Specification
COL,LABOKA.TTVI.1 CONTROI, SYSTEM iiND COL,I.,IIUORII'I'TVI?. CONTROL
ME'TiiOi3 E'OR i:'T MAC1HI:NE RND COOLING EQUIPMENT
Backy~:.ound o:f tiie J.n.veiiti.or-i
5 i?iel.d of the :Xnvei3:tj~on.
The present invention r e l a t e s to a col.1.aborative
corit:.ro:i. system avid a co1.l;iborative control. method f o r avi IT'
miichi.r?e and a cool.:i.~:ig cqu:i.pntenL, arid p a r t i c u Larly re:lLates
to a col.labor.i~ti.ve co1:it:rol. sy:;tern and a co.ll.abo~:ative
l o coa>i:rol. ~netllod which are sui.ta.hl.e for eS::Eicient use of
batl:eri..es atid a stab1.e operat:j.ori of an I:']: inachiv-1.e :for an
c-:xtc?i?dcd pc::ri.od iin the event: of ar? e l e c t r i c power ifa:i.l.ure
o T ij -i.:omt~trc~.::ei t i 1 ce:i.ec:l: e i.c p>owc:r: (hc:i:c?:ir~aY l:.i?x:, "c: l.c?c.: t:.r:jc :
powcr." .ii:; i.nd:i.cateci a:; "power") i;ll.ppl.y i:;r [:lie .!.:i.ikc? :i.n a
:I5 system. jnclutling the :I'C vnachjine t y p i f i e d by a s e r v e r , t h e
cooi..:i.~-igec ~u:i.pmel-itf o:r t;iic: :I:']: mi-lclij.ne, and a large-capac:iit:y
b a t i-: c I: y ( I: ':I.' :; y :; t em ) .
Doscri.p)l::i.c>n of the 1le:lat:ed iil-t:
LII. ~:eq.iLoris such ;is d.evcS.op:i~ng countrio:; wj.Li:~.
undevel.oped power i r~:ileastructu.~:esc, ornmcsrcial. power
S:aj.lures i.iicLudivig lorig ol.~tagc?s f:rc-iquentl.y occur. 'Thus, in
order t o coritiv?uousi.y p:rovide %sIe.r' vice i n such regions,
conunerc:ial. power supplies need to be baclted up by b a t t e r i e s
25 or generators.
DeveJ.oped c 0 n n t r i . e ~ witl-1. advanced power
j.r~.f:rastrll:;ci-i~rtiri:sL so require backup power b a t t e r i - e s i.n
preparati.on for commercial. power fai.lures in. cnt.e:cpr.i..se I T
service j.11 which co~lt:inll:;ous servi.cc? i s qiiite :imporirant,
5 mi-ssion-critical I T servi.ce, data c:elit:er:j, and. the .]like.
For example, a data center i.s provided wi.th a gelleratoi: and
a b a t t e r y as backup powcr supp:l.:ies.
A techni.que for c f f i c i . e i ~ t i y using a b a t t e r y in n
battery-powered system i s disci.osed i.n Non-patent docrilnent
1.0 I., "Design considerations for battery-powered ele(:troni.c:;",
M. Pedram arid Q. Wu, 13esign i4utornat:ion Con:ference, 1.999.
A.ccord:il?g to techn:.i.qr.::::eds i sclLosc>d i n Noii-patent
docilnic?rit. I . i n c~oii:;.i.tlci:i?t.iori (1:Ii a i3ati.er.y c:i-iaract-.c?:rir;i-,ic
ca:l.l.ed a r:~.tc! cEl:::c?ct t~ilai: causes a wo:t:l:;:l.ciad ;ivailal:)lc I'i:iiin
:]Is a storaye b a t t e r y t o depend 011 the amourit o:f a di.:;charge
. : I . , a work:S.oad ac:t:iia.ll~y ava:illabl.e from a k1att:ery
vai::ie:; dcpendj.nq upon i:l~.c? iii.story o:f d:i.:iciia~:ge c:u~:rcnt:c;,
c?vc?n 1:honqh il total. wo:rl:;l oad remain:; con:;ta~:it:. .
Add:i.t:iol~a:l.Iy, i.11 t:echl?iLcji~es disclosed j.11 No]?--pntenl:
2 0 (I(.)(.:IIIIILI :Ij I % il1.1ii 3 , :s y :; t:. c?111 L az ; I< :; a]-c: s< ::Ic-!Id il.:I. c?d Lo (201::1::.: 3 70 J.
i.he h i s t o r y of di.scbarye c u r r e n t s , i.mprov:i-ng t:he e:ffi.ci.en.cy
of bai.ter:i.es.
l\lor::::-patet1.td ocilment: 2: "Battery Aware Slrai,i.c
Schedul.:i.ng for Distl:i.buLed Real-Time Embedded Systems", J ~ .
2'5 i:,uo and N.K. Jha, J)es:i.yl? Aut:omai:i.orl Conference, 2001
Non-patent document 3: "Einergy Management fol:
Bati:ery-Powered Embedded Syst-.emsn, D. Rakhaiatov and S.
Vrudhula, ACM transacti.on on Embedded Computing S ysterns,
vol..2, no.3, iiugusl:, 2OU3
5 Japanese Patent Applicati.on Laid-Ope11 Pub?.j.cati.on No.
2008-218352 d i s c l o s e s t h a t the b a t t e r y l i f e of an
i1ni.llterruptib1.c p)owe:r- supp:l..y unj.t is extended by coo?.i.ng or
heatjilg a bati:c?ry based or? operation :schedule j..nformatj.on
before an input power supply i s stopped.
10
Sumnary of the 1:nventi.on
u : r e r : ~ . : I y reu;ahI.e :itorage bati:er:i.es are wed ai;
i:)ac:ls~~po wer: :;i-ipp:l,:i.es. VarTious :iirorage bai;.i:c?ri.es slicl-i as a
:i..c;lci :jt:or;lyc bnt:tcl:.y, a l.:i.i:i~i.i:i~ui i.011 Iiattery, and a nicliel.
1.5 hydrogen b a t t e r y are aval-lable. ]?or an uni.nterrupti.bl.e
power supp1.y (UI?S) aci:.:i.ng as a hacliup power supply of a]? :ill
,syst:cim, a :l.c?ild sl.o:t:agc? I?al:i:e:t:y i.:i m;i.i.n.i.y u:;i?cl bec:ciu:;c! of
il~: s l~0 w co :ii .
I\ cr.ij?rent lll':; iL.5 pl:ovj.dcd mai.i>:l.y foi- sul:jl?'l.ying ]?owi?r
:?o L.o ; i l l I: 'I' :; ys i;e~r~u n t i. :I. :I: '1: sorv j.c;c .i. :i ~ro.r:lua: l ~:I. y stopped I~GJ:i .1.1l y
i n the evelni, of a,-) einerqency, e . g . , a. commercial. power
faj..lui:e. Iiowever, the t.echni.qirc? i.s noi: :ini:ended to suppl.y
power for several. hours. A bacliup power silpp1.y system
required for a loiiy-~ti.vne coliti~iuous opeu-atj.or~ car1 he
25 cor1:;tructed by ii-i:;Lnl..:l..i.liy ~nul..ti.p?.cI~ eads torage bat:teri.es.
I-ioweae~:, each capac:i.t'y of a letid storage b a t t e r y has a
large wei.ght arid volunre, so t h a t the number of i.nstallab1.e
b a t t e r i e s is limited by physical. constraj.i?.ts such as a
floor aicea and a fl.oor i.oad capacity. Ea.ch capacj.i:y of a
5 1ithj.um ion b a t t e r y has a smal.1. weight and vol.urne, which
may sa.ti.sfy the physical. c o n s t r a i n t s . l-iowever, li.thium ion
b a t t e r i e s are expensj.vc and thus the number of i.rsstall.abl~c?
batter:i.es is i.i..m:i.ted by tl1c cost:.
For t:iris reason, i.t i.s :i.mportant to effi.cient:ly use a
1.0 li~nj-tedn uuriber of storage b a t t e r i e s t o coilstruct a backup
power supp1.y syst:eiii :iLn which t h e storage biitzteries
cont:iLnuous:l.y prov:i.dc? I T sei:vi.cc? 1~11 the event of a
commc?.~;(:iLa1 pow(:?tr i:ai l.il.rt? of 1.onq hour:; .
1 ' 1 ' tire i:ccl-~.:ri. q1.1c o :if Japanese l.'a i: cini: i.il:jpI . i i-:a ir j Cj1.1 'l:,?~ :i. cl-
I 5 Open Pub:Licai:i.on No. 2008-2:1.0352, a b a t t e r y i:i cooled or
lieat-etl by a commerc::i.al. powes: :iupp:l..y i.nstead of [:.he power;: of:
;I t:hc? l:>at:tery based on Icnown ope:l:ai_i.o~:~:s ch~?dulLe i~n:forrnai.iori.
4I,:l ,i.:j t:.ecl?~-iiq~:iios i-lei: nppl.i.cab1.e j.n tl1.e eveni-. of the
commc:rc:j.a:l. power fai~1.111-ie n an I:'T .system w11e1-I? .t:a.ql 2;c ; I . ~ < ~c?j ~hl?l : l.'o:t:ek& r~~ d
Moreover, i:eclin:i.c~iles of the Non--pa.t:cirlt documents I., %
and 3 are premised 01.1 mobile co1npui:i.n.g dcrvi ce!; ctc. wh.erel.n
taslc groups operate on a. t a r g e t sy:jt:em i s known, and
schedul.ing of t:he tasls. is performed i r i advance.
lIowevi:r, i t js d:i..ff:icult-. to apply the techn-icjucis o:f
the above Non-patent docul:l::enLs i-.o a typi.ciil. L'1' systein i n
w11i..(:l1 t:a:ilc gr:onp:i vary with t h e i r operat:i.rlg co11di.t:i.ons
while the timing of :il?.l:roduction of taslcs varj.es among
users, Thus, ei:fi~c;iel-lt use oi: baL:t:cir:i.c?s i.n a bat~tery-
5 powered 3'T system rernaj~ris an issue t:o be addressed.
The present invention has been made i n view of the
above problem. It is an object of the present i.nventi.on t o
coordinate1.y controi an. I T macliine and cooling equi.pl:l::eni-.
for the I'i' 1nact-r:in.e i n an 1'T system where taslcs are hard t o
1.0 be schedul.ed beforehand, thereby acliievilig effj.ci.ei?t use of
b a t t e r i e s .
