-09-06
13 1976-KOLNP-2012-(29-01-2013)-PA.pdf 2013-01-29
13 1976-KOLNP-2012-FORM-18.pdf 2012-09-03
14 1976-KOLNP-2012-(29-01-2013)-CORRESPONDENCE.pdf 2013-01-29
14 1976-KOLNP-2012.pdf 2012-08-04
15 1976-KOLNP-2012-(02-08-2012)-AMANDED CLAIMS.pdf 2012-08-02
15 1976-KOLNP-2012-(29-01-2013)-ASSIGNMENT.pdf 2013-01-29
16 1976-KOLNP-2012-(02-08-2012)-CORRESPONDENCE.pdf 2012-08-02
16 1976-KOLNP-2012-(29-01-2013)-ANNEXURE TO FORM 3.pdf 2013-01-29
17 1976-KOLNP-2012-(02-08-2012)-FORM-13.pdf 2012-08-02
17 1976-KOLNP-2012-FER.pdf 2018-02-27
18 1976-KOLNP-2012-AbandonedLetter.pdf 2018-10-01
18 1976-KOLNP-2012-(02-08-2012)-OTHERS.pdf 2012-08-02

Search Strategy

1 searchstrategy1_25-09-2017.pdf