Abstract: A color filter having excellent display quality is provided by a continuous exposure method using a compact photomask. The color filter includes: a substrate; a black matrix formed on the substrate, for dividing the substrate into rectangular display regions in which the plurality of pixels are arrayed, and non-display regions surrounding the display regions; a stripe pattern; a plurality of columnar spacers disposed in the display regions; and a plurality of dummy columnar spacers. The stripe pattern includes a plurality of colored layers extending in one direction. Each colored layer intersects with a pair of sides of the display region in a direction perpendicular to the direction in which the colored layers extend. The thickness of both end portions of each colored layer disposed on the non-display region is not uniform. The dummy columnar spacers are disposed in portions of the non-display regions, where the colored layers are absent.
DESCRIPTION
TITLE OF THE INVENTION
COLOR FILTER AND COLOR FILTER MANUFACTURING METHOD
TECHNICAL FIELD
[0001] The present invention relates to color filters which are used in liquid crystal
display devices and organic EL displays, and methods for manufacturing the color filters.
BACKGROUND ART
[0002] In display devices such as liquid crystal display devices, color filters are widely
used for the purposes of color image display, reflectance reduction, contrast adjustment, spectral
characteristic control, and the like. A color filter is formed by arranging colored pixels in a
matrix on a substrate. Methods for forming such colored pixels on a substrate include, for
example, printing and photolithography.
[0003] FIG 6 is an enlarged view of pixels of a color filter, and FIG 7 is a cross-sectional
view of the pixels, taken along a line X-X in FIG 6.
[0004] The color filter shown in FIGS. 6 and 7 includes a substrate 50, a lattice-shaped
black matrix 21 formed on the substrate 50, colored pixels 22, and a transparent conductive film
23. The black matrix 21 has a light-shielding property, defines the positions of the colored
pixels 22 on the substrate 50, and makes the size of the colored pixels 22 uniform. In addition,
when the color filter is used in a display device, the black matrix 21 blocks unnecessary light to
achieve a high-contrast, even, and uniform image quality. The colored pixels 22 function as a
filter for reproducing various colors.
[0005] A color filter is formed as follows. Firstly, a black photoresist is applied to the
substrate 50, and exposed to light through a photomask and then developed, thereby forming a
black matrix 21. Next, a color resist is applied to the substrate 50, and exposed to light through
a photomask and then developed, thereby forming colored pixels 22. The process of forming
colored pixels 22 is repeated until colored pixels 22 of all colors are formed on the substrate.
Further, ITO (Indium Tin Oxide) is deposited by sputtering over the entire surface of the
substrate 50 so as to cover the black matrix 21 and the colored pixels 22, thereby forming a
transparent conductive film 23.
[0006] In mass production of the above-described color filter, it is general to form an
array of a plurality of color filters on a single large substrate. For example, four color filters
each having a diagonal of 17 inches can be formed on a glass substrate having a size of about
650 mm x 850 mm.
[0007] As described above, in order to form a plurality of color filters on a single
substrate, exposure has been popularly performed by using a photomask of approximately the
same size as the substrate, on which a plurality of mask patterns corresponding to all the color
filters are formed (for example, in the above-described example, a photomask on which four
mask patterns corresponding to color filters each having a diagonal of 17 inches are formed).
According to this method, patterns corresponding to all the mask patterns on the photomask are
simultaneously formed on the substrate by a single exposure (so-called one-shot exposure).
[0008] However, the size of the photomask is increased with an increase in the size of the
color filter. Thereby, the manufacturing cost of the photomask increases, and moreover, a
problem of deflection of the photomask may occur due to its own weight at the time of exposure.
[0009] So, in order to resolve the problems of high cost and deflection due to an increase
in the size of the photomask, an exposure method has been adopted, in which a plurality of
exposures are performed by using a single photomask capable of simultaneously exposing a
plurality of color filters, while changing the position of the photomask opposed to a substrate.
For example, when the size of the substrate became about 730 mm x 920 mm (the fourth
generation), a single-axis step exposure method was adopted, in which exposure is repeated with
the substrate being moved in steps along one direction with respect to a photomask. When the
size of the glass substrate became about 1000 mm x 1200 mm (the fifth generation), an XY (two-
axis) step exposure method (step and repeat method) was adopted, in which exposure is repeated
with the substrate being moved in steps along two directions with respect to a photomask.
[0010] FIG. 8 is a plan view illustrating an example of manufacturing of color filters by
the XY step exposure method.
[0011] On a substrate 50, first to sixth exposure regions 1 Ex to 6 Ex are provided, in
which six (two rows x three columns) color filters are to be exposed. The substrate 50 is placed
on an exposure stage 60, and is freely movable in the X and Y directions.