A ~:e~".ese~:":al:i~vc?e xamp1.e o:f the prei;c?l::~.L:Ii .i?veni.:iLon.
w.i..iL:l k j p cio:.;(::r:.ilx7:~i b c - . I t w . A c~~l.l.a2~o:riit::icvoc~~ ' ~ t r osly st:i?m
for an I:?: maciiinc: nn.d ii ccol.ir;.y ~cji:l::i.pincinltl h a t cools .t:.lle .r'T
1.s inachi.ne, comprising: an un.:i.nterruptj.bl.e power supply u n i t
1:ha.l: i.s capiible oil supp.i.yj.ng powel: :froin a b a t t e r y Lo tile i:';l:
1.n;ichi.ne and tile cool.:i.ng ec~u:.i.pment: :i.~i an. civc:nt (>:I: a powel:-
:f:ai.l.ure; and an :I:'['.-coo:l~:i~nc.oql ~:l.iiborat:ive coiitro:l. uii:i.t,
wlicrcin t:l?.c u.n:i.ntcrrupl_i~b:l.peo wer sup7p:lLy U I - I ~ . ~ : 1 7 3 s a
20 I:u~icl..i.ol~01: coi~~l~i:~o.L]I:.l~ow.re~rq from i:lj.c bdi.i.o~y i.o L.hc 1,'s
maci~i.~-a~n.de the coo:i.i.r?g equ:i.pmerit :iin the civei~t: o l a :f:n:iLl.ure
i.11 ail ext:erilal power supply, the :I:'T'-c::ool irig col 1.aboratiLve
control uniit. inc:l.udes a project:i.on ui1i.t: t:l-lat. predi.ct:s the
power : f a i l u r e and p?red:i.cts a load and [-.hep owei: o:f the I T
25 ~nach:i.n.e i . i i the eveiit of a powe:i: : i u r e aind 31-1 opcratioii
11ni.t t i ~ a tm o11i.tor:; l:::emafin:i.~?bq a t t e r y power of the
uii%nterl:::irpir.:i.ble power supply ui1i.i. to cor~troi. power
consumption i.n the I ' T riachine and the cooliizg equipment,
the 1'1:-cooi.i~rig c:o.i.l..abo:cat:j.ve co11tr:o~L llrli~t st:ores, as
5 databases, a relatiorishi.p between a cooli.ng capac1.t:~ of the
cool-inq equipment::: and the power c:onsumption of the cooling
eyi;ii.pment and a arclati.ons1zi.p betweerr remaining b a t t e r y
power and an amourit. of cii.scha:rge current from the b a t t e r y ,
\:he project::ion. uni.l: has a f:u.ncti.on of setti12.g a target:
10 t o t a l power corisumpt:i.on of the :I'T inachine and a t a r g e t
t o t a l power consuinption of the coo:l.:i.iig equipment i.n
response Lo a predi.ctiori or an. exire:rr.lil:i. input, arid the
opcr:ii ... i.011 I . I I I . ~ i: coor.di.nal:c?I.y coi?i::t:ol.s, baseti oil the s e t
t:ot;al. poi.j.cr consuro.pt:i.oui.s, pow$?, ~ i i p p i j e i j S::i:oin t h e b a t t e r y
5 and consumed by the :['I macl:ii.ne and power slipplied from the
bat-tery and consumed by the coolilly c?yi:~.i.prni?nit. ri the event:
o:F a i'ai.i.iire ill the exter11a:I. power !iiip)-~1.y.
Accor-di.riq t o the present :i.i?vtint:i.orl, IIL' servi ce can be
contin.i~oi~sy: lp rovidcd by effi..ci.e~?t:l.y~ ii;:i.l.lga :torage
20 bat-Lery iinder cj.ri~i~rnsirai~c:wois~ .c?.ri:t i :l.ol::ry pjowor outacji.
f~reque~:ii:l..oyc :cu:l::::s. .::i:iiici~eiil_u se o i a storage b a t t e r y
means t:hat a cer-t;ai.n wo~rlcloaci can he processed wi~th a
sma:l.l.er b a t t e r y capacity or a i.arger work:ioad can. be
processed wi.t:h a c e r t a i n b a t t e r y (2apaci.t~.
Rr.ie:f 1)escrj~ption of the Uraw:i.~:i.gs
I~mbodime~~otfs the present i.rive~:ii.ion wi.:Ll. be
described in d e t a i l based on the following drawings,
wi1erej.n :
5 l?i.g. 1 i . l l . u s t r a t e s an 0vera:i.l sl:;ructural exalnpie of a
co1.laborati.ve control. system for an I T machine anti cooling
equipment according Lo a :first cmbod:i.meult of the prese~nt
i.nvei?tio~l;
Fig. 2 show:i the oi~tl.i.i~oef a f:Lowchart o:f a
:LO col.laborat.ive control. for the ]:':I1 lnacliine and the cooling
equ.j.pme~il:: accordi.ng to the f:i..rst cmbodi.men.t:;
].':jig. 3 :i.:l.:l.i.i:;tr-at::c:; a spec:i:[fic st:ru.ctural example o:f a
lkhci :iysI::c?~ni ..lii~ic. :.ooct~inaieyl cont:rol.r; t ?:l: 'r mai:iri.ne and.
l::lic cco:!.j.r~.y c>cjui.pment acc;ord:i.~:lg t:o ilie :l:;i.r:;t c?~~ik~ol:i:i.ini?i,i_;
15 ~ i g .4 shows the o u t l i n e of the flowchart of a
pi:ojection. ur1i.l:: :i.l..i.ustrated i.i-i Fi.g. 1.;
1r'i.g. 5A. :;liow:; an exa.mp:l.c o:f! t:lii? :~:c?:l.at:i.on:;l~;i.pa urlonq A
COP, a :I.on.d, and a tempei:.al_ilre of t t ~ ec oo:Li.iig eqili.p)meril-;
1;'i.g. 511 ::l?ows an exninple of the s : c l . a . t 1 1 among ;i
;?o (;(jli, a hi~mi.ci.i.iry a1:ld ;i tc?mper-atui:c of \;he (:oo.l.i.ng cyui.p)n~el:ii.;
1;'i.g. 6 show:; ali i?xampl.e o:f a cor:rectk:i.or~ of: il ta:r:get
power val.uc? accordiiig t:o t:hc? f i r s t embod.~.rne~iir;
1;':i.g. '7 shows an examp1.e ofi a r a t e e f f e c t i.n a storage
b a t t e r y ;
Fig. 8.A shows a compar:atI. and an
5 operation uni.t (OPE) 52. In tzhe case where an exterliill
power supply fail.s, the control u n i t 42 d e t e c t s the f a i l u r e .
'Ttien, power supp:l.y from a commercial. power supply 6 t o the
:CT system 1. is sw:i.i:clied to power supply from the b a t t e r y
system 41. ulicler the cont:ro?. of the IT-cool.ii?g co:Llabora.tj.ve
1.0 coritrol unj.t 5. T11j.s confi.gurati.on f u r t h e r i ~ i c l u d e s a
voltyaye i.ogger 7 t h a t records the volt~ages and freque?ici.es
o:i! t:hc conmtcrci.al. power suj~p1.y LO p.redi.ct future powe:r
i l ? : I:I:OI~I i;he iii?jtory o:l: power i;~i..iiircis.
In t:lic I:','--cool.:i..ngc ol. l.abor;3l.i.ve? c;ont:.rol ! y ? n , the
1.5 11nit:s other than the comerci.a.1. power supply 6 are
accommodated i.n a closed vesr;c?.l 8, cori.si:i.i;ui:i.ng a c:Losc?d
cl~ca.ri:i.nq: iy:;I;enr. 'I'hus, t:l-lie tc~~nper:al:ure/I-ii.in~i.ds~c~rtlys or :i
detr?c.ts a i:.emperatu:ce and a i~um:i.tli.i:y i.n irlie i:l.osed vcs:;el. 8
(or i.ndoor:; and 0111:doo1:s) . '/'I?(? 3:'11-~-(700:1:ill(~ ~o'l1aI3oi:at:ive
10 coi~i:rol: jy:;te~r? may bc an op(.!~.ic .i.ei~lri.i.ny: ;y:jt..oio. 'l!tic o-v(:!r;~.l.l.
ci.eanj.~ig sy:;l.eru otxl-lier than the com1r1e:rciii.l. power supply 6
(or wit11 a p a r t of the commerci al. power suy:)pl.y 6) may be
accommodated i n an indoor space. 1:n t h i s case, the
temperature/humj.dity sensor 3 dei;echs a temperai:ure arid a
25 1numi.dity i.n thc space (or i.ndoo~-s and oul.doors) .
As descr:i.bcd above, the 1'11-cooling col.laborati.ve
cor1l;roi. systesr~ i.ricludes the :IT macI:ii.ne I., the cool.i.ng
equipment 1.2 for cool.i.ng the I T machine, the
u n i i i t e r i ~ i i b l ep ower supp1.y 4 t h a t car1 supply power :l:rorn
5 the b a t t e r y syst:ein 4 1 (he:reinafter, may be siiunply cal.l.ed a
b a t t e r y ) to the I T machine i and the cooli-ng equipment 12
i n tile event of a power fai.:i.ure, i:l-ie t:emperature/humidi.ty
sensor 3, the p r o j e c t i o n u n i t 51 t h a t predi-cts power
fai.l.ures arid the load and the power of the I T machine i n
l o the event of a power faj-lure, and the operation unit 5%
t:llat ~noni.torst he remaj.x~.~.nbg atte:ry power of the
~ln.:i..~:iterv:rrpl-:i.hi.pco wer :suppl.y and a temperature and a
I I I I ~ .y. , a~itit :he I. i.k c: :iin txlnce en.v:i.c oinmenl: o:i- t l ~ c ?i iisl:a I I ed
I'll m;lclli.ric to cont:l:ol. t:l?c I'i' mnc:h.i.ric+ and t:l?e cooI.:i.ilq
I5 equj.pment:.
Tlie :I:']:.--coo:l.i.ngc o:l:l.aborati.ve cor-ilrol. unit: 5 :i.:i
provided w:i.l:h ;I storage mech.an:i.:;m that :ii:.o:rc?:; t1-ie
rc?lat::i.onsliip betwc:en the cool.is~g capaci.l:y of the cool.i.ng
cqnj.pmenl: ailcl 1:ho powel: co~?.sumpi:i.o~o? f 1:ilie coo1~:ing
20 c?qui.~~~nc?ai::;i i: a dd-'i--,-j.. baE; c ,: ;11:ld ? I: ::3 .L:ov. agc ? IXIC:(;~-I tc 11 :i. is111 (2i)i t.
s t o r e s the rel.iitiio1-1stii.p between. r:erna:i.ni.ng b r ~ l i e r y power arsd
the amount of discharge cu:rrent froin the b a t t e r y as a
database. ']:he projectfion u n i t 51 has the fuxicti~on.o f
:~etLisig the t a r g e t t o t a l power corlsui-i~ptioris (su.ppii.ed
2'5 power) of t-h. . e I T Inc- ~-.~- l i f i na:ned the coo:l.i.ny equipn\en.t: ii~
response to a pred:i.cti.on or an i.nput from t h e o u t s i d e . illhe
operation u n i t 52 coor:di.vrate:l.y cont:.rol.s the :i'I' machine and
the coo:l.j.~ig eqili.pment based on the s e t t a r y e t t o t a l power
consumptjons. 'i:l.ius, even :in tire case of a fa?.J.ilre o:i: an
5 input power supply, the I'r-cooling co:L:l.aborative c o n t r o l
u n i t 5 can e f f i c i e n t l y use the b a t t e r y system 41. and supply
power to tl?c, 1:T machine and the coolj.ng equipment wj.t:hou:i:
causing a power i:iii.l.u~:e over a p:redeterm:i.ned time, thereby
continuously prov:i.di.nq I'T' servi.ce.
% 0 Fig. 2 i.:i a. fl-owchart showing the outl.ilie of a
col.:l.aborati.ve control on the 11' rnacl.l.iile and the cooling
oqu:i.pmen.t accord:i.ng t:o the :f:i.rst er.nbodi.ment. 'IOic: control
(I? i:lre 1. '1.'-coc11. :i.r~(cj (:11I ~: i k > < ~ r ?t~~:: i .ve (;on i : ~ Ix. 1111' :id:. 5 :i. 53 ma i.11: iL\7
c:c,ll~por;ed of ( I ) tlic pro:jcec:l;i.on : : i t !>:I t:>asc?(3 on a
15 predj.(::ti.on tecbni.c~ue and ( 2 ) the operation unit 52 based oil.
a meas~i:rement feedbaclt. Lechnique.
