Sign In to Follow Application
View All Documents & Correspondence

Collaborative Control System And Collaborative Control Method For It Machine And Cooling Equipment

Abstract: A collaborative control system for an IT machine and a cooling equipment includes a battery capable of supplying power in the event of a power failure; a temperature/humidity sensor; a controller capable of monitoring remaining battery power  a temperature and a humidity; a controller that predicts a power failure and predicts the load and the power of the IT machine. The system further includes: a storage mechanism that stores  as databases  the relationship between the cooling capability and power consumption of the cooling equipment and the relationship between the remaining battery power and the amount of discharge current from the battery. The controller sets a target total power consumption of the IT machine and the cooling equipment in response to a prediction or an external input. The power consumptions of the IT machine and the cooling equipment are coordinately controlled based on the set target total power consumption.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
26 December 2012
Publication Number
31/2014
Publication Type
INA
Invention Field
ELECTRICAL
Status
Email
Parent Application

Applicants

Hitachi  Ltd.
6-6  Marunouchi 1-chome  Chiyoda-ku  Tokyo 100-8280  Japan

Inventors

1. MATSUMURA Tadayuki
c/o Hitachi  Ltd.  Intellectual Property Group  12th Floor  Marunouchi Center Building  6-1  Marunouchi 1-chome  Chiyoda-ku  Tokyo 100-8220  Japan
2. YAMADA Tetsuya
c/o Hitachi  Ltd.  Intellectual Property Group  12th Floor  Marunouchi Center Building  6-1  Marunouchi 1-chome  Chiyoda-ku  Tokyo 100-8220  Japan

Specification

COL,LABOKA.TTVI.1 CONTROI, SYSTEM iiND COL,I.,IIUORII'I'TVI?. CONTROL ME'TiiOi3 E'OR i:'T MAC1HI:NE RND COOLING EQUIPMENT Backy~:.ound o:f tiie J.n.veiiti.or-i 5 i?iel.d of the :Xnvei3:tj~on. The present invention r e l a t e s to a col.1.aborative corit:.ro:i. system avid a co1.l;iborative control. method f o r avi IT' miichi.r?e and a cool.:i.~:ig cqu:i.pntenL, arid p a r t i c u Larly re:lLates to a col.labor.i~ti.ve co1:it:rol. sy:;tern and a co.ll.abo~:ative l o coa>i:rol. ~netllod which are sui.ta.hl.e for eS::Eicient use of batl:eri..es atid a stab1.e operat:j.ori of an I:']: inachiv-1.e :for an c-:xtc?i?dcd pc::ri.od iin the event: of ar? e l e c t r i c power ifa:i.l.ure o T ij -i.:omt~trc~.::ei t i 1 ce:i.ec:l: e i.c p>owc:r: (hc:i:c?:ir~aY l:.i?x:, "c: l.c?c.: t:.r:jc : powcr." .ii:; i.nd:i.cateci a:; "power") i;ll.ppl.y i:;r [:lie .!.:i.ikc? :i.n a :I5 system. jnclutling the :I'C vnachjine t y p i f i e d by a s e r v e r , t h e cooi..:i.~-igec ~u:i.pmel-itf o:r t;iic: :I:']: mi-lclij.ne, and a large-capac:iit:y b a t i-: c I: y ( I: ':I.' :; y :; t em ) . Doscri.p)l::i.c>n of the 1le:lat:ed iil-t: LII. ~:eq.iLoris such ;is d.evcS.op:i~ng countrio:; wj.Li:~. undevel.oped power i r~:ileastructu.~:esc, ornmcsrcial. power S:aj.lures i.iicLudivig lorig ol.~tagc?s f:rc-iquentl.y occur. 'Thus, in order t o coritiv?uousi.y p:rovide %sIe.r' vice i n such regions, conunerc:ial. power supplies need to be baclted up by b a t t e r i e s 25 or generators. DeveJ.oped c 0 n n t r i . e ~ witl-1. advanced power j.r~.f:rastrll:;ci-i~rtiri:sL so require backup power b a t t e r i - e s i.n preparati.on for commercial. power fai.lures in. cnt.e:cpr.i..se I T service j.11 which co~lt:inll:;ous servi.cc? i s qiiite :imporirant, 5 mi-ssion-critical I T servi.ce, data c:elit:er:j, and. the .]like. For example, a data center i.s provided wi.th a gelleratoi: and a b a t t e r y as backup powcr supp:l.:ies. A techni.que for c f f i c i . e i ~ t i y using a b a t t e r y in n battery-powered system i s disci.osed i.n Non-patent docrilnent 1.0 I., "Design considerations for battery-powered ele(:troni.c:;", M. Pedram arid Q. Wu, 13esign i4utornat:ion Con:ference, 1.999. A.ccord:il?g to techn:.i.qr.::::eds i sclLosc>d i n Noii-patent docilnic?rit. I . i n c~oii:;.i.tlci:i?t.iori (1:Ii a i3ati.er.y c:i-iaract-.c?:rir;i-,ic ca:l.l.ed a r:~.tc! cEl:::c?ct t~ilai: causes a wo:t:l:;:l.ciad ;ivailal:)lc I'i:iiin :]Is a storaye b a t t e r y t o depend 011 the amourit o:f a di.:;charge . : I . , a work:S.oad ac:t:iia.ll~y ava:illabl.e from a k1att:ery vai::ie:; dcpendj.nq upon i:l~.c? iii.story o:f d:i.:iciia~:ge c:u~:rcnt:c;, c?vc?n 1:honqh il total. wo:rl:;l oad remain:; con:;ta~:it:. . Add:i.t:iol~a:l.Iy, i.11 t:echl?iLcji~es disclosed j.11 No]?--pntenl: 2 0 (I(.)(.:IIIIILI :Ij I % il1.1ii 3 , :s y :; t:. c?111 L az ; I< :; a]-c: s< ::Ic-!Id il.:I. c?d Lo (201::1::.: 3 70 J. i.he h i s t o r y of di.scbarye c u r r e n t s , i.mprov:i-ng t:he e:ffi.ci.en.cy of bai.ter:i.es. l\lor::::-patet1.td ocilment: 2: "Battery Aware Slrai,i.c Schedul.:i.ng for Distl:i.buLed Real-Time Embedded Systems", J ~ . 2'5 i:,uo and N.K. Jha, J)es:i.yl? Aut:omai:i.orl Conference, 2001 Non-patent document 3: "Einergy Management fol: Bati:ery-Powered Embedded Syst-.emsn, D. Rakhaiatov and S. Vrudhula, ACM transacti.on on Embedded Computing S ysterns, vol..2, no.3, iiugusl:, 2OU3 5 Japanese Patent Applicati.on Laid-Ope11 Pub?.j.cati.on No. 2008-218352 d i s c l o s e s t h a t the b a t t e r y l i f e of an i1ni.llterruptib1.c p)owe:r- supp:l..y unj.t is extended by coo?.i.ng or heatjilg a bati:c?ry based or? operation :schedule j..nformatj.on before an input power supply i s stopped. 10 Sumnary of the 1:nventi.on u : r e r : ~ . : I y reu;ahI.e :itorage bati:er:i.es are wed ai; i:)ac:ls~~po wer: :;i-ipp:l,:i.es. VarTious :iirorage bai;.i:c?ri.es slicl-i as a :i..c;lci :jt:or;lyc bnt:tcl:.y, a l.:i.i:i~i.i:i~ui i.011 Iiattery, and a nicliel. 1.5 hydrogen b a t t e r y are aval-lable. ]?or an uni.nterrupti.bl.e power supp1.y (UI?S) aci:.:i.ng as a hacliup power supply of a]? :ill ,syst:cim, a :l.c?ild sl.o:t:agc? I?al:i:e:t:y i.:i m;i.i.n.i.y u:;i?cl bec:ciu:;c! of il~: s l~0 w co :ii . I\ cr.ij?rent lll':; iL.5 pl:ovj.dcd mai.i>:l.y foi- sul:jl?'l.ying ]?owi?r :?o L.o ; i l l I: 'I' :; ys i;e~r~u n t i. :I. :I: '1: sorv j.c;c .i. :i ~ro.r:lua: l ~:I. y stopped I~GJ:i .1.1l y i n the evelni, of a,-) einerqency, e . g . , a. commercial. power faj..lui:e. Iiowever, the t.echni.qirc? i.s noi: :ini:ended to suppl.y power for several. hours. A bacliup power silpp1.y system required for a loiiy-~ti.vne coliti~iuous opeu-atj.or~ car1 he 25 cor1:;tructed by ii-i:;Lnl..:l..i.liy ~nul..ti.p?.cI~ eads torage bat:teri.es. I-ioweae~:, each capac:i.t'y of a letid storage b a t t e r y has a large wei.ght arid volunre, so t h a t the number of i.nstallab1.e b a t t e r i e s is limited by physical. constraj.i?.ts such as a floor aicea and a fl.oor i.oad capacity. Ea.ch capacj.i:y of a 5 1ithj.um ion b a t t e r y has a smal.1. weight and vol.urne, which may sa.ti.sfy the physical. c o n s t r a i n t s . l-iowever, li.thium ion b a t t e r i e s are expensj.vc and thus the number of i.rsstall.abl~c? batter:i.es is i.i..m:i.ted by tl1c cost:. For t:iris reason, i.t i.s :i.mportant to effi.cient:ly use a 1.0 li~nj-tedn uuriber of storage b a t t e r i e s t o coilstruct a backup power supp1.y syst:eiii :iLn which t h e storage biitzteries cont:iLnuous:l.y prov:i.dc? I T sei:vi.cc? 1~11 the event of a commc?.~;(:iLa1 pow(:?tr i:ai l.il.rt? of 1.onq hour:; . 1 ' 1 ' tire i:ccl-~.:ri. q1.1c o :if Japanese l.'a i: cini: i.il:jpI . i i-:a ir j Cj1.1 'l:,?~ :i. cl- I 5 Open Pub:Licai:i.on No. 2008-2:1.0352, a b a t t e r y i:i cooled or lieat-etl by a commerc::i.al. powes: :iupp:l..y i.nstead of [:.he power;: of: ;I t:hc? l:>at:tery based on Icnown ope:l:ai_i.o~:~:s ch~?dulLe i~n:forrnai.iori. 4I,:l ,i.:j t:.ecl?~-iiq~:iios i-lei: nppl.i.cab1.e j.n tl1.e eveni-. of the commc:rc:j.a:l. power fai~1.111-ie n an I:'T .system w11e1-I? .t:a.ql 2;c ; I . ~ < ~c?j ~hl?l : l.'o:t:ek& r~~ d Moreover, i:eclin:i.c~iles of the Non--pa.t:cirlt documents I., % and 3 are premised 01.1 mobile co1npui:i.n.g dcrvi ce!; ctc. wh.erel.n taslc groups operate on a. t a r g e t sy:jt:em i s known, and schedul.ing of t:he tasls. is performed i r i advance. lIowevi:r, i t js d:i..ff:icult-. to apply the techn-icjucis o:f the above Non-patent docul:l::enLs i-.o a typi.ciil. L'1' systein i n w11i..