[0012] Firstly, exposure is performed with a photomask PM being overlapped with the
first exposure region 1Ex to form a mask pattern of the photomask PM in the first exposure
region 1Ex. Thereafter, the substrate 50 is moved by a distance Py in the positive direction of
the Y axis to overlap the photomask PM with the second exposure region 2Ex, and a pattern of
the photomask PM is formed in the second exposure region 2Ex. Next, the substrate 50 is
moved by a distance Px in the positive direction of the X axis to overlap the photomask PM with
the third exposure region 3Ex, and a pattern of the photomask PM is formed in the third
exposure region 3Ex. Thereafter, in a similar manner to above, exposure is repeated with the
substrate 50 being moved in the X direction or the Y direction, thereby forming patterns in the
fourth to sixth exposure regions 4Ex to 6Ex.
[0013] The use of the XY 2-axis step exposure method resolves the problem of an
increase in manufacturing cost due to an increase in the size of the photomask, and the problem
of deflection of the photomask due to its own weight. However, if the size of the substrate is
further increased (for example, about 1500 mm x 1800 mm (the sixth generation) or about 2100
mm x 2400 mm (the eighth generation)), the color filters themselves formed on the substrate are
also increased in size, which eventually causes an increase in the size of the photomask. As a
result, the problems of high cost and deflection of the photomask occur again.
[0014] So, an exposure method is attempted, in which exposure is continuously
performed by using a photomask smaller than a single color filter, while transferring a substrate.
[0015] FIG. 9 is a plan view illustrating a slit exposure method. FIG. 10 is a cross-
sectional view taken along a line X-X in FIG 9. FIG 11 is a partially enlarged view of a mask
pattern of a photomask shown in FIG 9. FIG. 12 is a partially enlarged view of stripe patterns
exposed by the slit exposure method. In FIG 10, part (a) shows a state where exposure of a
first exposure region is started, and part (b) shows a state where exposure of the first exposure
region is completed.
[0016] As shown in FIGS. 9 and 10, in the slit exposure method, a photomask PM2,
which is smaller in size than a first exposure region 1 Ex of a substrate 50 placed on an exposure
stage 60, is disposed between the substrate 50 and a light source (not shown). The exposure
stage 60 is movable at a constant speed in the horizontal direction of the figure, and further, is
movable in steps in the vertical direction of the figure along the Y axis. As shown in FIG. 11,
the photomask PM2 has a slit S for exposing a portion of a pattern formed in the first exposure
region 1Ex. In the longitudinal direction Ls of the slit S, a plurality of openings 51 are aligned
at predetermined intervals Pi. The width and length of each opening 51 are Wi and Li,
respectively.
[0017] When exposing the first exposure region 1Ex, as shown in FIGS. 9 and 10(a), the
photomask PM2 is placed on the left end of the first exposure region 1Ex. Then, while
irradiating the photomask PM2 with a light beam from the light source, the substrate 50 is
continuously transferred leftward in FIG 6 along the X axis, until reaching the state shown in
FIG. 10(b). As a result, as shown in FIG. 12, stripe patterns each having a width Wi and an
interval Pi are formed, on the substrate 50, extending in the substrate transfer direction (the
horizontal direction of FIG. 9).
[0018] After the exposure of the first exposure region, the exposure stage 60 is moved by
a distance Py in the positive direction of the Y axis in FIG. 9 to align the photomask PM2 to an
exposure start position in the second exposure region. Then, stripe patterns are formed in the
second exposure region by performing continuous exposure similar to that performed on the first
exposure region.
[0019] Thus, the slit exposure method realizes large-area exposure as well as a size
reduction of the photomask.
[0020] FIG. 13 is a partially enlarged view of a color filter manufactured by the slit
exposure method.
[0021 ] In the color filter shown in FIG 13, stripe colored patterns extending in the X
direction are formed on a glass substrate on which a lattice-shaped black matrix 21 is formed,
thereby forming red colored pixels 22R, green colored pixels 22G, and blue colored pixels 22B.
In the Y axis direction, a set of red, green, and blue colored pixel lines is repeatedly formed at a
pitch Pi.
[0022] Also in the case of manufacturing color filters using the slit exposure method, it is
general to form a plurality of color filters on a single substrate to realize mass production.
[0023] FIG. 14 is a plan view illustrating an example of manufacturing color filters by the
slit exposure method. FIG. 15 is a cross-sectional view illustrating a method of forming an area
of a substrate shown in FIG. 14, taken along a line X-X in FIG. 14. In FIG. 14, shaded portions
at both sides of each display region represent regions where a front end and a rear end of a stripe-
shaped colored pattern are located, respectively. A photomask shown in FIG 15 is identical to
that shown in FIG. 11, and has a slit including a plurality of openings and shielding parts.
[0024] Six (two rows x three columns) regions 54A and regions 54B surrounding the
regions 54A are formed on the substrate 50. A stripe pattern of a colored layer is formed on
each of the regions 54A. On the other hand, a stripe pattern of a colored layer is not formed on
the regions 54B. The substrate 50 is placed on an exposure stage 60, and is freely transferred in
the X and Y directions. A photomask PM2 is fixed in a position above the substrate 50, which
position is irradiated with a light beam E from a light source. Further, a blind shutter BS is
provided between the photomask and the light source (not shown) so as to be movable in the X-
axis direction in FIG 15.