:l:~r. the pro:ject:ior, i i i l i t 51., a CC)VIJ:.KOI. q~.i:ide.I.:i.~f~oe: r
tirc? :ili' rnac1ii.n~ and cooI.i.nq equi.prnent i.s set. based orr.
t:bc: pr:ed:iLcl:ion. tec-hniqilc?. :;peci.:Fi.caIIy, the occlJi-i:el?ct: o:f
20 a .i'ai.i.uj:.i? i.11 tlhc cxi_c!:~:-n;i.lp. ower ::;tipply oC i:llc? :l:'l: :.;y:;t.e~t~i .s
roomi.t:ored (S200), in. [:he? event o:lr a :l:a:i..Lure (S20:1), a
b a t t e r y operat:i.on, t h a t :is, power supp:I.y :i::rom the b a t t e r y
system. 4 1 :is s t a r t e d (5202) . A power :fai.:lLure per:i~od :i.n the
exter~?.alp. ower supply is predicLed (5203), the load anti Lhe
25 powe:~: of the i:T maclii.ne i n the power f a i l ~ u r ep eriod i.s
p:redicted (S204), a rc:yui.red cool.i..ng amount: i.n the power
f a i l u r e per:i.od i.s predicted (S205), and then a i:aryc?l: power
value f o r power supp1.y from the b a t t e r y system 41 to the LT
r;yst:ein .I.. i.s s e t based on tlie:ie resu.l.t::i (S2OO) .
5 In the operation u n i t 52, the i.oad, power,
temperature, hurnidi-ty, remaining b a t t e r y power, and on the
l.ike of the IT system 1 ace measured based on the cont:.rol
guidelille determi.i~.ed i n the project:j.on u11i.t 51. and are
corrected by nneasuremei?.t feedbaclc accord:i.ng to t h e c o n t r o l
1.0 guj.de%i.ne; meanwhile, power control is performed on the I11
mac11i.ne axid the cooling equi.pmeiit:. Speci.fi.caily, a
teit\pc:rai_ure, a l?um:i.dit:y, reinain:i.ng bai:tery power, asid tile
:ioaci ai~d i:lic? power ciii 1;lic-i 1'1.' :;y!;tc?m are rnoi~:itoretl ( : i % O / ) ,
t!ic ta.rgc!t powcs: viililc? iirld the coc;:Li.ng i.n:formati..c;i~a i:.c?
:L!i o p t i o n a l l y correcl-.ed (S%OO), and then the load and cool.i.ng
power of t:he :(':I:' sysi:em are co'l.:l.aboral:i~vel~cyo nttro:Lled
acco:rdi.i~g t:o tiiesce correcti.o~:i.:; (5209). In. tl:ic? cast? wlhcrc?
the I ' rnacll:i.i-rc: corisume:; 1 . 1 power, for exarnpl.~, the
o p c r a t i ~ ? gs erver coi-i:;ilrnes :I.arrqe power, the17 "load defei:l"ed
,.:u. ,. cor1ir:o.L" i.s per:.i:o.rmc:d I:o liecp t-11e powc:r su111 of tl-~c:I:']:
macl?.i.nc arsd the cool..:i.~ig eyui.pment a t the predetermi~nc?d
t a r g e t power. in t:he case where the 1':i' machi.ne consumes
smal.1. power, "advarice cooling control" i.s pe:rfo:rmed i:o keep
the power sum of t i l e ]:'I machine and the cool.iny equipment,
25 a t tyhe predetermined t a r g e t power. 'llise s e r i e s of
operations i.s conti.nued ui1tj.L the recovery of: tile power
supply (S210) . 'i'he b a t t e r y operatiori -i.s completed when t h e
power supply recovers (5211).
L.':ig. 3 i ~ l i u s t r a t e s t::i~e outi.:i.iie of a sy:ii:ern
5 confi-guration for a control. flow of the %'Im' achj.ne and t:he
cooling equipment i n Fig. 2. 'The projection unit 51
includes ;I power obstruct:ioil moilfitor (POM) 511 t h a t detect:;
the occurrence of a power fail-ure, a power ohstsruction
f o r e c a s t u.n:i.t (1'01') 51.2, an I T forecast: uni.t: (ITF) 51.3 t h a t
:i.O p r e d i c t s the l.oad and the power of the :IT macli:i.l::ie, a
cooling estimat:or (CE) 514 t h a t estimates a required
cooI:i.r-ig amount, a user si:)ec:i.:fi~ci. ait:erfa.ce (USI) 53.5 that.
r.~ece:ives spc2c:ia.i condi.i::ioiis i:i-oln a user, and a projc:(;ti.on
cont:.i ro .I. 1111 :j~t ( 11.0 ' 1) !):I h t h a t dii I::(? rm:i u c? :s 1:i-jc ? i:on t. 1:-ol ~
15 gui-deline based on those i.nformati.on and qiiverr condi.tion:i.
The poweir obstruct::i.oli forecaiii: ur1:i.t 53.2, thc: I:'II forc?casl:
u n i t !51.3 khat: p:rredi.cir:i the .I.oad anri t:l?e power of thr: :I:T
iiiachil~e, the coo:Lin.g ei;t::j.mai:o:c !jl.il, and the uscii: spi?cif:i.c
i.ntei?f:acr !,:Ill5 have storage rnc?cl~iarii.smr!;: j'l.%0, ! I , ! I an d
20 5:Lb0, resp~clcti:vc:I.y. 'Tile sLot:ago ~t~cct::al::s:i.srreisa cil s Lore
cor:cespondi.ilg :i.~?f!ormal;i..ona :; a storage eA.ement 01: a
database. 'The p r o j e c t i o n cos:::L:ro?. unit ( P O ' I . ) 51.6 :is .-
connec%ed to a storage element (or database) 517 t h a t
s t o r e s in:torinatiorl suclri a:i bat:tery c h a r a c t e r i s t i c s . Tlie
25 cool.ing esi:ir~?atoir ( I i.:~ col?.riected to a :;Loraye eI.c??nent
(or database) 511.8 t h a t s t o r e s ir1formati.on. on the cool..i.~?y
capacity arid coo1i.iig power of the cool-ing equipment.
The operatzio1-1 u n i t 52 inti-udcs an operation control
uriii: ? O. I J ) > %:I anti a storage rnec'~.a~.ii.snr5 22.0 i:)lat
Ij s t o r e s , as a :storage el.ement or database, informatiorl :silchi
as t a r g e t power val.ue:j from t h e p r o j e c t i o n uriit 51. 'The
opecal::i.oii u1-ii.t 53 nieasurcs power i.nformation from the
telllpe:rnLure/huvnidi.ty sensor 3 and t:he PDlJ 2 and condiition
informati.on on the 3:T system I., and coiitro:Ls the IT system
1.0 1 such tyhat i::lie power sum of the I T mac1ii.ne il1:l.d \:tie cooling
equi.pment reaches the t a r g e t power val.ue. The power
:i.n:l'ormat;:i.on does not al.ways need t o be i.i?put;ted by the PDll
2. 'J'l~e ljl.llJ 2 may be :repl.ac:ed \dit:li a spec.i.al powe:l- sc?l.isor:
o r t l ? c-: :I. :.L Ice .
'The i'l' system L :i.nclucles tlie IT machi.ne (I:'.rM) 11. and
t:.l.~c! coo I. i ng equipment ) :I. 2 . '):'he il.' uoacl~i. ne :I. :I. ~..ricl.ildes
;.I server: (SVlI) : I 2 a o : : (RlllII) 2 . 1 a :;toi:.ayc? (S'i'R) 1.14,
a ilS?S I: 15, and a system co~~.i:r:o:lu. n i t C'l'lXi:, 1.:1.1. l'l-iat col?.t;rol.s
t~li~es(c? Iemeiits. 'S.'l?e col?:r?jql.~rntioof~ ~t: l?c :I:']' mnchii?c ('1:'l;M)
%O i:; iiot i:i.mit:cd to t.1.i~ cxninpi.~: o i 1r'j.g. 3. 'S!he s.'I: I I I ~ ( ; ~ I ~ . Y I . C
rnay i ~ i c l u d e oi.i?er c?iements s1.ir.h as a swi.tch, 'i'.h.e T'S.'
machine 1 , tzhe pi-oject uni 1 . 51, and the operation un.i.t 52
car1 be iilsta1.Led i.n:;i.de or inside and ou.tsi.de the :I:T system
:I by dedicated liardware. 'The p:rojection un.i.t 51. avid the
25 opei:ati..ori iir?.i:i: 52 can be prov:i.ded as so:i!tware 01.1 i:lle server
1.1.2 i.n the 17: mach:i.~?e of the 1'11 system.
Fig. 4 shows a coi~.Lro:l. gu:i.deli.ne s e t t i n g fl.ow o:il the
projecti.on uni.t 51.. In the event of a fail.ur-c of the power
snppl.y, :tor i-xiiinpl~e, ail outage, a targel-. power va1.ue
5 (P -- t r g ) i.s s e t as a control gui.del.ine of the ope ratio:^? i i i l i t
52, In the case where a task with a certai.n workload is
processed to operate the :I:'].' system i n considerati.on of
bai-:l:ery c)?ar:acteristics, the t a r g e t power value (I? - t r g ) i.s
the t a r g e t value of a work. r a t e for processj.ng a work with
10 a minimum discharge current and a st:c?ady work r a t e over an
a.l:Lowabl.e processing time.
After a p)owc?r fa:i.l.ure i.:; det:.ect:ed, the s e t t i n g o:l: the
I:a.r:gc?i: power vairie ( " ' : ) start:; ii:rom i:l?e prc?dict-ion of
the; dul-nt:ion o:f the pcjwe:i: :fn:ilLiirii, t:l- it i s , ai-i oiit:iige
1.5 peri.od ( 4 : l ) . llhe du.rati.on of the power fai-lure i s a
durnti on in wh:i.ch the b a t t e r y needs lo he coni:i.nuousl~y
opc?:rxtod.
A:;sumi~riy t h a t a power ila:i.lure i ~ sa rar:c-? emerqency arid
tile provi.i;:ion off :l:'li r;c~:vi.cc has a hi~gl-iei-p ~::i.oi-i&y tllai? i:11(?
20 c:oni:i.iiuat ior? o:f :ll'i: :;crv:i.c::c? ps:.oc.:ess.i.riy c;:lp.,iib.i.:lLi:.i. y as ilndcr
iiormal. c;i.rcumstances, procc:?ss:in.g may be completed before
the end of the power f a i l u r e . Moreove:r, the prredi-cted
value of the d~1rat:ion of the power i:a?.:Lure i.s s e t as the
al.l.owable processing t i m e ? . Tile bat-.kery needs to be
25 contin.uousl.y operated a t l e a s t over tlxc al.lowable
procc?ss:ing ti.mc. :In the case where the cont:orit:s of
p:l::ocess:i.ri.y service, e . g . , I T serv:i.ce for a specj.:fj~c
appl.i.cati.on and a processing time reyuj.reti for the servj.ce
are known, tile processing capabiS.ity oi! speci1:i.c s e r v i c e
5 may have a higher p r i o r i . t y thil~? the contj.nuation of IT
s e r v i c e . in t h i s case, the required processing time of
provided :I,]:' service is :;et as an a.ll.owab:Le procc?:;sing time
whi..:le a required proces:;j~rig ti.me is provided a:; a b a t t e r y
operati-on t5m.e.
10 In the case of a scheduled outage in developed
countries, a government or a power company r e l e a s e s an
outage pe:ri~od beforehiind, and thus the predi-cted vai.ue of: a
power.' :lia:i lurc? pcr:i.ot-i. (:an 1:)e (j(:?r~e:ratebtly t:he 1'01;' i112 i r ~Fi g.