(:l1 t:a:ilc gr:onp:i vary with t h e i r operat:i.rlg co11di.t:i.ons while the timing of :il?.l:roduction of taslcs varj.es among users, Thus, ei:fi~c;iel-lt use oi: baL:t:cir:i.c?s i.n a bat~tery- 5 powered 3'T system rernaj~ris an issue t:o be addressed. The present invention has been made i n view of the above problem. It is an object of the present i.nventi.on t o coordinate1.y controi an. I T macliine and cooling equi.pl:l::eni-. for the I'i' 1nact-r:in.e i n an 1'T system where taslcs are hard t o 1.0 be schedul.ed beforehand, thereby acliievilig effj.ci.ei?t use of b a t t e r i e s . A ~:e~".ese~:":al:i~vc?e xamp1.e o:f the prei;c?l::~.L:Ii .i?veni.:iLon. w.i..iL:l k j p cio:.;(::r:.ilx7:~i b c - . I t w . A c~~l.l.a2~o:riit::icvoc~~ ' ~ t r osly st:i?m for an I:?: maciiinc: nn.d ii ccol.ir;.y ~cji:l::i.pincinltl h a t cools .t:.lle .r'T 1.s inachi.ne, comprising: an un.:i.nterruptj.bl.e power supply u n i t 1:ha.l: i.s capiible oil supp.i.yj.ng powel: :froin a b a t t e r y Lo tile i:';l: 1.n;ichi.ne and tile cool.:i.ng ec~u:.i.pment: :i.~i an. civc:nt (>:I: a powel:- :f:ai.l.ure; and an :I:'['.-coo:l~:i~nc.oql ~:l.iiborat:ive coiitro:l. uii:i.t, wlicrcin t:l?.c u.n:i.ntcrrupl_i~b:l.peo wer sup7p:lLy U I - I ~ . ~ : 1 7 3 s a 20 I:u~icl..i.ol~01: coi~~l~i:~o.L]I:.l~ow.re~rq from i:lj.c bdi.i.o~y i.o L.hc 1,'s maci~i.~-a~n.de the coo:i.i.r?g equ:i.pmerit :iin the civei~t: o l a :f:n:iLl.ure i.11 ail ext:erilal power supply, the :I:'T'-c::ool irig col 1.aboratiLve control uniit. inc:l.udes a project:i.on ui1i.t: t:l-lat. predi.ct:s the power : f a i l u r e and p?red:i.cts a load and [-.hep owei: o:f the I T 25 ~nach:i.n.e i . i i the eveiit of a powe:i: : i u r e aind 31-1 opcratioii 11ni.t t i ~ a tm o11i.tor:; l:::emafin:i.~?bq a t t e r y power of the uii%nterl:::irpir.:i.ble power supply ui1i.i. to cor~troi. power consumption i.n the I ' T riachine and the cooliizg equipment, the 1'1:-cooi.i~rig c:o.i.l..abo:cat:j.ve co11tr:o~L llrli~t st:ores, as 5 databases, a relatiorishi.p between a cooli.ng capac1.t:~ of the cool-inq equipment::: and the power c:onsumption of the cooling eyi;ii.pment and a arclati.ons1zi.p betweerr remaining b a t t e r y power and an amourit. of cii.scha:rge current from the b a t t e r y , \:he project::ion. uni.l: has a f:u.ncti.on of setti12.g a target: 10 t o t a l power corisumpt:i.on of the :I'T inachine and a t a r g e t t o t a l power consuinption of the coo:l.:i.iig equipment i.n response Lo a predi.ctiori or an. exire:rr.lil:i. input, arid the opcr:ii ... i.011 I . I I I . ~ i: coor.di.nal:c?I.y coi?i::t:ol.s, baseti oil the s e t t:ot;al. poi.j.cr consuro.pt:i.oui.s, pow$?, ~ i i p p i j e i j S::i:oin t h e b a t t e r y 5 and consumed by the :['I macl:ii.ne and power slipplied from the bat-tery and consumed by the coolilly c?yi:~.i.prni?nit. ri the event: o:F a i'ai.i.iire ill the exter11a:I. power !iiip)-~1.y. Accor-di.riq t o the present :i.i?vtint:i.orl, IIL' servi ce can be contin.i~oi~sy: lp rovidcd by effi..ci.e~?t:l.y~ ii;:i.l.lga :torage 20 bat-Lery iinder cj.ri~i~rnsirai~c:wois~ .c?.ri:t i :l.ol::ry pjowor outacji. f~reque~:ii:l..oyc :cu:l::::s. .::i:iiici~eiil_u se o i a storage b a t t e r y means t:hat a cer-t;ai.n wo~rlcloaci can he processed wi~th a sma:l.l.er b a t t e r y capacity or a i.arger work:ioad can. be processed wi.t:h a c e r t a i n b a t t e r y (2apaci.t~. Rr.ie:f 1)escrj~ption of the Uraw:i.~:i.gs I~mbodime~~otfs the present i.rive~:ii.ion wi.:Ll. be described in d e t a i l based on the following drawings, wi1erej.n : 5 l?i.g. 1 i . l l . u s t r a t e s an 0vera:i.l sl:;ructural exalnpie of a co1.laborati.ve control. system for an I T machine anti cooling equipment according Lo a :first cmbod:i.meult of the prese~nt i.nvei?tio~l; Fig. 2 show:i the oi~tl.i.i~oef a f:Lowchart o:f a :LO col.laborat.ive control. for the ]:':I1 lnacliine and the cooling equ.j.pme~il:: accordi.ng to the f:i..rst cmbodi.men.t:; ].':jig. 3 :i.:l.:l.i.i:;tr-at::c:; a spec:i:[fic st:ru.ctural example o:f a lkhci :iysI::c?~ni ..lii~ic. :.ooct~inaieyl cont:rol.r; t ?:l: 'r mai:iri.ne and. l::lic cco:!.j.r~.y c>cjui.pment acc;ord:i.~:lg t:o ilie :l:;i.r:;t c?~~ik~ol:i:i.ini?i,i_; 15 ~ i g .4 shows the o u t l i n e of the flowchart of a pi:ojection. ur1i.l:: :i.l..i.ustrated i.i-i Fi.g. 1.; 1r'i.g. 5A. :;liow:; an exa.mp:l.c o:f! t:lii? :~:c?:l.at:i.on:;l~;i.pa urlonq A COP, a :I.on.d, and a tempei:.al_ilre of t t ~ ec oo:Li.iig eqili.p)meril-; 1;'i.g. 511 ::l?ows an exninple of the s : c l . a . t 1 1 among ;i ;?o (;(jli, a hi~mi.ci.i.iry a1:ld ;i tc?mper-atui:c of \;he (:oo.l.i.ng cyui.p)n~el:ii.; 1;'i.g. 6 show:; ali i?xampl.e o:f a cor:rectk:i.or~ of: il ta:r:get power val.uc? accordiiig t:o t:hc? f i r s t embod.~.rne~iir; 1;':i.g. '7 shows an examp1.e ofi a r a t e e f f e c t i.n a storage b a t t e r y ; Fig. 8.A shows a compar:atI. and an 5 operation uni.t (OPE) 52. In tzhe case where an exterliill power supply fail.s, the control u n i t 42 d e t e c t s the f a i l u r e . 'Ttien, power supp:l.y from a commercial. power supply 6 t o the :CT system 1. is sw:i.i:clied to power supply from the b a t t e r y system 41. ulicler the cont:ro?. of the IT-cool.ii?g co:Llabora.tj.ve 1.0 coritrol unj.t 5. T11j.s confi.gurati.on f u r t h e r i ~ i c l u d e s a voltyaye i.ogger 7 t h a t records the volt~ages and freque?ici.es o:i! t:hc conmtcrci.al. power suj~p1.y LO p.redi.ct future powe:r i l ? : I:I:OI~I i;he iii?jtory o:l: power i;~i..iiircis. In t:lic I:','--cool.:i..ngc ol. l.abor;3l.i.ve? c;ont:.rol ! y ? n , the 1.5 11nit:s other than the comerci.a.1. power supply 6 are accommodated i.n a closed vesr;c?.l 8, cori.si:i.i;ui:i.ng a c:Losc?d cl~ca.ri:i.nq: iy:;I;enr. 'I'hus, t:l-lie tc~~nper:al:ure/I-ii.in~i.ds~c~rtlys or :i detr?c.ts a i:.emperatu:ce and a i~um:i.tli.i:y i.n irlie i:l.osed vcs:;el. 8 (or i.ndoor:; and 0111:doo1:s) . '/'I?(? 3:'11-~-(700:1:ill(~ ~o'l1aI3oi:at:ive 10 coi~i:rol: jy:;te~r? may bc an op(.!~.ic .i.ei~lri.i.ny: ;y:jt..oio. 'l!tic o-v(:!r;~.l.l. ci.eanj.~ig sy:;l.eru otxl-lier than the com1r1e:rciii.l. power supply 6 (or wit11 a p a r t of the commerci al. power suy:)pl.y 6) may be accommodated i n an indoor space. 1:n t h i s case, the temperature/humj.dity sensor 3 dei;echs a temperai:ure arid a 25 1numi.dity i.n thc space (or i.ndoo~-s and oul.doors) . As descr:i.bcd above, the 1'11-cooling col.laborati.ve cor1l;roi. systesr~ i.ricludes the :IT macI:ii.ne I., the cool.i.ng equipment 1.2 for cool.i.ng the I T machine, the u n i i i t e r i ~ i i b l ep ower supp1.y 4 t h a t car1 supply power :l:rorn 5 the b a t t e r y syst:ein 4 1 (he:reinafter, may be siiunply cal.l.ed a b a t t e r y ) to the I T machine i and the cooli-ng equipment 12 i n tile event of a power fai.:i.ure, i:l-ie t:emperature/humidi.ty sensor 3, the p r o j e c t i o n u n i t 51 t h a t predi-cts power fai.l.ures arid the load and the power of the I T machine i n l o the event of a power faj-lure, and the operation unit 5% t:llat ~noni.torst he remaj.x~.~.nbg atte:ry power of the ~ln.:i..~:iterv:rrpl-:i.hi.pco wer :suppl.y and a temperature and a I I I I ~ .y. , a~itit :he I. i.k c: :iin txlnce en.v:i.c oinmenl: o:i- t l ~ c ?i iisl:a I I ed I'll m;lclli.ric to cont:l:ol. t:l?c I'i' mnc:h.i.ric+ and t:l?e cooI.:i.ilq I5 equj.pment:. Tlie :I:']:.--coo:l.i.ngc o:l:l.aborati.ve cor-ilrol. unit: 5 :i.:i provided w:i.l:h ;I storage mech.an:i.:;m that :ii:.o:rc?:; t1-ie rc?lat::i.onsliip betwc:en the cool.is~g capaci.l:y of the cool.i.ng cqnj.pmenl: ailcl 1:ho powel: co~?.sumpi:i.o~o? f 1:ilie coo1~:ing 20 c?qui.~~~nc?ai::;i i: a dd-'i--,-j.. baE; c ,: ;11:ld ? I: ::3 .L:ov. agc ? IXIC:(;~-I tc 11 :i. is111 (2i)i t. s t o r e s the rel.iitiio1-1stii.p between. r:erna:i.ni.ng b r ~ l i e r y power arsd the amount of discharge cu:rrent froin the b a t t e r y as a database. ']:he projectfion u n i t 51 has the fuxicti~on.o f :~etLisig the t a r g e t t o t a l power corlsui-i~ptioris (su.ppii.ed 2'5 power) of t-h. . e I T Inc- ~-.~- l i f i na:ned the coo:l.i.ny equipn\en.t: ii~ response to a pred:i.cti.on or an i.nput from t h e o u t s i d e . illhe operation u n i t 52 coor:di.vrate:l.y cont:.rol.s the :i'I' machine and the coo:l.j.~ig eqili.pment based on the s e t t a r y e t t o t a l power consumptjons. 'i:l.ius, even :in tire case of a fa?.J.ilre o:i: an 5 input power supply, the I'r-cooling co:L:l.aborative c o n t r o l u n i t 5 can e f f i c i e n t l y use the b a t t e r y system 41. and supply power to tl?c, 1:T machine and the coolj.ng equipment wj.t:hou:i: causing a power i:iii.l.u~:e over a p:redeterm:i.ned time, thereby continuously prov:i.di.nq I'T' servi.ce. % 0 Fig. 2 i.:i a. fl-owchart showing the outl.ilie of a col.:l.aborati.ve control on the 11' rnacl.l.iile and the cooling oqu:i.pmen.t accord:i.ng t:o the :f:i.rst er.nbodi.ment. 