[0025] The blind shutter BS blocks the light beam from the light source. The blind
shutter BS includes an upper shielding plate and a lower shielding plate. The upper shielding
plate and the lower shielding plate are individually and freely movable in the X-axis direction by
means of a movement mechanism (not shown).
[0026] When performing exposure on the region 54A, the slit (not shown) of the
photomask PM2 is irradiated with the light beam E from the light source, with the upper
shielding plate and the lower shielding plate of the blind shutter BS being opened in the
horizontal direction of FIG. 15, while continuously transferring the substrate 50 in the direction
indicated by an outlined arrow. Thereby, a stripe pattern is formed on the region 54A.
[0027] After the exposure of the region 54 A is completed, the upper shielding plate and
the lower shielding plate of the blind shutter BS are closed to shield the photomask PM2 from
the light beam. Thereby, a region 54B having no stripe pattern is formed.
[0028] Thereafter, exposure and shielding according to open and close of the blind shutter
BS are repeated while transferring the substrate 50 in the outlined arrow direction to form stripe
patterns on the three regions 54A arrayed in the X axis direction shown in FIG 14.
[0029] When performing shielding by means of the blind shutter BS, the light beam E is
diffracted at edges c and d of the blind shutter BS. Thereby, the amount of light irradiation on
the resist becomes insufficient in regions G shown in FIG 15.
[0030] FIG16isa cross-sectional view of an end portion of a stripe pattern. The stripe
pattern shown in FIG 16 is obtained by developing a substrate exposed by the slit exposure
method described with reference to FIGS. 14 and 15.
[0031 ] The stripe pattern 22 shown in FIG 16 is formed so as to have a thickness (H1).
However, due to the above-described insufficient irradiation, the thickness of the stripe pattern
22' in the region G (corresponding to the left-side region G in FIG 15) is relatively thin.
[0032] The thickness of the stripe pattern 22' is gradually reduced toward an end g.
Specifically, the thickness of the stripe pattern 22' is gradually reduced in order of (H1), (H1 -
AH3), (H1 - AH2) from the left to the right of FIG. 16 (AH2 > AH3).
[0033] The length of the region G (in the horizontal direction of FIG. 16) is 500 µm at
maximum, and varies within a range of 300 µm to 500 µm. Such a reduction in thickness is
caused by the type of the photoresist, the interval (gap) between the photomask and the substrate
during proximity exposure, or the moving speed of the substrate. If such a thickness-reduced
portion is positioned in the display region, a reduction in display quality may occur.
[0034] In the color filters, columnar spacers are formed in addition to the above-described
colored layers. Hereinafter, the columnar spacers will be described with reference to FIGS. 17
to 19.
[0035] FIG 17 shows an example of a color filter having columnar spacers. FIG 18 is a
cross-sectional view of the color filter shown in FIG. 17, taken along a line X-X in FIG. 17.
[0036] In the color filter shown in FIGS. 17 and 18, columnar spacers Cs are formed on a
transparent electrode 23 above a black matrix 21 disposed on the substrate 50. Generally, the
columnar spacers Cs are also formed in regions other than display sections. Hereinafter, the
columnar spacers formed in regions other than the display sections are referred to as "dummy
columnar spacers". The dummy columnar spacers maintain a uniform interval between the
"ubstrate other than the display sections and a counter substrate, and thus the interval between
the substrate and the counter substrate can be kept uniform in the display regions.
[0037] FIG 19 is a diagram illustrating an example in which a plurality of color filters are
formed.
[0038] As described above, in the case where six (two lows x three columns) color filters
are formed on a single substrate 50, the substrate 50 is divided into: display sections A in which
colored pixels of the color filters are formed; frame sections B surrounding the display sections
A; interplanar regions F between the respective display sections A; and a peripheral section D of
the substrate 50. A region enclosed in a broken line C (a boundary between the frame section B
and the peripheral section D) corresponds to the finished size of a color filter. The columnar
spacers are formed in the display sections A, and the dummy columnar spacers are formed in the
frame sections B, the interplanar regions F, and the peripheral section D.
[0039] FIG. 20 is a partial sectional view of a color filter manufactured by the step
exposure method.
[0040] In a display section A, a black matrix 21, a colored pixel 22, and an ITO film 23
are disposed. A plurality of columnar spacers Cs are formed on the ITO film 23. On the other
hand, a plurality of dummy columnar spacers D-Cs are formed at a pitch (Pi-2) in the frame
section B, the interplanar region F, and the peripheral section D,.
[0041] The colored pixel 22 is formed with a uniform thickness throughout, including a
right end portion f. As shown by a broken line H, the columnar spacers Cs and the dummy
columnar spacers D-Cs are formed so as to have uniform height.