3 , tl-ie I'Oli' 51.2 13aii:ihig t:he i-uncl::i.oii oti access:iiig p1:llilLj.c
15 information or a user speci.fic :il?terface function of
.jnputti.ng the pub1.i.c i.nformal::j..on from the outr;:i.de. I?owci-.
fa:i.l.u~:es caused by ordi.iiary power silc?rt:ayes :i.r ileve.I.opi~~?g
countri.es are correl.a.t:(:id wi.t.1.i power demand u11:l.i.lce power
f, " d r I.ui:es caused 1:)y 111iniari accidentr;. Mos:eovci-, power rie~iia~.id
,?O i . s c.:or~ri:laCet:i w.i i.h wccii.11el: c:oiid.i. L i 011:; :;utll a:; a tc!inperr.ai.iirc~
and a iium:i.di~ty a n d c o i ~ d i t i o n s :l::ei.aLi.!:lg t:o reqi~onai. llurnari
l i f e , for exampl e, peak characl::.er:i.si::i.cs :iin an o f i.ce.
I!'urtherm.ore, the condj.ti.ons of the power restorat:i.on
capabj-lity of power cornpaii:ies do not el-iange i n a short time
25 period. Tl~us, power fai?.ures caused by power s1no:rtagcis can
be predicted by these coxidi.t::i.on:; accord:i.i:lg to a sL:at:i.sti.cal
au.al.ysi.:; tecl:lni.que. 11s an exainple of a : j p e o i i c pcediot;i.on
method, a predj.ction. method according to ti.me s e r i e s
analysis call he used :i.n c~i~sj.de:raL:i.o01l:~ peri.od:i.c:i.Ly and
5 seasonali.ty based. 011. self-correiati.on analysfis oil past
outage peri-od. I11 t h i s case, the POF i n Fig. 3 include:; a
storage mechanism t h a t s t o r e s , as a storage clement or
database, data on past powe:u: fai1.1:s:res. l?url-herrr~ore, the
1?0F has the processing functi.on of :;Lat:i.sti.cal. i1na:l.ysi.s
lo us:i.ng the data. on past power f a i . l u r e s . The preselii:
iirventi.on o11:l.y requires a devi.ce for i.nput:ting or
pretl:icl.il:~g a bal_l::c:r:y operatjon time and does not:::. depend on
. .
?.I spc?(:i.i.! c: iiiput: ticiv:i.ce oi:: a pi:.c?ii:i cCi O I I rnetiiod .
Sub:;eyiic?ntl..y, I..iie :l.oad and thr: power o:i: the ].'I.'
1.5 machi.ne 1.1 for the 1'1' system I i.s predi-cted i.n a predj.cted
or set:. bal:t:ery ope:rat:i~on t:i.ine (S402). In the case where
procecisiny cont:c?nl::; aild the :recjuested proceiis:i.ny amount: 01:
tile coint:cnt:s arc k.n.own i.11, for example, ;I spec:i.al 1:'T
1nachj.n.c for a r;peci~fic app:i.i.cat:?.on, powel: call be ca:l~c~.~:I.ni:crl
2.0 I J ~ S CO~I : ~ ~:c?guci:ii:ed .lLoad i:o detei:m:.i.i>c a p:r:ctl:i.ctcd va~lu.e .
I11 tl?j~sc ase, 1 I : I I I ' 3 has the user specii:.i.c
i-nterface functi.on. of rec:ei.v:i.iig the data from the outs:i.tle,
t:he:reby predi.cti.ng the 1.oad and the power o:C the :T'T machi~ne.
Coi3,sitlering t h a t the ut:i.li.zati~on r a t e of L'T service depends
25 011 1:iuinan acti.v:i.ti.es, the powcr of tile I'T i?iach:i.ne li
contai-ns characterl.sticr; c o r r e i a t e d w:i.t:l;~. huma~?. a c t i v i - t y
cyc:lLes. ':l.'hus, as i11 the predj.ction of an outage per:.i.od,
the power of the I:T machine can be predi-cted in a c e r t a i n
t:i.me period accordjing to i;i.me :ier:i.es anai.ys:is based on
5 se1.f-correlation anal.ysis on past loads and powers of tile
I T machine. 'The tot:a1. amount of power ?.n the IT machine i n
ii prcidicted. battc:t:y operatior, ti.mc can be prild.i.ct:c:d by
caLcu.Latii?y an. :j.ntegra:L :i.n the bat:tery drivj.ng time. As a
p~redic:tion met:hod other than ti.me s e r i e s a n a l y s i s , s:i.mpler
10 stati.st:i.cal processing is avai.l.able t h a t is a calcul.al:ion
method iisi.rig a probab:ii..i. t y density functjon of the t o t a l
amoiliit: o:f powc?r 1i.r con:;i.deratj.ori of mul.ti.vari.abl.e
c:oritl.i.i..iorr:i :;~ic:h d:i c? day o f weeli, a tiroe pel-iod, and a
i-: c?mnpc?~tr:i:li ~:e . 1 : I i 5 . e , I c I ' 5 I . I . I ' 3 j~ricl.i .lcie s
i.5 a storage mechanism t h a t s t o r e s data on past loads and
powers o:f! the :I:T maclli ne as a stzorage e:i.c?iiicnt or database,
aritl t-.he p:roces:;:iLng funct:i.on of stati.r;t:i.ca:l. ana:i.ys:i.s us:i.nq
the d a t a . '1:"I:le ernbodi.ment o:f the? p ~ r e s e ~ ?:it.n .ve~?ti.ono nly
requ:ire,5 a device floi: inpntti.nq 01: pi:cdi.ctinc~ thc? load and
ao tile powcrli oi the 3:'S.' maci-line 1.13. a ba.t:t:.el:y o p e ~ a t i o n tiinc a~id
does not depend on a s p e c i f i c input dev:i.ce or a predi.ctior~.
metzhod.
In si:atj.st:i.cal processing such. as ti.mc? s e r i e s
analys:is used for the predj-ctf~on, a 1.acye a1:nount of daita
25 may require Long calcul.ati.on. In tine case where the
stati.sti.ca1.. method requiring long calculiii:i.on i s used t o
predi.ct a power fai.3.ur.e period and the load and the power
of the I T machiilc ll., the s t a t i : i t i c a l . procci:ssi.ny does not
need to be peri_o~:mecj. each time a power i:a:i.lure occurs. A
5 power f a i l u r e period arid the l.oad and the powe:r of the I T
machine car1 be predicted beforehand when the power supply
i.s normal. The database contai.ili.ny executiorr resu1.ts may
be r e f e r r e d i.11 the event: of a power fa:i.l.ll::re. Advance
p r e d i c t i o n i.s performed at: regul.ar i n t e r v a l s or is
10 opti.onal.ly performed to update the database i n tirne period:;
during whi.ci-i the oi:~l:age per:i.od c h a r a c t e r i s t j c s or the load
and the power chi.a:racl;cir:.i.sl_i.cso f the 1's' maciii~ne arc? cl-langed.
1.11 tl?is case, t h e POI? ii:i.%a aitJ, t:l~io T'l'li' 5:1.:3 :in Fig. :i c?oc;I-l
have a sl:orage mccllai-li~siii that:. istoire?; :l::;i?e l;~rcdj.c;ti.or i-e:sul t i ;
'5 as a storage el.ement or database. The POF 512 and the LTI?
'51.3 each have Itlie fiinc:l:::i..oil o f re:ferr:i.iig to i.he storage
mechari.?.sm i.ri the c?vc?11.1: o:l: il power :i:a:i..i.iirci.
Sll::b~;eyneiil:.:l.y, ittie t:i:oi-a?. power of i:he cool.:i.ng
eqiljpmei?.i: i.11 a bal:'i':c?i:y o]neirai:io~? t:iirne i s predic:l:ed based on
20 i:hc pri?d:i.c.:Leti o.r :jet; b;ti.i.c?ay opc?s:ai:.i.or~ ii~nte ai~d i;l.ic.? S.o;id
arid tile power o:lr t:lie :['I.' miichiaie, and the total. power (S40:3) .
,],. be Ci;: !il.4 i.n Fiiw 3 is a compo~ie~:f~otr p:red:iicl::i.ii(~t he
toi:al. power. 'S'he tota:i. power of the cool~i~re~qgu ipment i n
tile bal:tc?ry operatiori time is predi.cted usiing the total.
25 power of the :IT iitacliii~le, t2la.t i.s, the toi:a? amourit of hcat
i n the batle:ry operatior]. time, and a coef:f:i.ci.ent of
perforlnance (COP) t h a t i s an index of the coolirig
per:l:ormance of the cooliriq equipment. S p e c i f i c a l l y , a
val.ue obtained by dj.v?.dirig the t o t a l power of the 1:'J:
5 machine by the COP i s defined as the t o t a l required power
oi' the cooli.ng equipment i.n the b a t t e r y operat:iorl time.
Fi.y. !5A s11ows the depeiideilce rel.ati.on.sh:i..p among n COT?,
an outsi.de a i r temperature, and a coolj.nq load. As show11
j.11 Fig. 5A, a typical. COP depends on all outside a i r
l o temperatu:ce and a cool.ing load. :In 1;i.q. 5B, a typi.ca1 COP
also depends on. an o i ~ t s i d e ai.r humi.di.ty.
:]:I? the procer;:i o:i' predicti-ng the i:otal. amount. of
c:ool.iincj i n ti k)att:e:ry opjec:t:jior~ (::or~b;:~:oS1~1r l:i.I~:
(PRO C'1'RL) 516 s e t s tile l-.arqel: power va:l.uc? I? . : : ) based oil
i:l?e :i1??:(:)~:.1i1ai:fior1' .k c g o c t - V I I (P.. . . try) :i:;
2u r;c:leci_:iLv(:!:ly :; machi.ne
and the cooli.ng equi.pment. Fj.g. 9 shows the d e t a i l of S.109
for coiltroij.i.ng fhi? power o:i.: tile ]:'I' maci-line and ti:ie cooi.ii1g
s equipment:.
The s e r v e r , t h e storage, the router, and the switch
of the 1'1:' macli:i.~>.c1 1. eacll have a function for co11si.deri.ng ii
tradeoff between pe:rforroance/:rel.iab~.litya nd power. For
example, dynami.~ vol.tage frequency scaling (DVF'S) i.s used
l o to dynnnnical1.y change t:he power supp1.y voltage and the
operai:i.lig frequeilcy of a CPU tllat is a cornpollent of the 3:T
maci-iinc:, enabS.i.nq a i:radeo:f:f betzween process:i.ny capabi.l.i.ty
ar~ii &)ower. 'i'ilc? rlurnbec ol: opc?r:al::i.or~:s o:l: i:I?e powc?r snpp:l y or:
n fan t h a t ]ocr:for~ns a. i.ediindamt operat:io~-It o sec-iiirc
:L5 reli.abii.ity is swit;ched to enab1.e a tradeoff between
ccS..i.ab:i.l.i.i:.y a-il-ld power. A. t:radeof:f: bei:wet?ii tl-ic? peri-orma~~co
and power for a irout:e:~: and a :;w:i.tcil :i.:; cir~abl.etJb. y dyna1n:i.c.
c::ont:rol. on the iiurnber of opc?rat:j.ol? po:ri::; arid t:he 11LIlnbe?l- o:f
processi.nq 1:ater;. 'I'hc cmbodi.rne~?.ot f the pirer;erlt: i.nvcntj.on
20 ii.Lso ~..ricl.ilcic?sa triit-ico:f::l l-)ctwcc?i:i i:l~c? pc..clo.rirlirilc:e and power
of :]load bal.anc:i.riq equi.pnnent siicki as a Ioiid b:,ai.ancer ifor
adjusti.i?y tile load of the 1 ' T system., i.11 addi.:t:i.ori tzo
:i~:l.depei?dent perfonnanc:e coaitroi. on the respecti.ve devj-ces.
