Abstract: A method for repairing a turbine engine component is provided. The method broadly comprises the steps of providing a turbine engine component having an airfoil portion, applying a coating to the airfoil portion, and restoring a tip portion, a chord, and surfaces of the airfoil portion to original dimensions in a single operation. A system for repairing the turbine engine component is also described.
BACKGROUND OF THE INVENTION
(1) Field of the Invention
[001] The present invention relates to a method and a system for restoring the dimensional features of an engine run airfoil such as a compressor blade or vane.
(2) Prior Art
[002] Conventional methods for restoring the dimensional
features of an engine run airfoil involve the machining of dimensions using various applicable methods such as milling and grinding.
[003] Despite the existence of these conventional methods, there remains a need for a method which is simple, repeatable, and quick to perform.
SUMMARY OF THE INVENTION
[004] In accordance, a method for repairing a turbine engine component is provided. The method broadly comprises the steps of providing a turbine engine component having an airfoil portion, applying a coating to the airfoil portion, and restoring a tip portion, a chord, and surfaces of the airfoil portion to original dimensions in a single operation.
[005] Further in accordance with the present invention, a system for repairing a turbine engine component is provided. The system broadly comprises means for applying a coating to an airfoil portion of the turbine engine component and means for simultaneously restoring a tip portion, a chord, and surfaces of the airfoil portion to original dimensions in a single operation.
[006] Other details of the compressor blade flow form technique for repair, as well as other objects and advantages
attendant thereto, are set forth in the following detailed description and the accompanying drawings wherein like reference numerals depict like elements.
BRIEF DESCRIPTION OF THE DRAWINGS [007] FIG. 1 is a flow chart showing the steps of the repair
method of the present invention; [008] FIG. 2 is an illustration of a turbine engine component
which has been through a coating operation; [009] FIG. 3 is an illustration of a flow form die; [0010] FIG. 4 is an illustration of a turbine engine component
which has been through the flow form die operation; and [0011] FIG. 5 illustrates flash being removed from a turbine
engine component that has been restored to its
dimensional features.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) [0012] As noted above, the present invention relates to the
repair of turbine engine components such as compressor blades and vanes which have been in service. FIG. 1 is a schematic illustration of the repair method of the present invention. As shown therein, the turbine engine component 10 is first cleaned in step 12. The turbine engine component 10 may be cleaned using any suitable cleaning treatment known in the art. As part of the cleaning treatment, any coating on the airfoil portion of the component 10 may be removed using any suitable technique known in the art.
[0013] In step 14, a coating 15 may be applied to restore the airfoil portion 16 of the turbine engine component. The coating 15 may comprise any suitable coating known in the art and may be applied using any suitable technique known in the art. For example, the coating 15 could be a
2A
titanium based coating. As shown in FIG. 2, preferably both surfaces 17 and 19 of the airfoil portion 16 are coated over a region from the tip portion 18 to about a mid-span location 20. At the mid-span location 20, the coating 15 may be blended into the surface of the airfoil portion 16 using any suitable technique known in the art. [0014] In step 22, the airfoil portion 16 of the turbine engine component 10 is placed into a die set 24 such as that shown in FIG. 3 and subjected to a flow forming operation. The flow forming operation may be performed within a temperature range bounded on the low end by the creep behavior of the specific titanium alloy and on the high side by the beta transus of the alloy. The upper temperature limit is driven by the need to avoid grain growth. Die lubrication in the form of boron nitride or other materials can be used to facilitate separation of the titanium article from the die sections. The die set 24 has a first die half 26 which has the shape of one surface of the airfoil portion 16 and a second die half 28 which has the shape of the other surface of the airfoil portion 16. In the die set 24, the material added to the surface of the turbine engine component 10 as a result of the coating operation is subjected to heat and flow formed into a desired shape, such as causing the airfoil portion 16 to be restored to its original shape and dimensions. FIG. 4 illustrates the restored airfoil portion 16 after the turbine engine component 10 is removed from the die set 24. As can be seen therein, the three distress modes of tip restoration chord restoration, and surface thickness restoration have been restored. After the flow forming operation has been completed the airfoil portion 16 of the turbine engine component 10 is removed from the die set 24.
3
[0015] In step 30, and as shown in FIG. 5, the flash 32 around the airfoil portion 16 is then removed. The flash 32 may be removed using any suitable technique known in the art. For example, the flash 32 may be removed by machining the flash using any suitable technique known in the art.
[0016] In step 34, the turbine engine component is subjected to a final finishing operation. The final finishing operation may be performed using any suitable technique known in the art. For example, the turbine engine component may be subjected to glass bead peening to improve high cycle fatigue life.