[0042] FIG. 21 is a partial sectional view of the color filter formed by the slit exposure
method.
[0043] In the color filter shown in FIG 21, the stripe pattern 22' (a portion of the stripe
pattern 22 in the region G), whose thickness is relatively thin due to the influence of the above-
described diffraction, is formed in the display section A. If this color filter is incorporated in a
display device, a reduction in display quality may occur. In order to avoid this problem, there is
proposed a technique of adjusting the position of the end portion of the stripe pattern, as shown
in FIG. 22.
[0044] FIG 22 is a cross-sectional view illustrating another example of a color filter
formed by the slit exposure method.
[0045] In the color filter shown in FIG 22, the stripe pattern 22' (a portion of the stripe
pattern 22 in the region G), whose thickness is relatively thin, is formed in the frame section B.
In this structure, the thickness (H1) of the stripe pattern 22 in the display section A is made
uniform to avoid a reduction in display quality.
CITATION LIST
[PATENT LITERATURE]
[0046] [Patent Literature 1] Japanese Laid-Open Patent Publication No. 2006-292955
[Patent Literature 2] Japanese Laid-Open Patent Publication No. 2006-17895
[Patent Literature 3] Japanese Laid-Open Patent Publication No. 2002-333628
SUMMARY OF THE INVENTION
PROBLEMS TO BE SOLVED BY THE INVENTION
[0047] In the color filter shown in FIG 22, the stripe pattern 22' is formed in the frame
section B. As described above, a plurality of dummy columnar spacers (not shown) are
provided in the frame section B. If some of the dummy columnar spacers are placed on the
stripe pattern 22', variations in height of the dummy columnar spacers increase. Such increase
in variations in height of the dummy columnar spacers causes a new problem that the interval
between the substrate and the counter substrate cannot be made uniform.
[0048] Therefore, an object of the present invention is to provide a method of
manufacturing color filters having excellent display quality by a continuous exposure method
using a compact photomask, and color filters manufactured by the method.
SOLUTION TO THE PROBLEMS
[0049] A color filter of the present invention has a plurality of pixels arrayed in a first
direction and a second direction perpendicular to the first direction. The color filter includes: a
substrate; a light-shielding layer formed on the substrate, for dividing the substrate into
rectangular display regions in which the plurality of pixels are arrayed, and non-display regions
surrounding the display region; a stripe pattern comprising a plurality of colored layers extending
in the first direction, each of the colored layers linearly extending in the first direction and
intersecting with a pair of sides of the display region in the second direction, and the thicknesses
of both end portions of each colored layer disposed on the non-display region are not uniform; a
plurality of columnar spacers disposed in the display regions; and a plurality of dummy
columnar spacers disposed in portions of the non-display regions, where the colored layers are
absent.
[0050] A liquid crystal display device of the present invention has a plurality of pixels
arrayed in a first direction and a second direction perpendicular to the first direction, and
includes a color filter; a counter substrate facing the color filter; and a liquid crystal sealed
between the color filter and the counter substrate. The color filter includes: a substrate; a light-
shielding layer formed on the substrate, for dividing the substrate into rectangular display
regions in which the plurality of pixels are arrayed, and non-display regions surrounding the
display region; a stripe pattern comprising a plurality of colored layers extending in the first
direction, each of the colored layers linearly extending in the first direction and intersecting with
a pair of sides of the display region in the second direction, and the thicknesses of both end
portions of each colored layer disposed on the non-display region are not uniform; a plurality of
columnar spacers disposed in the display regions; and a plurality of dummy columnar spacers
disposed in portions of the non-display regions, where the colored layers are absent.
[0051 ] A color filter manufacturing method of the present invention is for manufacturing
a plurality of color filters on a single substrate along a first direction, each color filter having a
plurality of pixels arrayed in the first direction and a second direction perpendicular to the first
direction. The color filter manufacturing method includes the steps of: forming, on the
substrate, a light shielding layer for dividing the substrate into rectangular display regions in
which the plurality of pixels are arrayed, and non-display regions surrounding the display region;
forming a plurality of colored layers, each linearly extending in the first direction and
intersecting with a pair of sides of the display region in the second direction, by repeating,
several times, a process of continuously exposing the substrate on which a resist is applied while
transferring the substrate in the first direction, and a process of shielding an area between
adjacent display regions in the first direction by using a shutter having a width narrower than the
interval between the adjacent display regions in the first direction; forming a stripe pattern
comprising a plurality of colors of colored layers by repeating the formation of the plurality of
colored layers by the number of the colors of the colored pixels constituting the color filters; and
forming a plurality of columnar spacers in the display regions, and forming a plurality of dummy
columnar spacers in portions of the non-display regions, where the colored layers are absent.
EFFECTS OF THE INVENTION
[0052] According to the present invention, color filters having excellent display quality
can be manufactured by a continuous exposure method using a compact photomask.