The embodi..inei?i: of the present iriverit:i..onl fui:Llier: j.ncludes
25 perfo~rmancc?a nd power c o i ~ t r o lb y software such as task
di.stri.bui:i.on so:ft.ware on the s e r v e r , as well. :is hardware
coiii-.roS., T1.1.e tiic-ilriique di.sc1.osed i.11 the einbodiment of the
p r e s e n t invention only requires control on performance,
e l a i i . . y , anti power i.ri co~:is:i~de?:ai::i.oiol f a i:radco:i':it
5 between p e r f o r m a n c e / r e l i a b i I i t y and power, but the
e:l:nbodi.ment of the present j.nveni:ion is not limi-ted by a
d i f f c r e n c c between spcci.fj..c j.mplementation methods.
Accordi.~:xy i;o the embodimeni: of the presenL: i.nventi.oin,
the capacity of the cool.i.ng equiproeilt j.s coilt:rolled to
:Lo c o n t r o l t h e power o:f: the coo1.ing equipment i n addition t o
the power of the I T machine. Si.nce the coo:i.i.ng capacity of
t:l.~.ec ooi:i.ng equ:i.pm.el:~t:a nd power :reqir:i.:red for t11(.: cool.:i.ng
capai:i.l:y tlc?pc?~idi ipon cont1:-ol. ori ;i revol.ul-.i.on per mjiiut:e
(rprii) of tl-ie fa]:) arid coo:L;iiil: ccjritroi~, the power: :tor the
1s conl.ing equipment i~:j c o n t r o l l e d by the rpnl cont:rol.li.i~q of
the :fan arid by the c o o l a i ~ t control..:l.:i.ng.
Iic?f~?rr~..t~o? q]! 'jig:;. 8'i avid iiR, i:lie oiii-:l.:i.ni? o:f conti:o:l
of: t.Re opci1:-ati.on u n i t !32 wi1.l. be tiescri.hed be1.o~. I!:. iiA
shows a coinpai:al-:ive exnmp:lLc? of a powel: pal:t:cl?n ii? t h e
20 abscrice oLi a co.i.l.dkjor:at:i.ve c:ori.t.rol. oil t l . r c i l:T iriac:lii~iic? ;11:1ir
the cool.i.irg egu:i.pment:. k'1i.g. 813 shows a powe:r piittern
examp1.e in the presence of a col.:laborati.ve control. on the
1'1.' machine arid t:he coo.L:i..ng equipment accord:i.ng t o the
embodi.mel:lt of the present inveni;iori.
Generally, the coolLirly equipmerrt :i.s colitrollcd i:o ;r
covlstallt temperature and humidity based on
te~npe:rai:ure/h~~~i~im .. . t : : r q ) ,
3.5 advance cooling control. is performed such t2iat the power of
t31e cool..:in.g equjpinent exceeds ii rocxi.l:i.rc?d arnoui-lt and
increases nea:!:ly to hlie ta:cgei: powel:. Ilhils, t:he power :slim
of tl1.e 2'1' voaclline avid \:he cool~ihg equ:i.pmeiii; approaciies tile
t:arq'ct power. :I:m tt11.e case where the :IT m;icl?:i.nc consiimes
20 l arcje powcr, ?.o;jd dcSi:i:i:ed conL1:ol. .i.:; pc'rfc)irned t.o decrca:;~
the power: consumptj.or~. ot t:he T'S? mach:i.ne aiciarlLy t o the
t-arget power.
'The t a r g e t power val.ue generated by t:he project l:i~?.i.t
51 is tile prc?tii.ci:ed value of a vneasi powel: coiisumptj.on i.ai a
25 b a t t e r y ope:rated time. 'Sllius, i r ~th e case wliero the power
of the IT machi-ne is small.er than the t a r g e t power va1.1ie a t
a certai.11 time, the project 1::nj.t 53. p r e d i c t s t h a t tlse :['I'
machine wi.11 consume l a r g e r power before or a f t e r the time.
'rilus, j.r~ the case where tile power: of tile T'I' inaclijne iis
5 smaller than the t a r g e t power value a t a c e r t a i n tj.me, tile
power of the cool:i.l?q equipmellt i s increased accor:ding t o a
prediction near1.y to the targel: power vill.ile, which means
t h a t cool~ixlgi ~ spe ri:'ormed beforehaild i:or :fut:u::re heat:
generation (advance coo1j.ng). In the case where the power
1.0 of the I T machj.~le is l a r y e r than the t a r y e t power a t a
ce~.:t:a:i.li time, the power of the I'l' machi-ne i.s decreased,
whi.ch means tl?ai: processi.ng i s postponed t o some iiuture
C ? m e whc?n i:l:~e :l:':Y 1nac:h:ine htis i3 sul:l:jcient. capaci.t:y
(dc+:fci~:men.'t:> :t l.oad) . :i:i.nce a i:c-quc?sl:. t:.o :I:'I' seivi ce ticpolid:;
3.5 upor1 the timing of a user operat:ion, it i.s i~npossible to
perform r eI ' p roce:;:;i.ny b(::fo:~:::elial~dH. owevc?:r, advaisce
cooliing (bleat :il_or;igci) can be perilo~:-mcidi .n prepari~t;ioi:~I-~ .I:
c?xp(:?cted lieilt: geiseration . Moreover:, currentlly :requ:ire(:i
coo:l.i~?gc ai?not: be po:;tponetl Ioecili~se suc:l~ postponelnel~t:
2 0 ,: <- l.. i<.>.c. 2 .,< ~a. Lompxi-ilLir1:::e; LI:I.iC-:~:l lmi.d.iCy dic;;id~;l~i..;.l~~?Ol~!Lio:l .yti -ic?
:rc??:i.abi.i.:it:y o t the :Ir): mach:i.ne. iiowever, process:i.ncj can. be
post:pon.ed (de:fecred) ii~a?11 ai.:l.owance per:i.od dir:r:i.ng wh:i.cli IT
service is not t:i.m:inq cri.tj.cal. and a decrease i ~ n :I'l
processing capacity is a:LS.owabl..e i n an ernergericy !Such. as a
25 power failuire .
The embodi.ment of the present i.nvent:i.on coo~:d?.i:late:l.y
controls the power of the :l'T machiine and the power of the
cooling equipment such t h a t the power sum of the I T machine
arid the cooi.:i.n.g equipment i.s br:ought: cl.oser t o the t a r g e t
ii power by using the c h a r a c t e r i s t i c s oil the :IT machine and
the cooling equipment.
F i g 9 shows a s p e c i ~ f i .c~on t:rol. system flow of thc? 'TI:
machine and the cooling equipment t o perform a
c o l l a b o r a t i v e c o r ~ f r o l j.n Fi.g. BB in. the event of a power
10 fail.ure. Multiple rnethods such as DVI?S and task constra:i.ns
u:i:i.i-ig a load halaricer are avai1.abl.e for tradeoff: control on
t:he pe:rforinance, rel.?.abi.li.ty, arid powei:. o:E tile 3:'T mi1chi11e.
F:.i.g. 9 shows an exa~n~~olfi ?t he coilt:t:ol. o:l a ;]Load hil.!.ance~r.
:I:il ii powel: ia:i..iui:.e mode S O , l:he ope:c-ation i.:lrii.t !i2
1.5 obtains data 011. an 1'1' task ainount L (t:) and a task arnount
sl:aclc(t) current3.y s t o r e d ?.n a staclc (SUOI.) . Furtliermore,
:for. power coi~ti?o:l of tl?c ]:':I1 inac1r:i.l-I(? al-1c.l t h e (i:ool..ir?(~
eqil:i.pmerit, rec~uerjLed power (I? (t) ) f o r proces::i.ng I ) and
( s t a r k (t:) ) i.s ca'l.cul~at:cd (!;002) .
:l:il Liie operat:i.oi? un?~t: !J2, ti?(:! tai:gc?l: powc?r val.ne
(I?,--trg), a COP value, arid a reyuj~red t:ot:al. cooling amount-.
(C sch: Scheduled Coo1.j.ng) are corrected by actual.
measurements on the assumpt:i.ori t h a t a pred.i.cti.on ger~erated
in the p r o j e c t ur1i.t i s ilol: c o r r e c t . 'The t a r g e t power value
25 ( I ? .. . t r y ) is col-1-ected j.n Lhe case where the iiumber of
actual.1.y :inputted tasks i s :]Larger or smilll~er than a
pred?.ction. Iience, i-.kle storage el~cment ( o r database) i.:j
prepared to s t o r e staclc information on r e t e n t i o n of t a s k s ,
a pr:edi.ci:ed val.ue of the stack i.s esti.mated by the
5 projectiori u n i t , and then the pll::edi.cted va1.u.e i s compared
with a ~neasured staclc to c o r r e c t t a r g e t power. The
t a r g e t power val.ue is cori:ect:c?d also iin the case where
1.-ema:in:i.ng b a t t e r y power j.s :]Larger or smaller than a
predi.cted value due to a devi.atj.on of a b a t t e r y
3.0 c h a r a c t e r i s t i c model. In the case where a moni-tored
ternperature/l~umid?.t:y i s higher o:r :l.ower t:.haii an est::i.mated
value, :i.t i s assumed t h a t an actual. COI? of the coo:l.img
c?qii?~pmi?nits dev:i.ated :from a11 r$st:i.~.nat:ed(: (]Ii t.li:ie i:o
~?eiiet:.i-at:i.ola~1 1c1 leakage o:lC kit-at arid vai::j.at:i.ons :in ilje
IS cooli.ng capacj-ty of the cool.ing equipunel~t. Thus, the COP,
the requi.i:ed total. anzollilt: of cooi.i.i?y, avid t l ~ et a r y e t power
v;>.i.uc? arc. c:o:trirec:i:cid. Thc?:;~? c:orrotri:e(l vn'l.~re:; are
sequenti.al:i.y s t o r e d and updated i.11 the sLo:ra.ge element (or
c?at:;i~i?ar,c.) ' I . ' t l : , the ~:c-mai.ni.nrjh xl-:i-e.t:y powc?r, allti
iu t,enq)c.r-;~tu:~:'c/l-ium:i~d:cio.t~y: ~t:rol.a rc: ?l.iway:; 01:. per.i.od.i..cai..l.y
corrected, or an event i:; dc:f?.rri?d for a predet-.ell::m:i.ried
tbres1.lo:l.d vaLue and i.s i n s e r t e d as an i-nterrupt i n t o i:lie
co~itrol. fl.ow when t:he event occurs (5803) .
IT serv:i.ce and power a r e correS.ated wi.th each other.
25 For cxavnple, the? processi.rig capab?..l:.i.ty arid power o:f a web
server are corrclat~ed with each ot:her as shown i n Fig. 1 0 .
A corre.1.ati.01~b etween I T service and powe:r :is used as a
database or m.odc?:i. to calcul.atc power. A process of
ca.i.cu.Lati.aig power from 21 task amount is expressed. as F ( )
5 and a reversed process j.s expressed as F'(). In S804, a
cool.i.ng arrtount (C .- need) required for heat generated by the
power o:E P ( t ) j.s cal.culaLed. In S805, a currei?t cool~?ing
amount; (C -- done) and the :t:equ:i.red coo?.ing amount are
compared wi.tb each other. When vlecessary cooli.ng is
1.0 compl.eted, the process advaiices to SOOh. In the case where
cool.j.nq is stfil.2 necessary, t:he pcocess advallces to S80'7.