'IOic: control (I? i:lre 1. '1.'-coc11. :i.r~(cj (:11I ~: i k > < ~ r ?t~~:: i .ve (;on i : ~ Ix. 1111' :id:. 5 :i. 53 ma i.11: iL\7 c:c,ll~por;ed of ( I ) tlic pro:jcec:l;i.on : : i t !>:I t:>asc?(3 on a 15 predj.(::ti.on tecbni.c~ue and ( 2 ) the operation unit 52 based oil. a meas~i:rement feedbaclt. Lechnique. :l:~r. the pro:ject:ior, i i i l i t 51., a CC)VIJ:.KOI. q~.i:ide.I.:i.~f~oe: r tirc? :ili' rnac1ii.n~ and cooI.i.nq equi.prnent i.s set. based orr. t:bc: pr:ed:iLcl:ion. tec-hniqilc?. :;peci.:Fi.caIIy, the occlJi-i:el?ct: o:f 20 a .i'ai.i.uj:.i? i.11 tlhc cxi_c!:~:-n;i.lp. ower ::;tipply oC i:llc? :l:'l: :.;y:;t.e~t~i .s roomi.t:ored (S200), in. [:he? event o:lr a :l:a:i..Lure (S20:1), a b a t t e r y operat:i.on, t h a t :is, power supp:I.y :i::rom the b a t t e r y system. 4 1 :is s t a r t e d (5202) . A power :fai.:lLure per:i~od :i.n the exter~?.alp. ower supply is predicLed (5203), the load anti Lhe 25 powe:~: of the i:T maclii.ne i n the power f a i l ~ u r ep eriod i.s p:redicted (S204), a rc:yui.red cool.i..ng amount: i.n the power f a i l u r e per:i.od i.s predicted (S205), and then a i:aryc?l: power value f o r power supp1.y from the b a t t e r y system 41 to the LT r;yst:ein .I.. i.s s e t based on tlie:ie resu.l.t::i (S2OO) . 5 In the operation u n i t 52, the i.oad, power, temperature, hurnidi-ty, remaining b a t t e r y power, and on the l.ike of the IT system 1 ace measured based on the cont:.rol guidelille determi.i~.ed i n the project:j.on u11i.t 51. and are corrected by nneasuremei?.t feedbaclc accord:i.ng to t h e c o n t r o l 1.0 guj.de%i.ne; meanwhile, power control is performed on the I11 mac11i.ne axid the cooling equi.pmeiit:. Speci.fi.caily, a teit\pc:rai_ure, a l?um:i.dit:y, reinain:i.ng bai:tery power, asid tile :ioaci ai~d i:lic? power ciii 1;lic-i 1'1.' :;y!;tc?m are rnoi~:itoretl ( : i % O / ) , t!ic ta.rgc!t powcs: viililc? iirld the coc;:Li.ng i.n:formati..c;i~a i:.c? :L!i o p t i o n a l l y correcl-.ed (S%OO), and then the load and cool.i.ng power of t:he :(':I:' sysi:em are co'l.:l.aboral:i~vel~cyo nttro:Lled acco:rdi.i~g t:o tiiesce correcti.o~:i.:; (5209). In. tl:ic? cast? wlhcrc? the I ' rnacll:i.i-rc: corisume:; 1 . 1 power, for exarnpl.~, the o p c r a t i ~ ? gs erver coi-i:;ilrnes :I.arrqe power, the17 "load defei:l"ed ,.:u. ,. cor1ir:o.L" i.s per:.i:o.rmc:d I:o liecp t-11e powc:r su111 of tl-~c:I:']: macl?.i.nc arsd the cool..:i.~ig eyui.pment a t the predetermi~nc?d t a r g e t power. in t:he case where the 1':i' machi.ne consumes smal.1. power, "advarice cooling control" i.s pe:rfo:rmed i:o keep the power sum of t i l e ]:'I machine and the cool.iny equipment, 25 a t tyhe predetermined t a r g e t power. 'llise s e r i e s of operations i.s conti.nued ui1tj.L the recovery of: tile power supply (S210) . 'i'he b a t t e r y operatiori -i.s completed when t h e power supply recovers (5211). L.':ig. 3 i ~ l i u s t r a t e s t::i~e outi.:i.iie of a sy:ii:ern 5 confi-guration for a control. flow of the %'Im' achj.ne and t:he cooling equipment i n Fig. 2. 'The projection unit 51 includes ;I power obstruct:ioil moilfitor (POM) 511 t h a t detect:; the occurrence of a power fail-ure, a power ohstsruction f o r e c a s t u.n:i.t (1'01') 51.2, an I T forecast: uni.t: (ITF) 51.3 t h a t :i.O p r e d i c t s the l.oad and the power of the :IT macli:i.l::ie, a cooling estimat:or (CE) 514 t h a t estimates a required cooI:i.r-ig amount, a user si:)ec:i.:fi~ci. ait:erfa.ce (USI) 53.5 that. r.~ece:ives spc2c:ia.i condi.i::ioiis i:i-oln a user, and a projc:(;ti.on cont:.i ro .I. 1111 :j~t ( 11.0 ' 1) !):I h t h a t dii I::(? rm:i u c? :s 1:i-jc ? i:on t. 1:-ol ~ 15 gui-deline based on those i.nformati.on and qiiverr condi.tion:i. The poweir obstruct::i.oli forecaiii: ur1:i.t 53.2, thc: I:'II forc?casl: u n i t !51.3 khat: p:rredi.cir:i the .I.oad anri t:l?e power of thr: :I:T iiiachil~e, the coo:Lin.g ei;t::j.mai:o:c !jl.il, and the uscii: spi?cif:i.c i.ntei?f:acr !,:Ill5 have storage rnc?cl~iarii.smr!;: j'l.%0, ! I , ! I an d 20 5:Lb0, resp~clcti:vc:I.y. 'Tile sLot:ago ~t~cct::al::s:i.srreisa cil s Lore cor:cespondi.ilg :i.~?f!ormal;i..ona :; a storage eA.ement 01: a database. 'The p r o j e c t i o n cos:::L:ro?. unit ( P O ' I . ) 51.6 :is .- connec%ed to a storage element (or database) 517 t h a t s t o r e s in:torinatiorl suclri a:i bat:tery c h a r a c t e r i s t i c s . Tlie 25 cool.ing esi:ir~?atoir ( I i.:~ col?.riected to a :;Loraye eI.c??nent (or database) 511.8 t h a t s t o r e s ir1formati.on. on the cool..i.~?y capacity arid coo1i.iig power of the cool-ing equipment. The operatzio1-1 u n i t 52 inti-udcs an operation control uriii: ? O. I J ) > %:I anti a storage rnec'~.a~.ii.snr5 22.0 i:)lat Ij s t o r e s , as a :storage el.ement or database, informatiorl :silchi as t a r g e t power val.ue:j from t h e p r o j e c t i o n uriit 51. 'The opecal::i.oii u1-ii.t 53 nieasurcs power i.nformation from the telllpe:rnLure/huvnidi.ty sensor 3 and t:he PDlJ 2 and condiition informati.on on the 3:T system I., and coiitro:Ls the IT system 1.0 1 such tyhat i::lie power sum of the I T mac1ii.ne il1:l.d \:tie cooling equi.pment reaches the t a r g e t power val.ue. The power :i.n:l'ormat;:i.on does not al.ways need t o be i.i?put;ted by the PDll 2. 'J'l~e ljl.llJ 2 may be :repl.ac:ed \dit:li a spec.i.al powe:l- sc?l.isor: o r t l ? c-: :I. :.L Ice . 'The i'l' system L :i.nclucles tlie IT machi.ne (I:'.rM) 11. and t:.l.~c! coo I. i ng equipment ) :I. 2 . '):'he il.' uoacl~i. ne :I. :I. ~..ricl.ildes ;.I server: (SVlI) : I 2 a o : : (RlllII) 2 . 1 a :;toi:.ayc? (S'i'R) 1.14, a ilS?S I: 15, and a system co~~.i:r:o:lu. n i t C'l'lXi:, 1.:1.1. l'l-iat col?.t;rol.s t~li~es(c? Iemeiits. 'S.'l?e col?:r?jql.~rntioof~ ~t: l?c :I:']' mnchii?c ('1:'l;M) %O i:; iiot i:i.mit:cd to t.1.i~ cxninpi.~: o i 1r'j.g. 3. 'S!he s.'I: I I I ~ ( ; ~ I ~ . Y I . C rnay i ~ i c l u d e oi.i?er c?iements s1.ir.h as a swi.tch, 'i'.h.e T'S.' machine 1 , tzhe pi-oject uni 1 . 51, and the operation un.i.t 52 car1 be iilsta1.Led i.n:;i.de or inside and ou.tsi.de the :I:T system :I by dedicated liardware. 'The p:rojection un.i.t 51. avid the 25 opei:ati..ori iir?.i:i: 52 can be prov:i.ded as so:i!tware 01.1 i:lle server 1.1.2 i.n the 17: mach:i.~?e of the 1'11 system. Fig. 4 shows a coi~.Lro:l. gu:i.deli.ne s e t t i n g fl.ow o:il the projecti.on uni.t 51.. In the event of a fail.ur-c of the power snppl.y, :tor i-xiiinpl~e, ail outage, a targel-. power va1.ue 5 (P -- t r g ) i.s s e t as a control gui.del.ine of the ope ratio:^? i i i l i t 52, In the case where a task with a certai.n workload is processed to operate the :I:'].' system i n considerati.on of bai-:l:ery c)?ar:acteristics, the t a r g e t power value (I? - t r g ) i.s the t a r g e t value of a work. r a t e for processj.ng a work with 10 a minimum discharge current and a st:c?ady work r a t e over an a.l:Lowabl.e processing time. After a p)owc?r fa:i.l.ure i.:; det:.ect:ed, the s e t t i n g o:l: the I:a.r:gc?i: power vairie ( " ' : ) start:; ii:rom i:l?e prc?dict-ion of the; dul-nt:ion o:f the pcjwe:i: :fn:ilLiirii, t:l- it i s , ai-i oiit:iige 1.5 peri.od ( 4 : l ) . llhe du.rati.on of the power fai-lure i s a durnti on in wh:i.ch the b a t t e r y needs lo he coni:i.nuousl~y opc?:rxtod. A:;sumi~riy t h a t a power ila:i.lure i ~ sa rar:c-? emerqency arid tile provi.i;:ion off :l:'li r;c~:vi.cc has a hi~gl-iei-p ~::i.oi-i&y tllai? i:11(? 