BRIEF DESCRIPTION OF THE DRAWINGS
[0053] [FIG. 1] FIG 1 is a plan view illustrating an example in which color filters
according to a first embodiment are formed on a substrate.
[FIG. 2] FIG 1 is a cross-sectional view of the substrate, taken along a line X-X
in FIG. 1.
[FIG. 3] FIG. 3 is a cross-sectional view of the substrate, taken along a line X2-
X2 in FIG. 1.
[FIG. 4] FIG 4 is a diagram illustrating a method of forming a part along a line
X3-X3 in FIG. 1.
[FIG 5] FIG 5 is a partial sectional view of a color filter according to a second
embodiment.
[FIG. 6] FIG. 6 is an enlarged view of pixels of a color filter.
[FIG. 7] FIG. 7 is a cross-sectional view of a pixel of the color filter shown in
FIG. 6, taken along a line X-X in FIG. 6.
[FIG 8] FIG 8 is a plan view illustrating an example of manufacturing color
filters by the XY step exposure method.
[FIG. 9] FIG 9 is a plan view illustrating the slit exposure method.
[FIG 10] FIG 10 is a cross-sectional view taken along a line X-X in FIG 9.
[FIG. 11] FIG 11 is a partially enlarged view of a mask pattern of a photomask
shown in FIG 9.
[FIG. 12] FIG 12 is a partially enlarged view of stripe patterns exposed by the
slit exposure method.
[FIG. 13] FIG 13 is a partially enlarged view of a color filter manufactured by
the slit exposure method.
[FIG. 14] FIG 14 is a plan view illustrating an example of manufacturing color
filters by the slit exposure method.
[FIG. 15] FIG 15 is a cross-sectional view illustrating a method of forming a
region of a substrate shown in FIG. 11, taken along a line X-X in FIG. 11.
[FIG. 16] FIG 16 is a cross-sectional view of an end portion of a stripe pattern.
[FIG 17] FIG 17 is a diagram illustrating an example of a color filter on which
columnar spaces are provided.
[FIG 18] FIG 18 is a cross-sectional view of the color filter shown in FIG. 17,
taken along a line X-X in FIG. 17.
[FIG. 19] FIG 19 is a diagram illustrating an example in which a plurality of
color filters are formed on a substrate.
[FIG 20] FIG 20 is a partial sectional view of a color filter formed by the step
exposure method.
[FIG. 21] FIG. 21 is a partial sectional view of a color filter formed by the slit
exposure method.
[FIG. 22] FIG. 22 is a cross-sectional view illustrating another example of a
color filter formed by the slit exposure method.
EMBODIMENTS FOR CARRYING OUT THE INVENTION
[0054] (First Embodiment)
FIG. 1 is a plane view illustrating an example in which color filters according to a
first embodiment of the present invention are formed on a substrate. FIG. 2 is a cross-sectional
view of the substrate, taken along a line X-X in FIG. 1. FIG. 3 is a cross-sectional view of the
substrate, taken along a line X2-X2 in FIG. 1. It should be noted that, in the following
description, the substrate transferring direction during manufacturing is the X-axis direction.
[0055] On the substrate 50 shown in FIG. 1, six (two lows x three columns) color filters 1
are formed. In each of the color filters 1, a plurality of pixels are arrayed in the X-axis direction
and the Y-axis direction. The color filter 1 includes a substrate 50, a black matrix 21, a stripe
pattern 22, a plurality of columnar spacer Cs, and a plurality of dummy columnar spacers D-Cs.
[0056] The black matrix 21 is a light-shielding layer which divides the substrate into
rectangular display sections A (corresponding to display regions), frame sections B, interplanar
regions F, and a peripheral section D (B, F, and D correspond to non-display regions).
[0057] The stripe pattern 22 includes a plurality of linear colored layers having a plurality
of colors. The plurality of colored layers constituting the stripe pattern 22 are repeatedly
arranged in a predetermined order (e.g., in order of red, blue, and green). Each colored layer
linearly extends in the X-axis direction, across the display section A and the non-display region
surrounding the display section A. More specifically, each of the colored layers constituting the
stripe pattern 22 intersects with each of a pair of sides of the display section A, which sides are
parallel to the Y axis. Hereinafter, a part of the stripe pattern 22, which is formed in the frame
section B, is referred to as a stripe pattern 22'. The thickness of the stripe pattern 22' shown in
FIGS. 2 and 3 is gradually reduced toward an end thereof. On the other hand, the thickness of
the stripe pattern 22 formed in the display section A is uniform.
[0058] A plurality of columnar spacers Cs are provided in the display section A. A
plurality of dummy columnar spacers D-Cs are provided in the frame section B, the interplanar
region F, and the peripheral section D. The dummy columnar spacers D-Cs are for maintaining
a uniform interval between the substrate and a counter substrate (not shown).