For the procesi;:i.ng of S805, the presex~t i.nvent:ion ?.nclt:~de:;
a i;i:o~:aye i+i.emeilt: (01:. dat:.abase) for si:.o~?:Lngt: I?e currei-it
coo:l.i.rig nmounl: i.nl;o~riii.airi.oi-C1 . .. .c loitc. I!'i:.oni S806, jlec:.e:;:.jary
15 coolirrg i.s complet:ed and thus a coo:Li.ng ainount (C (t) ) is 0
a t t h i s point.
J:I? SU06, tlie i:uri:.eiit rrcqnc?st:ed power al?t:I thr! i;;:il-.yet:
power val.uc? are compared w:i.th each1 o t h e r . In the case
where the i:cc(ucr;t:i?d power .is r;ma:I.les- t:hnis t:llc? tiirgc.1: powc~r,
2u a:l.l. the! t:;l:;lc:; arc per.iior:rned to su1:)t:racl a ncccssary coo.l~i.lic~
amount :fronu. an exces:;ive coo.1.i.n.q amouni: (C.. ~d~.e p) . Since? I; 11.
the taslts can be perfo:rrncd, an extra taslc (0 ( t ) ) to be
postponed is 0 (S808) . For S808, the embodj.ment of: the
present. inventi.oii inicl.udes a storage el.emcnt (or tiatabase)
25 C ~. .. dep for st:orj..riy tile cu:rreinL exces:ji.ve coolirig arriount. 11.1
the case where the requested power i.s l a r g e r than. the
t a r g e t power i.n S806, i:he grocess:ing of tlie :I'll taslts i.s
limited by the t a r g e t power value so as to process on1.y the
task of I? - t:rg, and then a cool..:i.iiq amount required :['or the
5 task is subtracted :from the excessive cooling amount, :so
t h a t t h e e x t r a {:ask serves as a task to be postponed
(deferred) (S809).
In S80'7, i.t is decided whether or not the c u r r e n t - y
requested cooling amount meets the preceding excessi.ve
10 coo:Li.ng amount. In the case where the requested cool.ing
amount meets the precedjng exc:essj.ve cooling amount, the
pi:ocess advances t:o S816. :In S81.6, it i.s ticci.ded whether
or not 1:11e currc?~:~t::l.y: rc?quc:sted power :i.s sma:l..I.ei: than tile
tairget: power vi11.ue. :In the ca:ie where t:.hc+ i:-egiie:;i:od poihie/:
1.5 i.s not smal.ler than the t a r g e t power value, the process
advances t o $809. 1:n tile case where the requested power i s
:jma:I. .I crr t:11 a n I:]? c? t:;i rget . r:)i)wi?r v a :I. lie?, ?:l~1i 1. .l'lic! .t:.?ls I< ?;
corcesponci?.ng to (:he 1:equested power arc? performed. 'The
power s l r ~ r i o:F tl?e 'i:':I1 ulacl?:i.i~~;ci1?:1 d i h i ? cool ~ L I I ~ J ei.~i.i:i];~~ni:::i~s ~l:
20 brouglit c1ol;c to l:hc tarqet powcii- vaj~uc by advance cool~:i.nij
control., t h a t i ~ s , excessj.ve coo:Lj~ng o:f P t r g - P ( t ) (S810),
and then a diifilerence between t h e c u r r e n t l y requi.red
cooli.ng amount and {:he excessi.ve cool.:i.ng :i.:i added to the
excessi.ve coolj.ny amourll.
I r l S80'1, i n tlie case where I:::lie requc:;t:ed cool.j.ny
amount does not meet: the exce:j:;:ive cool~j.ng arnouut, t:he
process advances l:o S8l1 t:o decide wh.et:h.er or not: the
current power is smaller than the t a r g e t power value. In
tile case where the c:urrent:ly reyilested power is smal.l.er
5 than the t a r g e t power value, the p:rocess adva~?ces to S810.
In the case where the current power i.s 1.arger than the
target: power va:l.~se, t:he &?roc:r?ss advances to S131 2 to perf;orin
:]load deferred court:ro:l., :L:i.mi.ting the use of t:he :['I' mach:in.e.
F i r s t , the precedi-ng excessive cool.:i.ng iimount i.s ful.3.y used
1.0 to perform a task: (PI( t)) t h a t can. be processed by the
excess:i.ve cooling amount. Additionally, in. order to briny
the power sum of the :I'i' mac11i.ne and tile coo:lin.g equi.prriei~l
cl.ose to tile t a r g e t power, i:einai.i~i~:lq power (12 t r g - I?:!.)
obt<...'i i.. ried afl-ec ti-~ep owei: of: 11' .i.s t.tscii i:ronl Lire l.dxyel.
1.5 power value is di.s,tributed to the I'T machine and the
coo1.i.n.g eqi.:i:i.pment :~.I:Ia rat20 o:l? COi?:l. (S81~3). l . e , ?I
(-i:i:?f:(?r(?s~(:o(l?- power amount 1'1 i 1:'1 ccji-I-espoild-ing to the:
task arnol.i~?.ip: erformed :for the requested poweic ( I ? (t:) ) i.s
c.n:l.r:~s:I.;?teiJa s the t:.a~;.;iacm ovirit: O ( k ) to he post:.posic?tl (!;Rl.il) .
20 I Ly , l i I I 1:. ( 0 ( t: ) ) t:.~:) i:>e posl_ponc+I.
In the comparat:i.vc? c?xa.mpl.e of Fig. 1.2, post:ponemeni:
contro.1 on the t a r g e t power va:l.ue, a cooli.ng amount, arid
the 11'1' machi-ne i~iria1.l.y: i.eaves unprocessed taslts 23 and 24.
liccorclilig to the control. o:E the ernbodj..meri.i; of tile
25 pne:ierii: ;irivei~ti.on, as sl-iowi? :i~r I?.i.g. 1.3, i n Liie case where
the c u r r e n t l y requested power is smaller than the t:.argc?t
power va:l..ue, advaaicc? cool~ing control. is performed, that: i..:;,
cooling is performed beforehand t o accumul.ate Iseat. 111 the
case where the cu.rrea~t:l.y requested power i.s l a r g e r timn the
5 t a r g e t power value, load de:f!erred cont:ro:l. :i.s performed t o
parti.al.1.y l i m i t the use of the I T machine and then process
the !:ask i.n t:he silhsequc?nt cycle?. Thus, the ireqiiested
power i.s kept constarlt a t t:be t a r g e t power va1.u~: a l l the
time. ilddi.tionall.y, any t:ask:j are not l e f t at: the end of a
3.0 power fai.1.ur.e. This i s because advance cooli.ng enables I T
task process:ing up t:o the t a r g e t power val.ue wi.t:.hout
cool.i.ng a t time ' D l and time 'I'2.
i!, i y . :I 4 sl~owsa ri exanip1.e :iri wlh:i.cli ihie same wor:k:l.oa.d
i:i pi-oce:;:;ed ui-ide:~: the conLi:o:i. 01' the eiiibocl:i.iirerit o:f i:lic
1.5 present invention r e g a r d 1 . e ~o~f the processi.ny capabil.:i.ty,
thereby lteepirlg a bat:tery i.i..:te over n power: :iaiI.ure peri.od.
:TI?. l.'i.g. 1.4, ( A ) show:; I:'~-I(r?- c?lat::ioii k>ei:wcic+n pr?wc?r a r i d time,
and (13) shows the rc?lat:i..on between the :cciin;l:i.i~i.rig b a t t e r y
);!owes- ?311(:i '~:.:i~lll(:? 71 ::;(:):l.:i.(:i 11 :i rlc? :3kl<~)wf< (:(')I> t: l:'O'I :I. e?(j I:):> t: !:(+.rll k>?> sc?d
20 on t1.l-ii: embod:irnent: of tiio pr:c?:;cnt .i.~:lve~:it:..i.aoni~d r1 cdott:c?d
.i.i.ne shows unc:ont:rollc:d ]~satt:c?rn. Since the woricl.oad i s kept
oo~?si--ailtt, he :i.ntegra:L of power p ...... ctrl. i.11 the appi.ica!:i.on.
of 17.'-coo:Li.ny col1.aborati.ve control. and the .i.nteqra:i. of
power p conv in. tile ak~seaice of IT.-cooling co1.l.aborati.ve
25 control arc equal to each oLkier from i:i.me ill t o time t 3
(F1i.g. 1.4 ( A ) ) . In the a.pp1.j.cation of :IT:-coo1.i.n.g
co.l.l.i*boratj..ve control, however, a power val~ue i.s brought
closer to a constant value and the r a t e e f f e c t causes only
an actuill. srna.11. decrease i l l remai.ni.l?g b a t t e r y power (Fig.
5 14 (B) ) . In other words, according to the embod:i.ment of
the present invention, a worli i.s proce:j:ied :so as i:o keep
constant a load cur:rerit :i.n coilsid.eirat:ioi:i of the ]:ate ef.fect
Thus, the capacity e:f::f:i.ciency of the b a t t e r y is lnaximjzed
:i.n the processj.ng of a c e r t a i n amount of work i n rr
10 predetermined time.
According t o the control. o:E the embod:i.menl: of the
present: :i.~:rveni:i.ol:i, the pi:ojecti.on u n i t predict::; a power
l:ai.l.urc? pc?:rl.od, tzi-ie batizetry :i.s dead at: ti.me 1-2 :i.n tile
ab:;ei~icc? of the I'i'.-cool~:i~c?:yoi LaboraC~:ve conil::o.l., whe:reas i i ~
1.5 t h e a p p l i c a t i o n of IT-cooling col.laborat:i.ve c o n t r o l , the
b a t t e r y 1.i.f~ remai1:ls froin tl. to t3 j.13 t:he pi:edi.cl:ed power
f a i ~ l ~ u : r)o?c ri.od (1T:i.g. 1.4 (13)) .
li:i desc:r:i.bed above, the ]arc:ient: evnbodi.meiii: can
contj.11liousl.y provide 'Y'l' sel-v:i.c-:c? by ef'fi.~-!i.e~~l:'lI.:yI S ~ Ia- J ~
I storage balriery ul-idcii: c.i.~rcumsLal?ccs wherc: a 1.ong powcii:
outaqe :iirequ.eni:l.y occurs. In other words, a cert:ai.i~
work1.oad car] be processed. with a smal.1er b a t t e r y capacfit-:y
or a l a r g e r work]-oad can. be processed with a c e r t a i n
b a t t e r y capacity.
Second Gmnbodirnen t:
Referring t o i;':i.q, 1L5, an Ir:l>-cod.:i.n co:Li.aborative
control system for an I T machine and cooling equipment
accordiiig to a second cinbodimeili: of the present i.i~vent:ioil
5 w.i:LI be descri-bed below.
Fig. 15 shows an examp1.e o:f an. ]:!I:-coo1.ing
c:ol~laboi:at:i.ve coi?t~:ol. pe:~:r'ormed cii? i-.he I'l' machi.iic? and .t:he
cooling equipment i n Fig. 8 by using a tradeoff between
computing capabi-lity such. as dynami.~ voltage frequency
1.0 scaling (DVFS) and power. A c o ~ l t r o l flow i n t h i s example
i.s app:l.:i.cabl.e al.so when t r u e requested power is riot
confirmed and s t a c k s are d i f f i c u l t to c a l c u l a t e .