20 c:oni:i.iiuat ior? o:f :ll'i: :;crv:i.c::c? ps:.oc.:ess.i.riy c;:lp.,iib.i.:lLi:.i. y as ilndcr iiormal. c;i.rcumstances, procc:?ss:in.g may be completed before the end of the power f a i l u r e . Moreove:r, the prredi-cted value of the d~1rat:ion of the power i:a?.:Lure i.s s e t as the al.l.owable processing t i m e ? . Tile bat-.kery needs to be 25 contin.uousl.y operated a t l e a s t over tlxc al.lowable procc?ss:ing ti.mc. :In the case where the cont:orit:s of p:l::ocess:i.ri.y service, e . g . , I T serv:i.ce for a specj.:fj~c appl.i.cati.on and a processing time reyuj.reti for the servj.ce are known, tile processing capabiS.ity oi! speci1:i.c s e r v i c e 5 may have a higher p r i o r i . t y thil~? the contj.nuation of IT s e r v i c e . in t h i s case, the required processing time of provided :I,]:' service is :;et as an a.ll.owab:Le procc?:;sing time whi..:le a required proces:;j~rig ti.me is provided a:; a b a t t e r y operati-on t5m.e. 10 In the case of a scheduled outage in developed countries, a government or a power company r e l e a s e s an outage pe:ri~od beforehiind, and thus the predi-cted vai.ue of: a power.' :lia:i lurc? pcr:i.ot-i. (:an 1:)e (j(:?r~e:ratebtly t:he 1'01;' i112 i r ~Fi g. 3 , tl-ie I'Oli' 51.2 13aii:ihig t:he i-uncl::i.oii oti access:iiig p1:llilLj.c 15 information or a user speci.fic :il?terface function of .jnputti.ng the pub1.i.c i.nformal::j..on from the outr;:i.de. I?owci-. fa:i.l.u~:es caused by ordi.iiary power silc?rt:ayes :i.r ileve.I.opi~~?g countri.es are correl.a.t:(:id wi.t.1.i power demand u11:l.i.lce power f, " d r I.ui:es caused 1:)y 111iniari accidentr;. Mos:eovci-, power rie~iia~.id ,?O i . s c.:or~ri:laCet:i w.i i.h wccii.11el: c:oiid.i. L i 011:; :;utll a:; a tc!inperr.ai.iirc~ and a iium:i.di~ty a n d c o i ~ d i t i o n s :l::ei.aLi.!:lg t:o reqi~onai. llurnari l i f e , for exampl e, peak characl::.er:i.si::i.cs :iin an o f i.ce. I!'urtherm.ore, the condj.ti.ons of the power restorat:i.on capabj-lity of power cornpaii:ies do not el-iange i n a short time 25 period. Tl~us, power fai?.ures caused by power s1no:rtagcis can be predicted by these coxidi.t::i.on:; accord:i.i:lg to a sL:at:i.sti.cal au.al.ysi.:; tecl:lni.que. 11s an exainple of a : j p e o i i c pcediot;i.on method, a predj.ction. method according to ti.me s e r i e s analysis call he used :i.n c~i~sj.de:raL:i.o01l:~ peri.od:i.c:i.Ly and 5 seasonali.ty based. 011. self-correiati.on analysfis oil past outage peri-od. I11 t h i s case, the POF i n Fig. 3 include:; a storage mechanism t h a t s t o r e s , as a storage clement or database, data on past powe:u: fai1.1:s:res. l?url-herrr~ore, the 1?0F has the processing functi.on of :;Lat:i.sti.cal. i1na:l.ysi.s lo us:i.ng the data. on past power f a i . l u r e s . The preselii: iirventi.on o11:l.y requires a devi.ce for i.nput:ting or pretl:icl.il:~g a bal_l::c:r:y operatjon time and does not:::. depend on . . ?.I spc?(:i.i.! c: iiiput: ticiv:i.ce oi:: a pi:.c?ii:i cCi O I I rnetiiod . Sub:;eyiic?ntl..y, I..iie :l.oad and thr: power o:i: the ].'I.' 1.5 machi.ne 1.1 for the 1'1' system I i.s predi-cted i.n a predj.cted or set:. bal:t:ery ope:rat:i~on t:i.ine (S402). In the case where procecisiny cont:c?nl::; aild the :recjuested proceiis:i.ny amount: 01: tile coint:cnt:s arc k.n.own i.11, for example, ;I spec:i.al 1:'T 1nachj.n.c for a r;peci~fic app:i.i.cat:?.on, powel: call be ca:l~c~.~:I.ni:crl 2.0 I J ~ S CO~I : ~ ~:c?guci:ii:ed .lLoad i:o detei:m:.i.i>c a p:r:ctl:i.ctcd va~lu.e . I11 tl?j~sc ase, 1 I : I I I ' 3 has the user specii:.i.c i-nterface functi.on. of rec:ei.v:i.iig the data from the outs:i.tle, t:he:reby predi.cti.ng the 1.oad and the power o:C the :T'T machi~ne. Coi3,sitlering t h a t the ut:i.li.zati~on r a t e of L'T service depends 25 011 1:iuinan acti.v:i.ti.es, the powcr of tile I'T i?iach:i.ne li contai-ns characterl.sticr; c o r r e i a t e d w:i.t:l;~. huma~?. a c t i v i - t y cyc:lLes. ':l.'hus, as i11 the predj.ction of an outage per:.i.od, the power of the I:T machine can be predi-cted in a c e r t a i n t:i.me period accordjing to i;i.me :ier:i.es anai.ys:is based on 5 se1.f-correlation anal.ysis on past loads and powers of tile I T machine. 'The tot:a1. amount of power ?.n the IT machine i n ii prcidicted. battc:t:y operatior, ti.mc can be prild.i.ct:c:d by caLcu.Latii?y an. :j.ntegra:L :i.n the bat:tery drivj.ng time. As a p~redic:tion met:hod other than ti.me s e r i e s a n a l y s i s , s:i.mpler 10 stati.st:i.cal processing is avai.l.able t h a t is a calcul.al:ion method iisi.rig a probab:ii..i. t y density functjon of the t o t a l amoiliit: o:f powc?r 1i.r con:;i.deratj.ori of mul.ti.vari.abl.e c:oritl.i.i..iorr:i :;~ic:h d:i c? day o f weeli, a tiroe pel-iod, and a i-: c?mnpc?~tr:i:li ~:e . 1 : I i 5 . e , I c I ' 5 I . I . I ' 3 j~ricl.i .lcie s i.5 a storage mechanism t h a t s t o r e s data on past loads and powers o:f! the :I:T maclli ne as a stzorage e:i.c?iiicnt or database, aritl t-.he p:roces:;:iLng funct:i.on of stati.r;t:i.ca:l. ana:i.ys:i.s us:i.nq the d a t a . '1:"I:le ernbodi.ment o:f the? p ~ r e s e ~ ?:it.n .ve~?ti.ono nly requ:ire,5 a device floi: inpntti.nq 01: pi:cdi.ctinc~ thc? load and ao tile powcrli oi the 3:'S.' maci-line 1.13. a ba.t:t:.el:y o p e ~ a t i o n tiinc a~id does not depend on a s p e c i f i c input dev:i.ce or a predi.ctior~. metzhod. In si:atj.st:i.cal processing such. as ti.mc? s e r i e s analys:is used for the predj-ctf~on, a 1.acye a1:nount of daita 25 may require Long calcul.ati.on. In tine case where the stati.sti.ca1.. method requiring long calculiii:i.on i s used t o predi.ct a power fai.3.ur.e period and the load and the power of the I T machiilc ll., the s t a t i : i t i c a l . procci:ssi.ny does not need to be peri_o~:mecj. each time a power i:a:i.lure occurs. A 5 power f a i l u r e period arid the l.oad and the powe:r of the I T machine car1 be predicted beforehand when the power supply i.s normal. The database contai.ili.ny executiorr resu1.ts may be r e f e r r e d i.11 the event: of a power fa:i.l.ll::re. Advance p r e d i c t i o n i.s performed at: regul.ar i n t e r v a l s or is 10 opti.onal.ly performed to update the database i n tirne period:; during whi.ci-i the oi:~l:age per:i.od c h a r a c t e r i s t j c s or the load and the power chi.a:racl;cir:.i.sl_i.cso f the 1's' maciii~ne arc? cl-langed. 1.11 tl?is case, t h e POI? ii:i.%a aitJ, t:l~io T'l'li' 5:1.:3 :in Fig. :i c?oc;I-l have a sl:orage mccllai-li~siii that:. istoire?; :l::;i?e l;~rcdj.c;ti.or i-e:sul t i ; '5 as a storage el.ement or database. The POF 512 and the LTI? '51.3 each have Itlie fiinc:l:::i..oil o f re:ferr:i.iig to i.he storage mechari.?.sm i.ri the c?vc?11.1: o:l: il power :i:a:i..i.iirci. Sll::b~;eyneiil:.:l.y, ittie t:i:oi-a?. power of i:he cool.:i.ng eqiljpmei?.i: i.11 a bal:'i':c?i:y o]neirai:io~? t:iirne i s predic:l:ed based on 20 i:hc pri?d:i.c.:Leti o.r :jet; b;ti.i.c?ay opc?s:ai:.i.or~ ii~nte ai~d i;l.ic.? S.o;id arid tile power o:lr t:lie :['I.' miichiaie, and the total. power (S40:3) . ,],. be Ci;: !il.4 i.n Fiiw 3 is a compo~ie~:f~otr p:red:iicl::i.ii(~t he toi:al. power. 'S'he tota:i. power of the cool~i~re~qgu ipment i n tile bal:tc?ry operatiori time is predi.cted usiing the total. 25 power of the :IT iitacliii~le, t2la.t i.s, the toi:a? amourit of hcat i n the batle:ry operatior]. time, and a coef:f:i.ci.ent of perforlnance (COP) t h a t i s an index of the coolirig per:l:ormance of the cooliriq equipment. S p e c i f i c a l l y , a val.ue obtained by dj.v?.dirig the t o t a l power of the 1:'J: 5 machine by the COP i s defined as the t o t a l required power oi' the cooli.ng equipment i.n the b a t t e r y operat:iorl time. Fi.y. !5A s11ows the depeiideilce rel.ati.on.sh:i..p among n COT?, an outsi.de a i r temperature, and a coolj.nq load. As show11 j.11 Fig. 5A, a typical. COP depends on all outside a i r l o temperatu:ce and a cool.ing load. :In 1;i.q. 5B, a typi.ca1 COP also depends on. an o i ~ t s i d e ai.r humi.di.ty. :]:I? the procer;:i o:i' predicti-ng the i:otal. amount. of c:ool.iincj i n ti k)att:e:ry opjec:t:jior~ (::or~b;:~:oS1~1r l:i.I~: (PRO C'1'RL) 516 s e t s tile l-.arqel: power va:l.uc? I? . : : ) based oil i:l?e :i1??:(:)~:.1i1ai:fior1' .k c g o c t - V I I (P.. . . try) :i:; 2u r;c:leci_:iLv(:!:ly :; machi.ne and the cooli.ng equi.pment. Fj.g. 9 shows the d e t a i l of S.109 for coiltroij.i.ng fhi? power o:i.: tile ]:'I' maci-line and ti:ie cooi.ii1g s equipment:. The s e r v e r , t h e storage, the router, and the switch of the 1'1:' macli:i.~>.c1 1. eacll have a function for co11si.deri.ng ii tradeoff between pe:rforroance/:rel.iab~.litya nd power. For example, dynami.~ vol.tage frequency scaling (DVF'S) i.s used l o to dynnnnical1.y change t:he power supp1.y voltage and the operai:i.lig frequeilcy of a CPU tllat is a cornpollent of the 3:T maci-iinc:, enabS.i.nq a i:radeo:f:f betzween process:i.ny capabi.l.i.ty ar~ii &)ower. 'i'ilc? rlurnbec ol: opc?r:al::i.or~:s o:l: i:I?e powc?r snpp:l y or: n fan t h a t ]ocr:for~ns a. i.ediindamt operat:io~-It o sec-iiirc :L5 reli.abii.ity is swit;ched to enab1.e a tradeoff between ccS..i.ab:i.l.i.i:.y a-il-ld power. A. t:radeof:f: bei:wet?ii tl-ic? peri-orma~~co and power for a irout:e:~: and a :;w:i.tcil :i.:; cir~abl.etJb. y dyna1n:i.c. c::ont:rol. on the iiurnber of opc?rat:j.ol? po:ri::; arid t:he 11LIlnbe?l- o:f processi.nq 1:ater;. 