[0059] The dummy columnar spacers D-Cs are formed on a portion of the frame section
B, where the colored layer (stripe pattern 22') is not formed. Accordingly, as shown by a
broken line H in FIGS. 2 and 3, the columnar spacers Cs and the dummy columnar spacers D-Cs
are of uniform height.
[0060] As described above, the thickness of the colored layer in the display section A is
uniform, and the columnar spacers Cs and the dummy columnar spacers D-Cs are of uniform
height. Therefore, when a liquid crystal display device is configured by bonding the color
filters 1 to the counter substrate, high display quality is realized.
[0061] The following will describe a method of manufacturing the color filters 1 with
reference to FIGS. 1 and 4.
[0062] FIG. 4 is a diagram illustrating a method of forming a part taken along a line X3-
X3 in FIG. 1. A photomask PM2 shown in FIG. 4 is identical to that shown in FIG 11, and has
a slit S including a plurality of openings and shielding parts.
[0063] The substrate 50 is transferred in the X and Y directions by a transfer device 60.
The photomask PM2 is fixed above the substrate 50 and within an irradiation range of a light
beam E from a light source (not shown). A blind shutter BS is provided between the
photomask PM2 and the light source so as to be freely movable in the horizontal direction of FIG
4. The blind shutter BS includes an upper shielding plate and a lower shielding plate which are
freely movable in the horizontal direction of FIG. 4 by a movement mechanism (not shown).
[0064] Firstly, on the substrate 50, a black matrix 21 is formed as a light-shielding layer
for dividing the substrate 50 into the display regions and the non-display regions. In the display
regions, the black matrix 21 is formed in a lattice shape, and defines the positions of the
respective colored pixels. The light shielding layer is not limited to the black matrix, but may
be a metal electrode. The method of forming the light shielding layer is not particularly limited,
and various methods are applicable.
[0065] Next, open and close of the blind shutter BS are performed while transferring, in
the X-axis direction, the substrate on which a color resist 54 of a first color is applied, thereby
forming a stripe pattern 22 across the display section A and the non-display region surrounding
the display section A. Specifically, with the upper shielding plate and the lower shielding plate
of the blind shutter BS being opened, the color resist 54 on the display section A is irradiated
with a light beam E from the light source while continuously transferring the substrate 50 in the
X-axis direction. Thereby, a pattern of red colored layers is continuously exposed in the display
section A. Further, as shown in FIG 4, with the upper shielding plate and the lower shielding
plate of the blind shutter BS being closed, an area between the display sections A which are
adjacent to each other in the X-axis direction is shielded from the light beam E. During the
light shielding, the amount of overlapping between the upper shielding plate and the lower
shielding plate is adjusted so that the width of the blind shutter BS in the X-axis direction
becomes narrower than the interval between the display sections A which are adjacent in the
substrate transferring direction (the horizontal direction of the figure). By repeating, several
times, the continuous exposure process and the light shielding process, the above-described
colored layers are formed in each of the plurality of display sections A arrayed in the X-axis
direction.
[0066] The exposure of the color resist is followed by predetermined steps such as
development and washing.
[0067] After the formation of the colored layer of the first color, colored layers of second
and subsequent colors are similarly formed. The above-described colored layer formation
process is repeated as many times as the number of the colors of the colored pixels constituting
the color filter, thereby forming a stripe pattern 22 including a plurality of colored layers of a
plurality of colors.
[0068] Next, a resist for forming columnar spacers and dummy columnar spacers is
applied to the substrate 50 on which the stripe pattern 22 is formed. One-shot exposure is
performed over the entire surface of the substrate 50 by using a photomask having patterns
corresponding to columnar spacers to be formed in the display regions and dummy columnar
spacers to be formed in the non-display regions. At this time, the dummy columnar spacers are
formed at positions outside the stripe pattern 22' whose thickness is not uniform. The positions
where the dummy columnar spacers are formed can be controlled by the positions of the opening
patterns on the photomask.
[0069] As described with reference to FIGS. 15 and 16, during the light-shielding by the
blind shutter BS, the light beam E is diffracted due to the edges c and d of the blind shutter BS.
Thereby, the amount of irradiation of the light beam E to the regions G is insufficient. However,
the width of the blind shutter BS is set narrower than the interval between the adjacent display
sections A so that the regions G are positioned in the frame section B.
[0070] Specifically, the length of the regions G (in the X-axis direction in FIG 4) is about
50 µm at maximum, and the actual length thereof varies within a range of 300 µm to 500 µm.
Therefore, it is preferred that the width of the blind shutter BS be adjusted so that the distance
from the boundary between the display section A and the frame section B to the end of the stripe
pattern becomes 700 µm or more. Thus, the both ends (the portions having relatively thin
thickness) can be reliably formed in the frame section.
[0071] As described above, in the manufacturing method according to the present
embodiment, portions of the linear colored layers constituting the stripe pattern 22, whose
thickness is not uniform, are formed on the non-display region, and the dummy columnar spacers
D-Cs are formed only on portions of the non-display regions, where the colored layers are absent.