1:n a power :fil:i.?.ure mode (S:IL400), ari operatiLon u n i t 5%
obtains power (l?(t)~): eq,u:j.ire(::if ox pi:ocess:i..ng (S:1401). 'Lhe
15 operatiorl ixr1i.l. 52 c o r r e c t s a t a r g e t power value, a COP
val.ue, alid a tot:al. cool.i.ng amount:. A correct::i.on by a st-aclc
;iin.oiil-ii - G:I? l: ii i lied i.)y 1-'7 (:(.)TI 111-0 1. i.3 pev/~l-l~iecL!iii :ic?(i or] a
compai.::i.:ioii bet;ween a predi.ctecl amount of' power Q- p. r e d ( t )
13r;ed hefov.e i:he r:csi:rrec:t:ici~i l:jmc? and an amount c:i' p o w e r
20 (> tioric?(l:) acl.ual.1.y ii:;cci S:or Ill p:i:oc:c?s:;:iLng bc?lio.re [.he
correct::i.on time. The pred:i.ct:etl amoixrlt of power. Q - pred(l:)
before a. c e r t a i n time can be c a l c u l a t e d by integratj-ng t h e
expected power of a. projecti.on u n i t . Thus, according to
the c-,mbodi.lnent o:f the present i.riveiition, :i.n:Eormatioai 011
25 Q pred and 6) - done (S1402) i.s obl.ai.ried, and tklese values are
s t o r e d in a storage e:l.emeiit (o:~: d a t a b a s e ) .
liegardjnq power cont:ro:l on the power o:f: the 1':l.'
machiiile and the power of the coo1.inq equipment, the
curr:er?t:?..y j-nputted power of t:he l'r machine i s f i . r s t 1.im.iteti
5 by a t a r g e t power value (P. ~ t. ~r, g ) (S1.403). The power is
1.imited by s e t t i n g the upper 1.j~mj~t:s of an operat::i.ng voltage
and an. opeirat:iilg f:re-ique~?cy. Jie~ice, 1 ( t i s riot Iairger thaii
I' -t lcg i n the siibsequei:~.i.p rocess:i.ng.
1:n subsequent S1.404, a cooling amount (C .- need)
l o recluj.red for heat generated by the power P (t) is cal.culated.
I:n S1405, a c:urrent cooling amourlt (C done) allti a
~:equii:ed coo:l.i.riq arnoui~t (C .- sch) est:j.inai:ed by the pro:jecti.on
un:i.i. are compared r d i t h each otlieic. :l:n tl3.c case whc?rc?
~:equi.recl coo:l..i.ny 113s beei~. com],~.l.el:eti, Llie pj.oc:css dtlvaiices
15 t o S1.406. In the case where coo:l..ing is sitI.11. necessary,
the proce:;:; advances to S:1.40'7. Frorn S1.406, a cool~i.iig
amount: C ( i : ) -is 0 k,ecause? I-eqiiiu-ecj coc)l31iy liii:; heerr
completed.
:l:i? S1.406, .k.l~(:? (-:i~r.r(?iiiy-, 'l. ~:(?c~~it:st:cj?;>dr >we:t:a ric:! t:l>(:?
20 t a r g e t power valiie? ;i:~r-c: i:oinpareii w:i.t:il. ilacki ot:l~(:?:i:. :l:n t.he
case where the :reqi:iested power i s small.er than the targel:.
power, a work is exetruited wi.t:h a work r a t e of P ( t ) , and
then a coo:l.i..n.g amount required for the work i.s subtracted
froin an excessi-ve cool.in.g amount (C ..... dep) (51408) . In order
25 to upda.t:e tl:ie ]?owc?r arnourit (Q ~ ... done) used i:or :I':r proceiisiily,
the worlc r a t e P ( t ) used for 3:T processi.ng j.s added t:o
Q--done (t) (5141.2) .
in 51406, i n the case where the requested power is
equal. to or .i.a.:cgc?r than the target. power, 1'1' processing j.s
5 li.m.i.ted by the t a r g e t power value, processi.ng i.:~ performed
by P .... t r g , a cooling amount requj-red for the amount of
generated heat is subtracted from an excessive cool.ialg
amount (S1409) , and then P - t r g :i.s added to Q done (t) -.
(S141.2) .
10 112 S1.407, i.t is decided whether or not: the c u r r e n t l y
requested cooli.ng amount (C need) meets the precedj-ng
exce:;si.ve cooi:i.rlg nmol.int. :In .(;he case where tlhe cooiirly
amount meel:s i:'~e precred:i.iii~ excessive cool~i.nq amoii~it, tl:!i?
prjce:;:; adviinoes to :;J.4l.O.
15 Tn 51.41.0, it is decided whether or i?ot t:he curre11t:l.y
requested power :i.s srnal.l.cr i;liari tl.ie t a r g e t power val~ue. I:n
tl3e case wh.ei:.c? tiic? requc?sl:ed power: is n o t sma:I~:lLai- than t.li(+
t a r g e t power val.~ie, the process advances to :51.409. in the
case whcrii the? ~:eql~es.i:cdp ower .i.s :;~iia'I.l.e~i-: l?a~?t: l~i? i:ai:qc-l
0 power va:l.uc, ir G J O C I ~ . i s p~oce:i:jilCi wi.tl.1 tile \i~o:rk i:iti:e of l ? ( j )
correspol?d:i.ng t:o the requested power. ':Che power s111n of the
]:'I1 machi.ne and the coo1.i.ng eyu:i.pmeni:. i.s brought cl.ose to
the t a r g e t power val.ue by advance coo1.j.n.g control., t h a t i s ,
excessive cooiirlg of P -. tx:g -- P ( t ) , arid tlien a di..:fferei?ce
25 lsetweeii t:lie currei-it:ly r:equi.red coo1.iri.y amoul-li: and tile
exce:;si.ve cooling i.s added to the excessi.ve cool.i..rlg amount
(51411.).
I n the case where the requested coolinq amount docs
not: itieet the exces:ji.vc? cooling amou~:>.l;t,: he process advances
5 to S3.43.3 i:o decide whether or not the c u r r e n t l y request:ed
power is smalle:r than the t a r g e t power value. In the case
where the curi:ent:ly req1iest:ecl powcir :is sma:l.S.c.~- than tile
t a r g e t powei: val-ue, the process advances t:o s1.4I.l to
perform advance cool.iny c o n t r o l . In the case whe:re the
:lo current:ly requested power is l a r g e r than the t a r g e t powel:
va:l..ue, load deferred coni:rol. i.s performed t:o 1.j.mit tklc use
of the 117.' machine. I:]-i othel: words, the prececling excessive
cool.i.ng amount j.s :Tilily used to per:i:ocm a work with a i.iorl<.
i:.at:.e (PI. (1;) ) ex.ecui..ah.l.e by the excess:i.vc+ coii1.iri.g cimoui~i.
n.!i (511114) . I-\.ddi.ti.on.ally, i n order to bring the power sum of
the 3:'l.' machir~e and the cool.:i.ng eqil:i.pmc?nt c1.ose to the
t a r g e t p~owc?r., i:c+mi~in:in~p.o~w tw ( I. . .. : . I - 1 i.>i-~irai~?ca?f(l:cl ?r
the poweir of PI. i.s used froin the tilr(jet power val.ue is
cJi st]-i l.>i:itc!t Lo P% iirrd C ( i . ) i.1) !.lii? .I:T r \ ~ i i t : l i i.11(5 aii(i !.IIC?
20 coolinq eqiii.prnc!nt in. a i:;t.i.o ol (:Ol:'::i. ( S : I 4 1 ~ ! > ) . 'l:he? '1:'l.'
maclline :further executes a work with a worlc r-ati.0 of 1)2,
arid thus i l l p~:ocessing is performed whi.1.e beiiiy 1.imi.t;ed by
a work r a t i o o:f P1 -I- P% (SI.41.6). Finally, the amount of
performed cool.i.r~.gC (i:) j.s added to the precedirrg cool.ing
25 amount (C dorle) (5141.'7), and l:l?en tile process acivance:i i:o
the subsequent ti.me. T1ii.s proce.ssi~?gi. :; then looped u1lti.l..
restorat::j.on o:t a power supp1.y. l i f t e r the restorati.on o:f:
the power supply (YES a t S141.8), the process skii.fts t o a
normal operatzio~l mode (5'1.419) . Thi.s processj.ng :is 1.ooped.
5 14s show11 i.11 i5:i.g. 1.5, i.12. the case where t r u e requestzed
power j.s not: confirmed by the appl.i.cat.ior1 of I)VFS, a stack
amount can be cal.cill..ated also by c;ii~ce:l.:l.i.ngl. he conti-01 of
a mi-cro time DVFS or the l i k e a t t:he beginning of the
cont:roi. to confi.rm the t:rue requested power. Also i.n the
2.0 IT-cool.i.ng coll.aboratzive control. on the IT machiile ar~d the
c o o l i ~ i g equipment: wi.ti~. a control-led task processi.ng time of
DVFS or the l:i.lte, the :T':C macl.1:i.rie and tzl:le cooi.i.ny eqi,~i.pme~it
can be coni_ro.L:l..erl a s in 1:':i.g. 9. .I:]? tlie case w1-leri? ti-ilc
power c;.tiii?ot be i..:<>nS!irnredb ut onl.y a stack. amo~intc all be
1.5 ca.:l.culated or t r u e power car1 be confirrued bu't a :;taclc
amount cannot be cal.cul.ated, controS. i.s erliibl.ed by
i-:omb:i.ri:ing tlri! S!low:; of: Ir'iy. 9 I I . I!j. 'I'lie sc:ol;)e o f
the pirese~it j.nveilt:i.oii coni:ai..n:; t:l?.e combihed :fl.ow of Fi~g. 9
a I 1 : J . 1 5 .
'I'i-lc contr:ol o:l: t:he opei:ai::i.o~~ 11ni.i. is bascitl on a powel-.
i!a:i.l.ure period. det:ermj.ned by the projc:ct:i.on iin:i.t arid
p r e d i c t i o n inforrnat~ion on the load and t:he power of the IT
machine. :[:]I -the case where predi.ct:i.ons on the :lLoad and the
power of tlne :I?' machine are not coirrect, the yred:i.cti.ons
25 are corrc?c:l:ed by ii st:acli arnoui?t aiid Q dolie (t) . A power
f a i l u r e period longer than a predicted peri.od i s not
corrected. 'The projectioll 11ni.t can pred:i.ct a power fa:i.lure
period w i t h . a margin so as not to deplete b a t t e r y power,
leavirrg b a t t e r y power f o r s a f e t y stop i n preparation f o ~ r an
5 i n c o r r e c t predicti.on.
I11 power coritrol u s i ~ i q a load balancer or the l i k e in
E'i.g. 9, the ass?-gnment of a t a i l c l~imi.ts l:hc power of tll-lc 1:'T
machi.ne. An executioli method by kaslc assignment c o ~ ? t r o li. s
e f f e c t i v e i n the case where an inputted task amount can be
10 a c t u a l l y rnoni-tored and a task amount retained by postponed
control. of ail :IT tasli can be 1noi:i.itored. I11 a method such
as ll\IFS for c:ontrolliiig a vo:l.tage aild a :f~reyuenc.y, tl-ici
procc?r;s.in.g i::i.une of a task i s c:ont~:ol.l..ed to cont:rol the
powe I: o :f! i..l ic? I: 1'1 ' 111 ;I cil i~n e . ' u s, t.t ic? ret : eri i: i.o il (.I f i; he t a :.s lc
15 appears as an extended task processing time. Geileral.1.y,
ur-iiilie :in vnobi.1.e equipment, taslts are mo:itl.y assiqvled t o
i:l.ri! il' ma cl-li.n e wi i:.ll<,)i~(l2:0 1-1:Fi rma l::i.o~l of pr-occ?ss:i i~?g t :i.~nc
pei:i.od,s, arid the s t a t e of progress i s not i-nformed duri.urg
ill?(? p:roc-:c?:;::j:i.l~~I ~. I . , tlie :;i:aclt i l l . l?ig. 9 c-irnrroi:
20 hi? si~inply used i.n n met:i;iod vuch as IJVb'S :for coni.ro.l.:l.:ii~g
task p~:oces:ii~ng capabil:iLi:y. Since power i.s r e s t r i c t e d by
1lVI;'S a t the ass?-gnment of a taslc, j.t is di.:ffi.cu.:i.t t o
confirm t r u e power requested by the task or c a l c u l a t e a
taslc arrtount to be staclied. 'Thc? ernbodivnerit fin. i'ig. 15
25 i1lu:ji:rates a corltrol f1.oi.r tliaL is applicable i.n Lhe case
where t r u e requested power i.s not confi~cined and a stack is
diff:i.cu:Lt t;o cal.cui.ate.