'I'hc cmbodi.rne~?.ot f the pirer;erlt: i.nvcntj.on 20 ii.Lso ~..ricl.ilcic?sa triit-ico:f::l l-)ctwcc?i:i i:l~c? pc..clo.rirlirilc:e and power of :]load bal.anc:i.riq equi.pnnent siicki as a Ioiid b:,ai.ancer ifor adjusti.i?y tile load of the 1 ' T system., i.11 addi.:t:i.ori tzo :i~:l.depei?dent perfonnanc:e coaitroi. on the respecti.ve devj-ces. The embodi..inei?i: of the present iriverit:i..onl fui:Llier: j.ncludes 25 perfo~rmancc?a nd power c o i ~ t r o lb y software such as task di.stri.bui:i.on so:ft.ware on the s e r v e r , as well. :is hardware coiii-.roS., T1.1.e tiic-ilriique di.sc1.osed i.11 the einbodiment of the p r e s e n t invention only requires control on performance, e l a i i . . y , anti power i.ri co~:is:i~de?:ai::i.oiol f a i:radco:i':it 5 between p e r f o r m a n c e / r e l i a b i I i t y and power, but the e:l:nbodi.ment of the present j.nveni:ion is not limi-ted by a d i f f c r e n c c between spcci.fj..c j.mplementation methods. Accordi.~:xy i;o the embodimeni: of the presenL: i.nventi.oin, the capacity of the cool.i.ng equiproeilt j.s coilt:rolled to :Lo c o n t r o l t h e power o:f: the coo1.ing equipment i n addition t o the power of the I T machine. Si.nce the coo:i.i.ng capacity of t:l.~.ec ooi:i.ng equ:i.pm.el:~t:a nd power :reqir:i.:red for t11(.: cool.:i.ng capai:i.l:y tlc?pc?~idi ipon cont1:-ol. ori ;i revol.ul-.i.on per mjiiut:e (rprii) of tl-ie fa]:) arid coo:L;iiil: ccjritroi~, the power: :tor the 1s conl.ing equipment i~:j c o n t r o l l e d by the rpnl cont:rol.li.i~q of the :fan arid by the c o o l a i ~ t control..:l.:i.ng. Iic?f~?rr~..t~o? q]! 'jig:;. 8'i avid iiR, i:lie oiii-:l.:i.ni? o:f conti:o:l of: t.Re opci1:-ati.on u n i t !32 wi1.l. be tiescri.hed be1.o~. I!:. iiA shows a coinpai:al-:ive exnmp:lLc? of a powel: pal:t:cl?n ii? t h e 20 abscrice oLi a co.i.l.dkjor:at:i.ve c:ori.t.rol. oil t l . r c i l:T iriac:lii~iic? ;11:1ir the cool.i.irg egu:i.pment:. k'1i.g. 813 shows a powe:r piittern examp1.e in the presence of a col.:laborati.ve control. on the 1'1.' machine arid t:he coo.L:i..ng equipment accord:i.ng t o the embodi.mel:lt of the present inveni;iori. Generally, the coolLirly equipmerrt :i.s colitrollcd i:o ;r covlstallt temperature and humidity based on te~npe:rai:ure/h~~~i~im .. . t : : r q ) , 3.5 advance cooling control. is performed such t2iat the power of t31e cool..:in.g equjpinent exceeds ii rocxi.l:i.rc?d arnoui-lt and increases nea:!:ly to hlie ta:cgei: powel:. Ilhils, t:he power :slim of tl1.e 2'1' voaclline avid \:he cool~ihg equ:i.pmeiii; approaciies tile t:arq'ct power. :I:m tt11.e case where the :IT m;icl?:i.nc consiimes 20 l arcje powcr, ?.o;jd dcSi:i:i:ed conL1:ol. .i.:; pc'rfc)irned t.o decrca:;~ the power: consumptj.or~. ot t:he T'S? mach:i.ne aiciarlLy t o the t-arget power. 'The t a r g e t power val.ue generated by t:he project l:i~?.i.t 51 is tile prc?tii.ci:ed value of a vneasi powel: coiisumptj.on i.ai a 25 b a t t e r y ope:rated time. 'Sllius, i r ~th e case wliero the power of the IT machi-ne is small.er than the t a r g e t power va1.1ie a t a certai.11 time, the project 1::nj.t 53. p r e d i c t s t h a t tlse :['I' machine wi.11 consume l a r g e r power before or a f t e r the time. 'rilus, j.r~ the case where tile power: of tile T'I' inaclijne iis 5 smaller than the t a r g e t power value a t a c e r t a i n tj.me, tile power of the cool:i.l?q equipmellt i s increased accor:ding t o a prediction near1.y to the targel: power vill.ile, which means t h a t cool~ixlgi ~ spe ri:'ormed beforehaild i:or :fut:u::re heat: generation (advance coo1j.ng). In the case where the power 1.0 of the I T machj.~le is l a r y e r than the t a r y e t power a t a ce~.:t:a:i.li time, the power of the I'l' machi-ne i.s decreased, whi.ch means tl?ai: processi.ng i s postponed t o some iiuture C ? m e whc?n i:l:~e :l:':Y 1nac:h:ine htis i3 sul:l:jcient. capaci.t:y (dc+:fci~:men.'t:> :t l.oad) . :i:i.nce a i:c-quc?sl:. t:.o :I:'I' seivi ce ticpolid:; 3.5 upor1 the timing of a user operat:ion, it i.s i~npossible to perform r eI ' p roce:;:;i.ny b(::fo:~:::elial~dH. owevc?:r, advaisce cooliing (bleat :il_or;igci) can be perilo~:-mcidi .n prepari~t;ioi:~I-~ .I: c?xp(:?cted lieilt: geiseration . Moreover:, currentlly :requ:ire(:i coo:l.i~?gc ai?not: be po:;tponetl Ioecili~se suc:l~ postponelnel~t: 2 0 ,: <- l.. i<.>.c. 2 .,< ~a. Lompxi-ilLir1:::e; LI:I.iC-:~:l lmi.d.iCy dic;;id~;l~i..;.l~~?Ol~!Lio:l .yti -ic? :rc??:i.abi.i.:it:y o t the :Ir): mach:i.ne. iiowever, process:i.ncj can. be post:pon.ed (de:fecred) ii~a?11 ai.:l.owance per:i.od dir:r:i.ng wh:i.cli IT service is not t:i.m:inq cri.tj.cal. and a decrease i ~ n :I'l processing capacity is a:LS.owabl..e i n an ernergericy !Such. as a 25 power failuire . The embodi.ment of the present i.nvent:i.on coo~:d?.i:late:l.y controls the power of the :l'T machiine and the power of the cooling equipment such t h a t the power sum of the I T machine arid the cooi.:i.n.g equipment i.s br:ought: cl.oser t o the t a r g e t ii power by using the c h a r a c t e r i s t i c s oil the :IT machine and the cooling equipment. F i g 9 shows a s p e c i ~ f i .c~on t:rol. system flow of thc? 'TI: machine and the cooling equipment t o perform a c o l l a b o r a t i v e c o r ~ f r o l j.n Fi.g. BB in. the event of a power 10 fail.ure. Multiple rnethods such as DVI?S and task constra:i.ns u:i:i.i-ig a load halaricer are avai1.abl.e for tradeoff: control on t:he pe:rforinance, rel.?.abi.li.ty, arid powei:. o:E tile 3:'T mi1chi11e. F:.i.g. 9 shows an exa~n~~olfi ?t he coilt:t:ol. o:l a ;]Load hil.!.ance~r. :I:il ii powel: ia:i..iui:.e mode S O , l:he ope:c-ation i.:lrii.t !i2 1.5 obtains data 011. an 1'1' task ainount L (t:) and a task arnount sl:aclc(t) current3.y s t o r e d ?.n a staclc (SUOI.) . Furtliermore, :for. power coi~ti?o:l of tl?c ]:':I1 inac1r:i.l-I(? al-1c.l t h e (i:ool..ir?(~ eqil:i.pmerit, rec~uerjLed power (I? (t) ) f o r proces::i.ng I ) and ( s t a r k (t:) ) i.s ca'l.cul~at:cd (!;002) . :l:il Liie operat:i.oi? un?~t: !J2, ti?(:! tai:gc?l: powc?r val.ne (I?,--trg), a COP value, arid a reyuj~red t:ot:al. cooling amount-. (C sch: Scheduled Coo1.j.ng) are corrected by actual. measurements on the assumpt:i.ori t h a t a pred.i.cti.on ger~erated in the p r o j e c t ur1i.t i s ilol: c o r r e c t . 'The t a r g e t power value 25 ( I ? .. . t r y ) is col-1-ected j.n Lhe case where the iiumber of actual.1.y :inputted tasks i s :]Larger or smilll~er than a pred?.ction. Iience, i-.kle storage el~cment ( o r database) i.:j prepared to s t o r e staclc information on r e t e n t i o n of t a s k s , a pr:edi.ci:ed val.ue of the stack i.s esti.mated by the 5 projectiori u n i t , and then the pll::edi.cted va1.u.e i s compared with a ~neasured staclc to c o r r e c t t a r g e t power. The t a r g e t power val.ue is cori:ect:c?d also iin the case where 1.-ema:in:i.ng b a t t e r y power j.s :]Larger or smaller than a predi.cted value due to a devi.atj.on of a b a t t e r y 3.0 c h a r a c t e r i s t i c model. In the case where a moni-tored ternperature/l~umid?.t:y i s higher o:r :l.ower t:.haii an est::i.mated value, :i.t i s assumed t h a t an actual. COI? of the coo:l.img c?qii?~pmi?nits dev:i.ated :from a11 r$st:i.~.nat:ed(: (]Ii t.li:ie i:o ~?eiiet:.i-at:i.ola~1 1c1 leakage o:lC kit-at arid vai::j.at:i.ons :in ilje IS cooli.ng capacj-ty of the cool.ing equipunel~t. Thus, the COP, the requi.i:ed total. anzollilt: of cooi.i.i?y, avid t l ~ et a r y e t power v;>.i.uc? arc. c:o:trirec:i:cid. Thc?:;~? c:orrotri:e(l vn'l.~re:; are sequenti.al:i.y s t o r e d and updated i.11 the sLo:ra.ge element (or c?at:;i~i?ar,c.) ' I . ' t l : , the ~:c-mai.ni.nrjh xl-:i-e.t:y powc?r, allti iu t,enq)c.r-;~tu:~:'c/l-ium:i~d:cio.t~y: ~t:rol.a rc: ?l.iway:; 01:. per.i.od.i..cai..l.y corrected, or an event i:; dc:f?.rri?d for a predet-.ell::m:i.ried tbres1.lo:l.d vaLue and i.s i n s e r t e d as an i-nterrupt i n t o i:lie co~itrol. fl.ow when t:he event occurs (5803) . IT serv:i.ce and power a r e correS.ated wi.th each other. 25 For cxavnple, the? processi.rig capab?..l:.i.ty arid power o:f a web server are corrclat~ed with each ot:her as shown i n Fig. 1 0 . A corre.1.ati.01~b etween I T service and powe:r :is used as a database or m.odc?:i. to calcul.atc power. A process of ca.i.cu.Lati.aig power from 21 task amount is expressed. as F ( ) 5 and a reversed process j.s expressed as F'(). In S804, a cool.i.ng arrtount (C .