[0017] The flow form technique described herein forces material in a die that has the benefit of restoring dimensions back to original in a' very quick and repeatable method. Flow forming has the potential to possess improved fatigue properties over conventionally machined surfaces. Material properties of the flow formed turbine engine component are better than restoration repairs that utilize weld material. Any imperfections generated in the coating process will be subsequently corrected during the flow form operation.
[0018] Flow forming has the novel feature of restoring all three typical distress modes in a single operation. These distress modes include tip restoration, chord restoration, and surface thickness.
[0019] The repair method of the present invention has numerous advantages. It is simple to perform, repeatable, and quick. The repair method also corrects coating imperfections and restores all distress modes in a single operation. Still further, the repair method improves mechanical and fatigue properties of the turbine engine component and produces repairs with parent material properties.
4
[0020] While the method of the present invention has been described as being used in the context of -repairing turbine engine components that have been in service, it could also be used to repair newly manufactured components that have one or more defects.
5
WE CLAIM:
1. A method for repairing a turbine engine component comprising
the steps of:
providing a turbine engine component having an airfoil portion;
applying a coating to said airfoil portion; and
restoring a tip portion, a chord, and surfaces of said airfoil portion to original dimensions in a single operation.
2. The method according to claim 1, wherein said restoring step
comprises placing said coated airfoil portion of said turbine
engine component into a die set and heating said coated airfoil
portion in said die set to cause material to flow within said
die set and thereby restore said tip portion, said chord, and
said surfaces.
3. The method according to claim 1, wherein said coating
applying step comprises applying a titanium coating to said
airfoil portion.
4. The method according to claim 1, wherein said coating
applying step comprises applying a coating to both surfaces of
said airfoil portion.
5. The method according to claim 1, wherein said coating applying step comprises applying a coating to both surfaces of said airfoil portion from a tip portion to a mid-span portion of said airfoil portion.
6
6. The method according to claim 5, further comprising blending
said coating into said surfaces of said airfoil portion.
7. The method according to claim 1, further comprising cleaning
said turbine engine component prior to applying said coating.
8. The method according to claim 1, further comprising removing
flash from said airfoil portion after said restoring step.
9. The method according to claim 8, further comprising
subjecting said turbine engine component to a finishing
operation after said flash removal step.
10. The method according to claim 1, wherein said turbine
component providing step comprises providing a blade.
11. The method according to claim 1, wherein said turbine
component providing step comprises providing a vane.
12. A system for repairing a turbine engine component having an
airfoil portion, said system comprising:
means for applying a coating to an airfoil portion of the turbine engine component; and
means for simultaneously restoring a tip portion, a chord, and surfaces of the airfoil portion to original dimensions in a single operation.
13. The system according to claim 12, wherein said coating means
comprises means for applying a titanium coating to said surfaces
of the airfoil portion.
7
8
14. The system according to claim 12, wherein said restoring
means comprises a die set and means for causing material forming
said coating to flow within said die set so as to restore said
original dimensions to said tip portion, said chord, and said
surfaces.
15. The system according to claim 14, wherein said die set
comprises a first die having a shape of a first one of said
surfaces and a second die having a shape of a second one of said
surfaces.
16. The system according to claim 12, further comprising means
for cleaning said turbine engine component prior to having said
coating applied.
17. The system according to claim 12, further comprising means
for removing flash from said airfoil portion after removing said
airfoil portion from said restoring means.
18. The system according to claim 17, further comprising means
for subjecting said turbine engine component to a finishing
operation after removal of said flash.
A method for repairing a turbine engine component is provided. The method broadly comprises the steps of providing a turbine engine component having an airfoil portion, applying a coating to the airfoil portion, and restoring a tip portion, a chord, and surfaces of the airfoil portion to original dimensions in a single operation. A system for repairing the turbine engine component is also described.