Thereby, even when the slit exposure method is adopted, the dummy columnar spacers D-Cs can
be formed on the uniform-thickness portions. Accordingly, the gap between the color filters
and the counter substrate can be kept uniform by making the dummy columnar spacers D-Cs of
uniform height.
[0072] (Second Embodiment)
FIG. 5 is a partial cross-sectional view of a color filter according to a second
embodiment. FIG. 5 shows a part corresponding to a cross section of the substrate, taken along
a line X-X in FIG 1. Since a method of manufacturing color filters according to the second
embodiment is identical to that of the first embodiment, repeated description is not necessary.
[0073] The length (in the X-axis direction) of the stripe pattern 22 formed in the frame
section B varies as described above. The longer the stripe pattern 22 formed in the frame
section B, the greater an external force applied to the dummy columnar spacers D-Cs when
bonding the substrate 50 to a counter substrate. Accordingly, it is desirable that the density of
dummy columnar spaces (number of dummy columnar spacers per unit area) should be changed
according to the length of the stripe pattern 22 formed in the frame section B.
[0074] The length G2 of the stripe pattern 22 formed in the frame section B shown in FIG.
5 is longer than the length G of the stripe pattern 22' shown in FIGS. 2 and 3. In this case, the
density of dummy columnar spacers D-Cs is set high. For example, the pitch Pi-4 of the
dummy columnar spacers D-Cs shown in FIG. 5 is smaller than the pitch Pi-3 of the dummy
columnar spacers D-Cs shown in FIGS. 2 and 3. Thereby, an external force applied to a single
dummy columnar spacer D-Cs from the counter substrate can be reduced, resulting in successful
bonding between the substrate 50 and the counter substrate.
[0075] In the first and second embodiments, the dummy columnar spacers are formed in
all of the frame sections, the interplanar regions, and the peripheral section, the present invention
is not limited thereto. The dummy columnar spacers may be formed on any positions so long
as a plurality of dummy columnar spaces are located on the non-display region other than the
colored layers formed in the frame sections.
[0076] While in the first and second embodiments a black matrix is used as a light-
shielding layer, the present invention is not limited thereto. Any light-shielding layer may be
used so long as it can divide the substrate into the display regions and the non-display regions.
For example, an electrode layer made of a thin metal may be formed on the substrate as a light-
shielding layer.
[0077] While in the first and second embodiments a blind shutter having a pair of
shielding plates is used to shield the substrate from a light beam, the present invention is not
limited thereto. For example, a single shielding plate having a width narrower than the interval
between adjacent display regions may be used.
[0078] A liquid crystal display device using color filters according to the first or second
embodiment can be manufactured by bonding the color filters to a counter substrate facing the
color filters, and a liquid crystal is sealed between the both substrates. The color filters of the
present invention are also applicable to display devices (an organic EL display and the like) other
than the liquid crystal display device.
INDUSTRIAL APPLICABILITY
[0079] The present invention can be used for manufacturing color filters or the like to be
used in liquid crystal display devices and organic EL displays.
DESCRIPTION OF THE REFERENCE CHARACTERS
[0080] 1 color filter
21 black matrix
22, 22' stripe pattern
23 transparent electrode
50 substrate
51 openings of a slit
52 light-shielding parts of the slit
54 resist
54A, 54B region
60 exposure stage
A display section
B frame section
BS blind shutter
Cs columnar spacer
D-Cs dummy columnar spacer
F interplanar region
PM, PM2 photomask
S slit
WE CLAIM
[Claim 1] A color filter in which a plurality of pixels are arrayed in a first direction and a
second direction perpendicular to the first direction, the color filter comprising:
a substrate;
a light-shielding layer formed on the substrate, for dividing the substrate into
rectangular display regions in which the plurality of pixels are arrayed, and non-display regions
surrounding the display region;
a stripe pattern comprising a plurality of colored layers extending in the first
direction, each of the colored layers linearly extending in the first direction and intersecting with
a pair of sides of the display region in the second direction, and the thicknesses of both end
portions of each colored layer disposed on the non-display region are not uniform;
a plurality of columnar spacers disposed in the display regions; and
a plurality of dummy columnar spacers disposed in portions of the non-display
regions, where the colored layers are absent.
[Claim 2] A liquid crystal display device in which a plurality of pixels are arrayed in a first
direction and a second direction perpendicular to the first direction, the liquid crystal display
device comprising:
a color filter;
a counter substrate facing the color filter; and
a liquid crystal sealed between the color filter and the counter substrate, wherein
the color filter comprises:
a substrate;
a light-shielding layer formed on the substrate, for dividing the substrate into
rectangular display regions in which the plurality of pixels are arrayed, and non-display regions
surrounding the display region;
a stripe pattern comprising a plurality of colored layers extending in the first
direction, each of the colored layers linearly extending in the first direction and intersecting with
a pair of sides of the display region in the second direction, and the thicknesses of both end
portions of each colored layer disposed on the non-display region are not uniform;
a plurality of columnar spacers disposed in the display regions; and
a plurality of dummy columnar spacers disposed in portions of the non-display
regions, where the colored layers are absent.