- need) required for heat generated by the power o:E P ( t ) j.s cal.culaLed. In S805, a currei?t cool~?ing amount; (C -- done) and the :t:equ:i.red coo?.ing amount are compared wi.tb each other. When vlecessary cooli.ng is 1.0 compl.eted, the process advaiices to SOOh. In the case where cool.j.nq is stfil.2 necessary, t:he pcocess advallces to S80'7. For the procesi;:i.ng of S805, the presex~t i.nvent:ion ?.nclt:~de:; a i;i:o~:aye i+i.emeilt: (01:. dat:.abase) for si:.o~?:Lngt: I?e currei-it coo:l.i.rig nmounl: i.nl;o~riii.airi.oi-C1 . .. .c loitc. I!'i:.oni S806, jlec:.e:;:.jary 15 coolirrg i.s complet:ed and thus a coo:Li.ng ainount (C (t) ) is 0 a t t h i s point. J:I? SU06, tlie i:uri:.eiit rrcqnc?st:ed power al?t:I thr! i;;:il-.yet: power val.uc? are compared w:i.th each1 o t h e r . In the case where the i:cc(ucr;t:i?d power .is r;ma:I.les- t:hnis t:llc? tiirgc.1: powc~r, 2u a:l.l. the! t:;l:;lc:; arc per.iior:rned to su1:)t:racl a ncccssary coo.l~i.lic~ amount :fronu. an exces:;ive coo.1.i.n.q amouni: (C.. ~d~.e p) . Since? I; 11. the taslts can be perfo:rrncd, an extra taslc (0 ( t ) ) to be postponed is 0 (S808) . For S808, the embodj.ment of: the present. inventi.oii inicl.udes a storage el.emcnt (or tiatabase) 25 C ~. .. dep for st:orj..riy tile cu:rreinL exces:ji.ve coolirig arriount. 11.1 the case where the requested power i.s l a r g e r than. the t a r g e t power i.n S806, i:he grocess:ing of tlie :I'll taslts i.s limited by the t a r g e t power value so as to process on1.y the task of I? - t:rg, and then a cool..:i.iiq amount required :['or the 5 task is subtracted :from the excessive cooling amount, :so t h a t t h e e x t r a {:ask serves as a task to be postponed (deferred) (S809). In S80'7, i.t is decided whether or not the c u r r e n t - y requested cooling amount meets the preceding excessi.ve 10 coo:Li.ng amount. In the case where the requested cool.ing amount meets the precedjng exc:essj.ve cooling amount, the pi:ocess advances t:o S816. :In S81.6, it i.s ticci.ded whether or not 1:11e currc?~:~t::l.y: rc?quc:sted power :i.s sma:l..I.ei: than tile tairget: power vi11.ue. :In the ca:ie where t:.hc+ i:-egiie:;i:od poihie/: 1.5 i.s not smal.ler than the t a r g e t power value, the process advances t o $809. 1:n tile case where the requested power i s :jma:I. .I crr t:11 a n I:]? c? t:;i rget . r:)i)wi?r v a :I. lie?, ?:l~1i 1. .l'lic! .t:.?ls I< ?; corcesponci?.ng to (:he 1:equested power arc? performed. 'The power s l r ~ r i o:F tl?e 'i:':I1 ulacl?:i.i~~;ci1?:1 d i h i ? cool ~ L I I ~ J ei.~i.i:i];~~ni:::i~s ~l: 20 brouglit c1ol;c to l:hc tarqet powcii- vaj~uc by advance cool~:i.nij control., t h a t i ~ s , excessj.ve coo:Lj~ng o:f P t r g - P ( t ) (S810), and then a diifilerence between t h e c u r r e n t l y requi.red cooli.ng amount and {:he excessi.ve cool.:i.ng :i.:i added to the excessi.ve coolj.ny amourll. I r l S80'1, i n tlie case where I:::lie requc:;t:ed cool.j.ny amount does not meet: the exce:j:;:ive cool~j.ng arnouut, t:he process advances l:o S8l1 t:o decide wh.et:h.er or not: the current power is smaller than the t a r g e t power value. In tile case where the c:urrent:ly reyilested power is smal.l.er 5 than the t a r g e t power value, the p:rocess adva~?ces to S810. In the case where the current power i.s 1.arger than the target: power va:l.~se, t:he &?roc:r?ss advances to S131 2 to perf;orin :]load deferred court:ro:l., :L:i.mi.ting the use of t:he :['I' mach:in.e. F i r s t , the precedi-ng excessive cool.:i.ng iimount i.s ful.3.y used 1.0 to perform a task: (PI( t)) t h a t can. be processed by the excess:i.ve cooling amount. Additionally, in. order to briny the power sum of the :I'i' mac11i.ne and tile coo:lin.g equi.prriei~l cl.ose to tile t a r g e t power, i:einai.i~i~:lq power (12 t r g - I?:!.) obt<...'i i.. ried afl-ec ti-~ep owei: of: 11' .i.s t.tscii i:ronl Lire l.dxyel. 1.5 power value is di.s,tributed to the I'T machine and the coo1.i.n.g eqi.:i:i.pment :~.I:Ia rat20 o:l? COi?:l. (S81~3). l . e , ?I (-i:i:?f:(?r(?s~(:o(l?- power amount 1'1 i 1:'1 ccji-I-espoild-ing to the: task arnol.i~?.ip: erformed :for the requested poweic ( I ? (t:) ) i.s c.n:l.r:~s:I.;?teiJa s the t:.a~;.;iacm ovirit: O ( k ) to he post:.posic?tl (!;Rl.il) . 20 I Ly , l i I I 1:. ( 0 ( t: ) ) t:.~:) i:>e posl_ponc+I. In the comparat:i.vc? c?xa.mpl.e of Fig. 1.2, post:ponemeni: contro.1 on the t a r g e t power va:l.ue, a cooli.ng amount, arid the 11'1' machi-ne i~iria1.l.y: i.eaves unprocessed taslts 23 and 24. liccorclilig to the control. o:E the ernbodj..meri.i; of tile 25 pne:ierii: ;irivei~ti.on, as sl-iowi? :i~r I?.i.g. 1.3, i n Liie case where the c u r r e n t l y requested power is smaller than the t:.argc?t power va:l..ue, advaaicc? cool~ing control. is performed, that: i..:;, cooling is performed beforehand t o accumul.ate Iseat. 111 the case where the cu.rrea~t:l.y requested power i.s l a r g e r timn the 5 t a r g e t power value, load de:f!erred cont:ro:l. :i.s performed t o parti.al.1.y l i m i t the use of the I T machine and then process the !:ask i.n t:he silhsequc?nt cycle?. Thus, the ireqiiested power i.s kept constarlt a t t:be t a r g e t power va1.u~: a l l the time. ilddi.tionall.y, any t:ask:j are not l e f t at: the end of a 3.0 power fai.1.ur.e. This i s because advance cooli.ng enables I T task process:ing up t:o the t a r g e t power val.ue wi.t:.hout cool.i.ng a t time ' D l and time 'I'2. i!, i y . :I 4 sl~owsa ri exanip1.e :iri wlh:i.cli ihie same wor:k:l.oa.d i:i pi-oce:;:;ed ui-ide:~: the conLi:o:i. 01' the eiiibocl:i.iirerit o:f i:lic 1.5 present invention r e g a r d 1 . e ~o~f the processi.ny capabil.:i.ty, thereby lteepirlg a bat:tery i.i..:te over n power: :iaiI.ure peri.od. :TI?. l.'i.g. 1.4, ( A ) show:; I:'~-I(r?- c?lat::ioii k>ei:wcic+n pr?wc?r a r i d time, and (13) shows the rc?lat:i..on between the :cciin;l:i.i~i.rig b a t t e r y );!owes- ?311(:i '~:.:i~lll(:? 71 ::;(:):l.:i.(:i 11 :i rlc? :3kl<~)wf< (:(')I> t: l:'O'I :I. e?(j I:):> t: !:(+.rll k>?> sc?d 20 on t1.l-ii: embod:irnent: of tiio pr:c?:;cnt .i.~:lve~:it:..i.aoni~d r1 cdott:c?d .i.i.ne shows unc:ont:rollc:d ]~satt:c?rn. Since the woricl.oad i s kept oo~?si--ailtt, he :i.ntegra:L of power p ...... ctrl. i.11 the appi.ica!:i.on. of 17.'-coo:Li.ny col1.aborati.ve control. and the .i.nteqra:i. of power p conv in. tile ak~seaice of IT.-cooling co1.l.aborati.ve 25 control arc equal to each oLkier from i:i.me ill t o time t 3 (F1i.g. 1.4 ( A ) ) . In the a.pp1.j.cation of :IT:-coo1.i.n.g co.l.l.i*boratj..ve control, however, a power val~ue i.s brought closer to a constant value and the r a t e e f f e c t causes only an actuill. srna.11. decrease i l l remai.ni.l?g b a t t e r y power (Fig. 5 14 (B) ) . In other words, according to the embod:i.ment of the present invention, a worli i.s proce:j:ied :so as i:o keep constant a load cur:rerit :i.n coilsid.eirat:ioi:i of the ]:ate ef.fect Thus, the capacity e:f::f:i.ciency of the b a t t e r y is lnaximjzed :i.n the processj.ng of a c e r t a i n amount of work i n rr 10 predetermined time. According t o the control. o:E the embod:i.menl: of the present: :i.~:rveni:i.ol:i, the pi:ojecti.on u n i t predict::; a power l:ai.l.urc? pc?:rl.od, tzi-ie batizetry :i.s dead at: ti.me 1-2 :i.n tile ab:;ei~icc? of the I'i'.-cool~:i~c?:yoi LaboraC~:ve conil::o.l., whe:reas i i ~ 1.5 t h e a p p l i c a t i o n of IT-cooling col.laborat:i.ve c o n t r o l , the b a t t e r y 1.i.f~ remai1:ls froin tl. to t3 j.13 t:he pi:edi.cl:ed power f a i ~ l ~ u : r)o?c ri.od (1T:i.g. 1.4 (13)) . li:i desc:r:i.bed above, the ]arc:ient: evnbodi.meiii: can contj.11liousl.y provide 'Y'l' sel-v:i.c-:c? by ef'fi.~-!i.e~~l:'lI.:yI S ~ Ia- J ~ I storage balriery ul-idcii: c.i.~rcumsLal?ccs wherc: a 1.ong powcii: outaqe :iirequ.eni:l.y occurs. In other words, a cert:ai.i~ work1.oad car] be processed. with a smal.1er b a t t e r y capacfit-:y or a l a r g e r work]-oad can. be processed with a c e r t a i n b a t t e r y capacity. Second Gmnbodirnen t: Referring t o i;':i.q, 1L5, an Ir:l>-cod.:i.n co:Li.aborative control system for an I T machine and cooling equipment accordiiig to a second cinbodimeili: of the present i.i~vent:ioil 5 w.i:LI be descri-bed below. Fig. 15 shows an examp1.e o:f an. ]:!I:-coo1.ing c:ol~laboi:at:i.ve coi?t~:ol. pe:~:r'ormed cii? i-.he I'l' machi.iic? and .t:he cooling equipment i n Fig. 8 by using a tradeoff between computing capabi-lity such. as dynami.~ voltage frequency 1.0 scaling (DVFS) and power. A c o ~ l t r o l flow i n t h i s example i.s app:l.:i.cabl.e al.so when t r u e requested power is riot confirmed and s t a c k s are d i f f i c u l t to c a l c u l a t e . 1:n a power :fil:i.?.ure mode (S:IL400), ari operatiLon u n i t 5% obtains power (l?(t)~): eq,u:j.ire(::if ox pi:ocess:i..ng (S:1401). 