The present embodiment can continuous1.y provide I T
:;erv.i.ce by effj.cj.ent1.y usi.ng a storaye b a t t e r y under
5 circumsi:ances where a l.ong power outage frequently o c c u r s .
In other words, a certain. worltload can be processed with a
sma1l.e~: b a t t e r y capac::i.t:y o:r a largc?i:- wo:t-kload car be
processed with a c e r t a i n b a t t e r y capaci~ty.
10 'Tl?i.rd Embodi.nnenL
Referring l:o Fi.g. 16, an IT-cooling collaborati.ve
control. system fo:~: ari I:':L machii~c and coo:Li.liy equi.pmen1.
accordi.riy t:o a t:li:i r d embod:i.ment o:l! the p:rcscnt inveni::i.on
1:)e de:scni~bed hei.ow.
1 5 A recovery e f f e c t is arlot;hec b a t t e r y characi:eri.stj.c
t o be considered Co:e eiifi.ci.ent use o:l! a hatl;ery. : C I . ~ tile
r:ei:oviiry c?li.l'etst:, tii.:;c:hal:cjc+ i s stopped a t any t.i.nle dur::j.riy o:~;
a f t e r t;lle di.:;ci-iarye, i:.hereby d.ii:fusi.ng i.01is in an
el.ccti-olLyto r;oli~t:ioi.i~i? a sl:or:aije 1ralrtei.y ,so a s to I>:riiig
20 ti](? ackuill. c;rpnc:j.Ly 01.. i.i~c: bal.l.c?i:-y t::o an :iti(?-,ai.c ap;lc:i.ty.
I:n the above Non-pairc?nk rjocurncalt. 3, higlier capacit-y
e f f i c i e n c y is obtained i n consideration of the recovery
e f f e c t by a di.scharg:i.rig method of decreasi.ng a d:i.sctiarge
current r a t h e r than a disciiargi~ng method of increasirig a
25 d:iscliarge cur-rent wit11 respect to a i:i.me base di.recti.on.
1:11 the controi. :F:l.ows :;liown in F':iqs. 9 and I5
accordillq t o the S:?.rst and secorld embodiments, a deviat:i..or
:from a p r e d i c t i o n is corrected during an operat:ion. by
correct::i.ng a. t a r g e t power value, so t h a t a discharge
5 current changes with the correctior? of the target: power
value. A t thj.s point, j~n t:l?e case where I:T processj.ng
ciipahi.1.i t:y i r i i.mporta~it, a s sl?ow11 i 11 Fi CJ. 6, a c o r r e c t i oil
of the t a r g e t power va:l.ile is per:mi.tted both i11 :i.ncreas:i.ng
and decreasi-ng di.rectioi1s. In. corisiderat:i.on o:f the
10 recovery e f f e c t , as di.scl.osed i.n the above Noii-pat:ent
document 3, hiigher di-scharge e f f i c i e n c : ~? ~osb tained by
:I.i..uni.t:i.l.iga di.scliarge ci.~.r.:~reri?.nt the dec~:easi.ng di.recti.011
wi.tl:~ respect to t;lie tyirne base d:i.i:c:cLj.oli,
8 1> .he p:t:esent c-:ml~oiij.mor~ot:f tile ],ri?sei:~.ti .rrventi.ol~.i s
1.5 devi.sed i r i corlsideratiorl of the :recovery e f f e c t . 111 the
ca:,3e wlicere effici.ei1.t discl1airge o:i the b a t t e r y 5.s inore
i I i I .3 I'l' )r>rc)cess~i i gc apahi 1 it yy, as si~owi-I: i i ~ n ]?in.
1.6, ii c o r ~ r e c t i o lo~f: the t a r g e t powel: val.ue i.s :I.~iin:i.i:ed to
the (dc?(:irei%s j i1q rli rrc?ci: -i on and -i.s i-loit perm -i l: t'c'cl i n l:hc
20 :i.rlc:rea.:ii.ng t3.i.rcici::iLon. in o~:.di?i:. to p~:i?vent a c-iecrease i n I'i'
process:i.nq cap::>b:j.I~t:yi with a monot-one decrc?ase, t:lie l.oad
and the power of: the ?'I' machine can be predi.cted with a
large margin. 2-1 user can. s e l e c t IT processj.n.g capabi-lity
or b a t t e r y discharge e f f i c i e n c y through the US1 i n Fig. 3,
25 allowirlg tile settii1.y of a prc?dict.on 1nargj.n.
According to the embodiment of t h o p r e s e n t i.nvent:ion,
a discharge ciirreiit :i:rom the b a t t e r y i s corr'rrol.:led near1 y
t o a constant c u r r e n t . Thus, hi-gh-efficiency discharge can
be achieved us:i.arg a r a t e e f f e c t and the recovery e : f f e c t .
5 I t should be understood by those s k i l l e d i n the a r t
t h a t various modif ical:ions, combinations, sub-combi.liat:ions
axid al.terat:i.ons rnay occur deper~ding on design requi.i:emclnt:s
arid other :factors iilsoi'ar as they are wi.thin the scope of
the appended claims of the equi.val.ents thereof.
10
What is Cl.a.i.med i s :
1. . A col.laborative comtrol system for ail I T maclii.ne and
a coo:Lirig equj.pment: t h a t cools the :Lli mach:in.e, comysri.si.ng:
5 an uni.nterrupt.ib1.e power supply u17.i.t thal: is capable
of supplying power from a b a t t e r y to the IT machine and t:he
cool.i.ng equipment j.n an even\: o:l: a power fai.l.i~i:c:; and
an ]::I!-cooling col.laborative control. u n i t ,
wherein the unint:erruptibLe power supply unit has a
3.0 fuiiction of coi1trol.l.ing power from the b a t t e r y to i:he :IT
machine arid the cool.ing ec~uipmer~i.t1 1 the event of a faj.l.ure
i.n an extzernal. power siipplLy,
the i'l.'-cool. :i..i?g co.1. 1.aJ:)o:rati ~vec oril:.:rol. u ~i ?t :i.i?cl.~:~dae s
pi:.o:jet:t:i.oii iin.i.i illat pl-edi..c:t:s the poweir fa.i.l.uie and
3.5 p r e d i c t s a l.oad and the power of the I T inaclifine i n the
eve~?.t:o f a power :fai.I.ure, and 2x1 opc?:ral:i.on unj~tt :hal:
lnorrit:(:).t?:i rc?~n~~:i.r~l):ai.t~:ln..g(+ ryp c)w(+.ro f [.he ~ ~ r ~ i ~ > t . c + r..rii~~ky))lle.
power supply un:i.:t t:o coni::~::o:l. powe:r cori:-:uinpt:i.o~? in ti2.e :1:'1:'
mai.:l~i. ne anrl t:.l?e r:ool. i.nq eqrii l2111er? ,:t
' I ? 1J : I.. j. 1 g : I .I ( I1 i ? I I I. I . :. -: I .I , a r;
databases, a rc>l..at:i.onsh.i.p bc?t:ween a coo?.iny c;ipa.ci.t:y of the
cooling equipment and the power consumption. of the coo:Ling
equipment and a r e l a t i o n s h i p between remaining b a t t e r y
power avid an amourlt of disctiarge currerit from the batteiry,
the projecti-on 1111itti as a fu.nctj.ori of setti.ng a
t a r g e t t:otal power consuvnpt:i.c)l? of the :I':C maclii~ie and a
t a r g e t t:otal. power con:iumpt:i.on of the coolj.ng equi.pmenL i.11.
response to a p r e d i c t i o n or an e x t e r n a l input, and
the operatj.011 u n i t coordinivt:el.y controls, based on
5 the set t o t a l power consumpti.ons, power supplied from the
b a t t e r y and consumed by the 1:T machjne and power supp:l.ied
from the balttery a1113 r:onsumed by the coo:l %rig equipment !ill
t:he event of a f a i l u r e in the external power supply.
10 2. The c o l l a b o r a t i v e control system for an 1'7 machine
and cooling equipment according to c1.aj.n~ I,
whe~:e!ii? i n the event of a. fail.ui:c? fir] tlie oxte:r-na:l.
power s~~pr~:i.i..ny , the case where tile power con:;umpt:i.on o:f
t l i c ? I:'7 machine :is s i ~ ~ arleil atj.ve i.o t.he :jet. Lilrget. tot,a:l.
I.!? power consumption, the operat:i.on u n i t perform,? advance
coo1.i~n.g c0ntro.i. t h a t i.ncreases the cool.ing capabi.1.it;y of
triie c:ool~ing (;?;iqiii.prn(+riii~o. ).,r.i.i-~(j sum o:f power consuvript.i.ons
of the 1:'Y mach.i.~ne and t:he cool.ing equipvnclrlt cl.osc? t:o the
t:ai:qet toi:a.l. power col?sllrnpt;j on, a n t
in tlic? c;i:;(? wlie~:e t:l-lci power co~?sirinpl::ioii of LI'I.~? :].'I'
inaciiine is relat:i.ve:l.y large, tthe operation u n i t performs
1.oad deferred control. t h a t decreases the power of the :IT
machine t o bring the sum of the power consnmpt-:i.ons of the
Z'Y machine a i ~ d tile cool.:i.11g equipment close t o the t a r g e t
25 power.
3 . vi, he col.l.aborat.i.ve cont:ro:I. system for an 1:l' milch:ine
and cooling equipment according to claim 2,
furti-lei: c:ompr?.si~:lg a temperature/humi.d:ity senso:r t h a t
5 senses lremperature/l?uini.dity irlformatior? on the
collaborative coritrol system and outside a j ~ r ,
wheireiri i.n thc! case where ii moi~:i.i-ored
tempei:at.ure/h.umidity is higher or lower than ari. estimiited
val-ue, the t a r g e t power value is corrected.
1.0
4. The co1laborat:ive corltrol. system for an :IT macl?:in.e
and coo:Li.n.g equi.pineilt: ac-.cordi.ng to c:i.aj.m 2,
i l ~ l r t h e r compr:i.sing :
<3 daLab.. on .. c.. .. ...
~1;. ; d c~p.-rb:i:.ilL . y avid power: ii:i the I:'].'
1.5 machiine;
a cooi.i.ng ainount database that: si;ores, as an
c?xces.~:i:v~(:~o o:l i.~ng a~~~oi~:nI t:(:,:o o'I i.ng tan~otl~it:~. f(.)t:r.h (+ ~~I(:~\T~IIIc::.~
cool.:.i.ng conti:ol. t-.l.ial: i.iicreases tlhe coo:i..i.ng capabi.l.i.Ly of
the cool.jl?g c:?qi~ipii~r-.iiatn; d
*; t.a.s ,<
Documents