[Claim 3] A color filter manufacturing method of manufacturing a plurality of color filters
on a single substrate along a first direction, each color filter having a plurality of pixels arrayed
in the first direction and a second direction perpendicular to the first direction, the method
comprising the steps of:
forming, on the substrate, a light shielding layer for dividing the substrate into
rectangular display regions in which the plurality of pixels are arrayed, and non-display regions
surrounding the display region;
forming a plurality of colored layers, each linearly extending in the first direction
and intersecting with a pair of sides of the display region in the second direction, by repeating,
several times, a process of continuously exposing the substrate on which a resist is applied while
transferring the substrate in the first direction, and a process of shielding an area between
adjacent display regions in the first direction by using a shutter having a width narrower than the
interval between the adjacent display regions in the first direction;
forming a stripe pattern comprising a plurality of colors of colored layers by
repeating the formation of the plurality of colored layers by the number of the colors of the
colored pixels constituting the color filters; and
forming a plurality of columnar spacers in the display regions, and forming a
plurality of dummy columnar spacers in portions of the non-display regions, where the colored
layers are absent.
[Claim 4] The color filter manufacturing method according to claim 3, wherein the density
of the dummy columnar spacers to be formed is adjusted in accordance with the amount of
overlapping between the colored layer and the non-display region.
A color filter having excellent display quality is provided by a continuous
exposure method using a compact photomask. The color filter includes: a substrate; a black
matrix formed on the substrate, for dividing the substrate into rectangular display regions in
which the plurality of pixels are arrayed, and non-display regions surrounding the display
regions; a stripe pattern; a plurality of columnar spacers disposed in the display regions; and a
plurality of dummy columnar spacers. The stripe pattern includes a plurality of colored layers
extending in one direction. Each colored layer intersects with a pair of sides of the display
region in a direction perpendicular to the direction in which the colored layers extend. The
thickness of both end portions of each colored layer disposed on the non-display region is not
uniform. The dummy columnar spacers are disposed in portions of the non-display regions,
where the colored layers are absent.
| # | Name | Date |
|---|---|---|
| 1 | 3471-KOLNP-2011-(13-09-2011)-PA.pdf | 2011-09-13 |
| 2 | 3471-KOLNP-2011-(13-09-2011)-CORRESPONDENCE.pdf | 2011-09-13 |
| 3 | ABSTRACT-3471-KOLNP-2011.jpg | 2011-10-07 |
| 4 | 3471-KOLNP-2011-SPECIFICATION.pdf | 2011-10-07 |
| 5 | 3471-KOLNP-2011-PCT REQUEST FORM.pdf | 2011-10-07 |
| 6 | 3471-KOLNP-2011-PCT PRIORITY DOCUMENT NOTIFICATION.pdf | 2011-10-07 |
| 7 | 3471-KOLNP-2011-OTHERS PCT FORM.pdf | 2011-10-07 |
| 8 | 3471-KOLNP-2011-INTERNATIONAL SEARCH REPORT.pdf | 2011-10-07 |
| 9 | 3471-KOLNP-2011-INTERNATIONAL PUBLICATION.pdf | 2011-10-07 |
| 10 | 3471-KOLNP-2011-FORM-5.pdf | 2011-10-07 |
| 11 | 3471-KOLNP-2011-FORM-3.pdf | 2011-10-07 |
| 12 | 3471-KOLNP-2011-FORM-2.pdf | 2011-10-07 |
| 13 | 3471-KOLNP-2011-FORM-18.pdf | 2011-10-07 |
| 14 | 3471-KOLNP-2011-FORM-1.pdf | 2011-10-07 |
| 15 | 3471-KOLNP-2011-DRAWINGS.pdf | 2011-10-07 |
| 16 | 3471-KOLNP-2011-DESCRIPTION (COMPLETE).pdf | 2011-10-07 |
| 17 | 3471-KOLNP-2011-CORRESPONDENCE.pdf | 2011-10-07 |
| 18 | 3471-KOLNP-2011-ABSTRACT.pdf | 2011-10-07 |
| 19 | 3471-KOLNP-2011-(24-01-2012)-FORM 3.pdf | 2012-01-24 |
| 20 | 3471-KOLNP-2011-(24-01-2012)-CORRESPONDENCE.pdf | 2012-01-24 |
| 21 | 3471-KOLNP-2011-CLAIMS.pdf | 2016-11-18 |
| 22 | 3471-KOLNP-2011-FER.pdf | 2016-11-23 |
| 23 | 3471-KOLNP-2011-(13-09-2011)-PA.pdf | 2011-09-13 |
| 23 | 3471-KOLNP-2011-AbandonedLetter.pdf | 2017-10-08 |
| 1 | ss3471_18-11-2016.pdf |