'Lhe 15 operatiorl ixr1i.l. 52 c o r r e c t s a t a r g e t power value, a COP val.ue, alid a tot:al. cool.i.ng amount:. A correct::i.on by a st-aclc ;iin.oiil-ii - G:I? l: ii i lied i.)y 1-'7 (:(.)TI 111-0 1. i.3 pev/~l-l~iecL!iii :ic?(i or] a compai.::i.:ioii bet;ween a predi.ctecl amount of' power Q- p. r e d ( t ) 13r;ed hefov.e i:he r:csi:rrec:t:ici~i l:jmc? and an amount c:i' p o w e r 20 (> tioric?(l:) acl.ual.1.y ii:;cci S:or Ill p:i:oc:c?s:;:iLng bc?lio.re [.he correct::i.on time. The pred:i.ct:etl amoixrlt of power. Q - pred(l:) before a. c e r t a i n time can be c a l c u l a t e d by integratj-ng t h e expected power of a. projecti.on u n i t . Thus, according to the c-,mbodi.lnent o:f the present i.riveiition, :i.n:Eormatioai 011 25 Q pred and 6) - done (S1402) i.s obl.ai.ried, and tklese values are s t o r e d in a storage e:l.emeiit (o:~: d a t a b a s e ) . liegardjnq power cont:ro:l on the power o:f: the 1':l.' machiiile and the power of the coo1.inq equipment, the curr:er?t:?..y j-nputted power of t:he l'r machine i s f i . r s t 1.im.iteti 5 by a t a r g e t power value (P. ~ t. ~r, g ) (S1.403). The power is 1.imited by s e t t i n g the upper 1.j~mj~t:s of an operat::i.ng voltage and an. opeirat:iilg f:re-ique~?cy. Jie~ice, 1 ( t i s riot Iairger thaii I' -t lcg i n the siibsequei:~.i.p rocess:i.ng. 1:n subsequent S1.404, a cooling amount (C .- need) l o recluj.red for heat generated by the power P (t) is cal.culated. I:n S1405, a c:urrent cooling amourlt (C done) allti a ~:equii:ed coo:l.i.riq arnoui~t (C .- sch) est:j.inai:ed by the pro:jecti.on un:i.i. are compared r d i t h each otlieic. :l:n tl3.c case whc?rc? ~:equi.recl coo:l..i.ny 113s beei~. com],~.l.el:eti, Llie pj.oc:css dtlvaiices 15 t o S1.406. In the case where coo:l..ing is sitI.11. necessary, the proce:;:; advances to S:1.40'7. Frorn S1.406, a cool~i.iig amount: C ( i : ) -is 0 k,ecause? I-eqiiiu-ecj coc)l31iy liii:; heerr completed. :l:i? S1.406, .k.l~(:? (-:i~r.r(?iiiy-, 'l. ~:(?c~~it:st:cj?;>dr >we:t:a ric:! t:l>(:? 20 t a r g e t power valiie? ;i:~r-c: i:oinpareii w:i.t:il. ilacki ot:l~(:?:i:. :l:n t.he case where the :reqi:iested power i s small.er than the targel:. power, a work is exetruited wi.t:h a work r a t e of P ( t ) , and then a coo:l.i..n.g amount required for the work i.s subtracted froin an excessi-ve cool.in.g amount (C ..... dep) (51408) . In order 25 to upda.t:e tl:ie ]?owc?r arnourit (Q ~ ... done) used i:or :I':r proceiisiily, the worlc r a t e P ( t ) used for 3:T processi.ng j.s added t:o Q--done (t) (5141.2) . in 51406, i n the case where the requested power is equal. to or .i.a.:cgc?r than the target. power, 1'1' processing j.s 5 li.m.i.ted by the t a r g e t power value, processi.ng i.:~ performed by P .... t r g , a cooling amount requj-red for the amount of generated heat is subtracted from an excessive cool.ialg amount (S1409) , and then P - t r g :i.s added to Q done (t) -. (S141.2) . 10 112 S1.407, i.t is decided whether or not: the c u r r e n t l y requested cooli.ng amount (C need) meets the precedj-ng exce:;si.ve cooi:i.rlg nmol.int. :In .(;he case where tlhe cooiirly amount meel:s i:'~e precred:i.iii~ excessive cool~i.nq amoii~it, tl:!i? prjce:;:; adviinoes to :;J.4l.O. 15 Tn 51.41.0, it is decided whether or i?ot t:he curre11t:l.y requested power :i.s srnal.l.cr i;liari tl.ie t a r g e t power val~ue. I:n tl3e case wh.ei:.c? tiic? requc?sl:ed power: is n o t sma:I~:lLai- than t.li(+ t a r g e t power val.~ie, the process advances to :51.409. in the case whcrii the? ~:eql~es.i:cdp ower .i.s :;~iia'I.l.e~i-: l?a~?t: l~i? i:ai:qc-l 0 power va:l.uc, ir G J O C I ~ . i s p~oce:i:jilCi wi.tl.1 tile \i~o:rk i:iti:e of l ? ( j ) correspol?d:i.ng t:o the requested power. ':Che power s111n of the ]:'I1 machi.ne and the coo1.i.ng eyu:i.pmeni:. i.s brought cl.ose to the t a r g e t power val.ue by advance coo1.j.n.g control., t h a t i s , excessive cooiirlg of P -. tx:g -- P ( t ) , arid tlien a di..:fferei?ce 25 lsetweeii t:lie currei-it:ly r:equi.red coo1.iri.y amoul-li: and tile exce:;si.ve cooling i.s added to the excessi.ve cool.i..rlg amount (51411.). I n the case where the requested coolinq amount docs not: itieet the exces:ji.vc? cooling amou~:>.l;t,: he process advances 5 to S3.43.3 i:o decide whether or not the c u r r e n t l y request:ed power is smalle:r than the t a r g e t power value. In the case where the curi:ent:ly req1iest:ecl powcir :is sma:l.S.c.~- than tile t a r g e t powei: val-ue, the process advances t:o s1.4I.l to perform advance cool.iny c o n t r o l . In the case whe:re the :lo current:ly requested power is l a r g e r than the t a r g e t powel: va:l..ue, load deferred coni:rol. i.s performed t:o 1.j.mit tklc use of the 117.' machine. I:]-i othel: words, the prececling excessive cool.i.ng amount j.s :Tilily used to per:i:ocm a work with a i.iorl<. i:.at:.e (PI. (1;) ) ex.ecui..ah.l.e by the excess:i.vc+ coii1.iri.g cimoui~i. n.!i (511114) . I-\.ddi.ti.on.ally, i n order to bring the power sum of the 3:'l.' machir~e and the cool.:i.ng eqil:i.pmc?nt c1.ose to the t a r g e t p~owc?r., i:c+mi~in:in~p.o~w tw ( I. . .. : . I - 1 i.>i-~irai~?ca?f(l:cl ?r the poweir of PI. i.s used froin the tilr(jet power val.ue is cJi st]-i l.>i:itc!t Lo P% iirrd C ( i . ) i.1) !.lii? .I:T r \ ~ i i t : l i i.11(5 aii(i !.IIC? 20 coolinq eqiii.prnc!nt in. a i:;t.i.o ol (:Ol:'::i. ( S : I 4 1 ~ ! > ) . 'l:he? '1:'l.' maclline :further executes a work with a worlc r-ati.0 of 1)2, arid thus i l l p~:ocessing is performed whi.1.e beiiiy 1.imi.t;ed by a work r a t i o o:f P1 -I- P% (SI.41.6). Finally, the amount of performed cool.i.r~.gC (i:) j.s added to the precedirrg cool.ing 25 amount (C dorle) (5141.'7), and l:l?en tile process acivance:i i:o the subsequent ti.me. T1ii.s proce.ssi~?gi. :; then looped u1lti.l.. restorat::j.on o:t a power supp1.y. l i f t e r the restorati.on o:f: the power supply (YES a t S141.8), the process skii.fts t o a normal operatzio~l mode (5'1.419) . Thi.s processj.ng :is 1.ooped. 5 14s show11 i.11 i5:i.g. 1.5, i.12. the case where t r u e requestzed power j.s not: confirmed by the appl.i.cat.ior1 of I)VFS, a stack amount can be cal.cill..ated also by c;ii~ce:l.:l.i.ngl. he conti-01 of a mi-cro time DVFS or the l i k e a t t:he beginning of the cont:roi. to confi.rm the t:rue requested power. Also i.n the 2.0 IT-cool.i.ng coll.aboratzive control. on the IT machiile ar~d the c o o l i ~ i g equipment: wi.ti~. a control-led task processi.ng time of DVFS or the l:i.lte, the :T':C macl.1:i.rie and tzl:le cooi.i.ny eqi,~i.pme~it can be coni_ro.L:l..erl a s in 1:':i.g. 9. .I:]? tlie case w1-leri? ti-ilc power c;.tiii?ot be i..:<>nS!irnredb ut onl.y a stack. amo~intc all be 1.5 ca.:l.culated or t r u e power car1 be confirrued bu't a :;taclc amount cannot be cal.cul.ated, controS. i.s erliibl.ed by i-:omb:i.ri:ing tlri! S!low:; of: Ir'iy. 9 I I . I!j. 'I'lie sc:ol;)e o f the pirese~it j.nveilt:i.oii coni:ai..n:; t:l?.e combihed :fl.ow of Fi~g. 9 a I 1 : J . 1 5 . 'I'i-lc contr:ol o:l: t:he opei:ai::i.o~~ 11ni.i. is bascitl on a powel-. i!a:i.l.ure period. det:ermj.ned by the projc:ct:i.on iin:i.t arid p r e d i c t i o n inforrnat~ion on the load and t:he power of the IT machine. :[:]I -the case where predi.ct:i.ons on the :lLoad and the power of tlne :I?' machine are not coirrect, the yred:i.cti.ons 25 are corrc?c:l:ed by ii st:acli arnoui?t aiid Q dolie (t) . A power f a i l u r e period longer than a predicted peri.od i s not corrected. 'The projectioll 11ni.t can pred:i.ct a power fa:i.lure period w i t h . a margin so as not to deplete b a t t e r y power, leavirrg b a t t e r y power f o r s a f e t y stop i n preparation f o ~ r an 5 i n c o r r e c t predicti.on. I11 power coritrol u s i ~ i q a load balancer or the l i k e in E'i.g. 9, the ass?-gnment of a t a i l c l~imi.ts l:hc power of tll-lc 1:'T machi.ne. An executioli method by kaslc assignment c o ~ ? t r o li. s e f f e c t i v e i n the case where an inputted task amount can be 10 a c t u a l l y rnoni-tored and a task amount retained by postponed control. of ail :IT tasli can be 1noi:i.itored. I11 a method such as ll\IFS for c:ontrolliiig a vo:l.tage aild a :f~reyuenc.y, tl-ici procc?r;s.in.g i::i.une of a task i s c:ont~:ol.l..ed to cont:rol the powe I: o :f! i..l ic? I: 1'1 ' 111 ;I cil i~n e . ' u s, t.t ic? ret : eri i: i.o il (.I f i; he t a :.s lc 15 appears as an extended task processing time. Geileral.1.y, ur-iiilie :in vnobi.1.e equipment, taslts are mo:itl.y assiqvled t o i:l.ri! il' ma cl-li.n e wi i:.ll<,)i~(l2:0 1-1:Fi rma l::i.o~l of pr-occ?ss:i i~?g t :i.~nc pei:i.od,s, arid the s t a t e of progress i s not i-nformed duri.urg ill?(? p:roc-:c?:;::j:i.l~~I ~. I . , tlie :;i:aclt i l l . l?ig. 9 c-irnrroi: 20 hi? si~inply used i.n n met:i;iod vuch as IJVb'S :for coni.ro.l.:l.:ii~g task p~:oces:ii~ng capabil:iLi:y. Since power i.s r e s t r i c t e d by 1lVI;'S a t the ass?-gnment of a taslc, j.t is di.:ffi.cu.:i.t t o confirm t r u e power requested by the task or c a l c u l a t e a taslc arrtount to be staclied. 'Thc? ernbodivnerit fin. i'ig. 15 25 i1lu:ji:rates a corltrol f1.oi.r tliaL is applicable i.n Lhe case where t r u e requested power i.s not confi~cined and a stack is diff:i.cu:Lt t;o cal.cui.ate. The present embodiment can continuous1.y provide I T :;erv.i.ce by effj.cj.ent1.y usi.ng a storaye b a t t e r y under 5 circumsi:ances where a l.ong power outage frequently o c c u r s . In other words, a certain. worltload can be processed with a sma1l.e~: b a t t e r y capac::i.t:y o:r a largc?i:- wo:t-kload car be processed with a c e r t a i n b a t t e r y capaci~ty. 10 'Tl?i.rd Embodi.nnenL Referring l:o Fi.g. 16, an IT-cooling collaborati.ve control. system fo:~: ari I:':L machii~c and coo:Li.liy equi.pmen1. accordi.riy t:o a t:li:i r d embod:i.ment o:l! the p:rcscnt inveni::i.on 1:)e de:scni~bed hei.ow. 1 5 A recovery e f f e c t is arlot;hec b a t t e r y characi:eri.stj.c t o be considered Co:e eiifi.ci.ent use o:l! a hatl;ery. : C I . ~ tile r:ei:oviiry c?li.l'etst:, tii.:;c:hal:cjc+ i s stopped a t any t.i.nle dur::j.riy o:~; a f t e r t;lle di.:;ci-iarye, i:.hereby d.ii:fusi.ng i.01is in an el.ccti-olLyto r;oli~t:ioi.i~i? a sl:or:aije 1ralrtei.y ,so a s to I>:riiig 20 ti](? ackuill. c;rpnc:j.Ly 01.. i.i~c: bal.l.c?i:-y t::o an :iti(?-,ai.c ap;lc:i.ty. I:n the above Non-pairc?nk rjocurncalt. 3, higlier capacit-y e f f i c i e n c y is obtained i n consideration of the recovery e f f e c t by a di.scharg:i.rig method of decreasi.ng a d:i.sctiarge current r a t h e r than a disciiargi~ng method of increasirig a 25 d:iscliarge cur-rent wit11 respect to a i:i.me base di.recti.on. 1:11 the controi. :F:l.ows :;liown in F':iqs. 9 and I5 accordillq t o the S:?.rst and secorld embodiments, a deviat:i..or :from a p r e d i c t i o n is corrected during an operat:ion. by correct::i.ng a. t a r g e t power value, so t h a t a discharge 5 current changes with the correctior? of the target: power value. A t thj.s point, j~n t:l?e case where I:T processj.ng ciipahi.1.i t:y i r i i.mporta~it, a s sl?ow11 i 11 Fi CJ. 6, a c o r r e c t i oil of the t a r g e t power va:l.ile is per:mi.tted both i11 :i.ncreas:i.ng and decreasi-ng di.rectioi1s. In. corisiderat:i.on o:f the 10 recovery e f f e c t , as di.scl.osed i.n the above Noii-pat:ent document 3, hiigher di-scharge e f f i c i e n c : ~? ~osb tained by :I.i..uni.t:i.l.iga di.scliarge ci.~.r.:~reri?.nt the dec~:easi.ng di.recti.011 wi.tl:~ respect to t;lie tyirne base d:i.i:c:cLj.oli, 8 1> .he p:t:esent c-:ml~oiij.mor~ot:f tile ],ri?sei:~.ti .rrventi.ol~.i s 1.5 devi.sed i r i corlsideratiorl of the :recovery e f f e c t . 111 the ca:,3e wlicere effici.ei1.t discl1airge o:i the b a t t e r y 5.s inore i I i I .3 I'l' )r>rc)cess~i i gc apahi 1 it yy, as si~owi-I: i i ~ n ]?in. 1.6, ii c o r ~ r e c t i o lo~f: the t a r g e t powel: val.ue i.s :I.~iin:i.i:ed to the (dc?(:irei%s j i1q rli rrc?ci: -i on and -i.s i-loit perm -i l: t'c'cl i n l:hc 20 :i.rlc:rea.:ii.ng t3.i.rcici::iLon. in o~:.di?i:. to p~:i?vent a c-iecrease i n I'i' process:i.nq cap::>b:j.I~t:yi with a monot-one decrc?ase, t:lie l.oad and the power of: the ?'I' machine can be predi.cted with a large margin. 2-1 user can. s e l e c t IT processj.n.g capabi-lity or b a t t e r y discharge e f f i c i e n c y through the US1 i n Fig. 3, 25 allowirlg tile settii1.y of a prc?dict.on 1nargj.n. According to the embodiment of t h o p r e s e n t i.nvent:ion, a discharge ciirreiit :i:rom the b a t t e r y i s corr'rrol.:led near1 y t o a constant c u r r e n t . Thus, hi-gh-efficiency discharge can be achieved us:i.arg a r a t e e f f e c t and the recovery e : f f e c t . 5 I t should be understood by those s k i l l e d i n the a r t t h a t various modif ical:ions, combinations, sub-combi.liat:ions axid al.terat:i.ons rnay occur deper~ding on design requi.i:emclnt:s arid other :factors iilsoi'ar as they are wi.thin the scope of the appended claims of the equi.val.ents thereof. 10 What is Cl.a.i.med i s : 1. . A col.laborative comtrol system for ail I T maclii.ne and a coo:Lirig equj.pment: t h a t cools the :Lli mach:in.e, comysri.si.ng: 5 an uni.nterrupt.ib1.e power supply u17.i.t thal: is capable of supplying power from a b a t t e r y to the IT machine and t:he cool.i.ng equipment j.n an even\: o:l: a power fai.l.i~i:c:; and an ]::I!-cooling col.laborative control. u n i t , wherein the unint:erruptibLe power supply unit has a 3.0 fuiiction of coi1trol.l.ing power from the b a t t e r y to i:he :IT machine arid the cool.ing ec~uipmer~i.t1 1 the event of a faj.l.ure i.n an extzernal. power siipplLy, the i'l.'-cool. :i..i?g co.1. 1.aJ:)o:rati ~vec oril:.:rol. u ~i ?t :i.i?cl.~:~dae s pi:.o:jet:t:i.oii iin.i.i illat pl-edi..c:t:s the poweir fa.i.l.uie and 3.5 p r e d i c t s a l.oad and the power of the I T inaclifine i n the eve~?.t:o f a power :fai.I.ure, and 2x1 opc?:ral:i.on unj~tt :hal: lnorrit:(:).t?:i rc?~n~~:i.r~l):ai.t~:ln..g(+ ryp c)w(+.ro f [.he ~ ~ r ~ i ~ > t . c + r..rii~~ky))lle. power supply un:i.:t t:o coni::~::o:l. powe:r cori:-:uinpt:i.o~? in ti2.e :1:'1:' mai.:l~i. ne anrl t:.l?e r:ool. i.nq eqrii l2111er? ,:t ' I ? 1J : I.. j. 1 g : I .I ( I1 i ? I I I. I . :. -: I .I , a r; databases, a rc>l..at:i.onsh.i.p bc?t:ween a coo?.iny c;ipa.ci.t:y of the cooling equipment and the power consumption. of the coo:Ling equipment and a r e l a t i o n s h i p between remaining b a t t e r y power avid an amourlt of disctiarge currerit from the batteiry, the projecti-on 1111itti as a fu.nctj.ori of setti.ng a t a r g e t t:otal power consuvnpt:i.c)l? of the :I':C maclii~ie and a t a r g e t t:otal. power con:iumpt:i.on of the coolj.ng equi.pmenL i.11. response to a p r e d i c t i o n or an e x t e r n a l input, and the operatj.011 u n i t coordinivt:el.y controls, based on 5 the set t o t a l power consumpti.ons, power supplied from the b a t t e r y and consumed by the 1:T machjne and power supp:l.ied from the balttery a1113 r:onsumed by the coo:l %rig equipment !ill t:he event of a f a i l u r e in the external power supply. 10 2. The c o l l a b o r a t i v e control system for an 1'7 machine and cooling equipment according to c1.aj.n~ I, whe~:e!ii? i n the event of a. fail.ui:c? fir] tlie oxte:r-na:l. power s~~pr~:i.i..ny , the case where tile power con:;umpt:i.on o:f t l i c ? I:'7 machine :is s i ~ ~ arleil atj.ve i.o t.he :jet. Lilrget. tot,a:l. I.!? power consumption, the operat:i.on u n i t perform,? advance coo1.i~n.g c0ntro.i. t h a t i.ncreases the cool.ing capabi.1.it;y of triie c:ool~ing (;?;iqiii.prn(+riii~o. ).,r.i.i-~(j sum o:f power consuvript.i.ons of the 1:'Y mach.i.~ne and t:he cool.ing equipvnclrlt cl.osc? t:o the t:ai:qet toi:a.l. power col?sllrnpt;j on, a n t in tlic? c;i:;(? wlie~:e t:l-lci power co~?sirinpl::ioii of LI'I.~? :].'I' inaciiine is relat:i.ve:l.y large, tthe operation u n i t performs 1.oad deferred control. t h a t decreases the power of the :IT machine t o bring the sum of the power consnmpt-:i.ons of the Z'Y machine a i ~ d tile cool.:i.11g equipment close t o the t a r g e t 25 power. 3 . vi, he col.l.aborat.i.ve cont:ro:I. system for an 1:l' milch:ine and cooling equipment according to claim 2, furti-lei: c:ompr?.si~:lg a temperature/humi.d:ity senso:r t h a t 5 senses lremperature/l?uini.dity irlformatior? on the collaborative coritrol system and outside a j ~ r , wheireiri i.n thc! case where ii moi~:i.i-ored tempei:at.ure/h.umidity is higher or lower than ari. estimiited val-ue, the t a r g e t power value is corrected. 1.0 4. The co1laborat:ive corltrol. system for an :IT macl?:in.e and coo:Li.n.g equi.pineilt: ac-.cordi.ng to c:i.aj.m 2, i l ~ l r t h e r compr:i.sing : <3 daLab.. on .. c.. .. ... ~1;. ; d c~p.-rb:i:.ilL . y avid power: ii:i the I:'].' 1.5 machiine; a cooi.i.ng ainount database that: si;ores, as an c?xces.~:i:v~(:~o o:l i.~ng a~~~oi~:nI t:(:,:o o'I i.ng tan~otl~it:~. f(.)t:r.h (+ ~~I(:~\T~IIIc::.~ cool.:.i.ng conti:ol. t-.l.ial: i.iicreases tlhe coo:i..i.ng capabi.l.i.Ly of the cool.jl?g c:?qi~ipii~r-.iiatn; d *; t.a.s ,<

Documents