| # | Name | Date |
|---|---|---|
| 1 | 1171-KOL-2006-ABSTRACT.pdf | 2017-06-15 |
| 1 | abstract-01171-kol-2006.jpg | 2011-10-07 |
| 2 | 01171-kol-2006-priority document.pdf | 2011-10-07 |
| 2 | 1171-KOL-2006-ASSIGNMENT.pdf | 2017-06-15 |
| 3 | 1171-KOL-2006-CLAIMS.pdf | 2017-06-15 |
| 3 | 01171-kol-2006-general power of authority.pdf | 2011-10-07 |
| 4 | 1171-KOL-2006-CORRESPONDENCE.pdf | 2017-06-15 |
| 4 | 01171-kol-2006-form-5.pdf | 2011-10-07 |
| 5 | 1171-KOL-2006-DESCRIPTION (COMPLETE).pdf | 2017-06-15 |
| 5 | 01171-kol-2006-form-3.pdf | 2011-10-07 |
| 6 | 1171-KOL-2006-DRAWINGS.pdf | 2017-06-15 |
| 6 | 01171-kol-2006-form-3-1.1.pdf | 2011-10-07 |
| 7 | 1171-KOL-2006-EXAMINATION REPORT.pdf | 2017-06-15 |
| 7 | 01171-kol-2006-form-2.pdf | 2011-10-07 |
| 8 | 1171-KOL-2006-FORM 1.pdf | 2017-06-15 |
| 8 | 01171-kol-2006-form-1.pdf | 2011-10-07 |
| 9 | 01171-kol-2006-drawings.pdf | 2011-10-07 |
| 9 | 1171-KOL-2006-FORM 18.pdf | 2017-06-15 |
| 10 | 01171-kol-2006-description(complete).pdf | 2011-10-07 |
| 10 | 1171-KOL-2006-FORM 2.pdf | 2017-06-15 |
| 11 | 01171-kol-2006-correspondence-1.1.pdf | 2011-10-07 |
| 11 | 1171-KOL-2006-FORM 3.pdf | 2017-06-15 |
| 12 | 01171-kol-2006-correspondence others.pdf | 2011-10-07 |
| 12 | 1171-KOL-2006-FORM 5.pdf | 2017-06-15 |
| 13 | 01171-kol-2006-claims.pdf | 2011-10-07 |
| 13 | 1171-KOL-2006-GPA.pdf | 2017-06-15 |
| 14 | 01171-kol-2006-abstract.pdf | 2011-10-07 |
| 14 | 1171-KOL-2006-SPECIFICATION-COMPLETE.pdf | 2017-06-15 |
| 15 | 1171-KOL-2006-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf | 2017-06-15 |
| 15 | 1171-KOL-2006FORM-18.pdf | 2015-09-09 |
| 16 | 1171-KOL-2006_EXAMREPORT.pdf | 2016-06-30 |
| 17 | 1171-KOL-2006FORM-18.pdf | 2015-09-09 |
| 17 | 1171-KOL-2006-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf | 2017-06-15 |
| 18 | 1171-KOL-2006-SPECIFICATION-COMPLETE.pdf | 2017-06-15 |
| 18 | 01171-kol-2006-abstract.pdf | 2011-10-07 |
| 19 | 01171-kol-2006-claims.pdf | 2011-10-07 |
| 19 | 1171-KOL-2006-GPA.pdf | 2017-06-15 |
| 20 | 01171-kol-2006-correspondence others.pdf | 2011-10-07 |
| 20 | 1171-KOL-2006-FORM 5.pdf | 2017-06-15 |
| 21 | 01171-kol-2006-correspondence-1.1.pdf | 2011-10-07 |
| 21 | 1171-KOL-2006-FORM 3.pdf | 2017-06-15 |
| 22 | 01171-kol-2006-description(complete).pdf | 2011-10-07 |
| 22 | 1171-KOL-2006-FORM 2.pdf | 2017-06-15 |
| 23 | 01171-kol-2006-drawings.pdf | 2011-10-07 |
| 23 | 1171-KOL-2006-FORM 18.pdf | 2017-06-15 |
| 24 | 1171-KOL-2006-FORM 1.pdf | 2017-06-15 |
| 24 | 01171-kol-2006-form-1.pdf | 2011-10-07 |
| 25 | 1171-KOL-2006-EXAMINATION REPORT.pdf | 2017-06-15 |
| 25 | 01171-kol-2006-form-2.pdf | 2011-10-07 |
| 26 | 1171-KOL-2006-DRAWINGS.pdf | 2017-06-15 |
| 26 | 01171-kol-2006-form-3-1.1.pdf | 2011-10-07 |
| 27 | 1171-KOL-2006-DESCRIPTION (COMPLETE).pdf | 2017-06-15 |
| 27 | 01171-kol-2006-form-3.pdf | 2011-10-07 |
| 28 | 1171-KOL-2006-CORRESPONDENCE.pdf | 2017-06-15 |
| 28 | 01171-kol-2006-form-5.pdf | 2011-10-07 |
| 29 | 1171-KOL-2006-CLAIMS.pdf | 2017-06-15 |
| 29 | 01171-kol-2006-general power of authority.pdf | 2011-10-07 |
| 30 | 1171-KOL-2006-ASSIGNMENT.pdf | 2017-06-15 |
| 30 | 01171-kol-2006-priority document.pdf | 2011-10-07 |
| 31 | 1171-KOL-2006-ABSTRACT.pdf | 2017-06-15 |
| 31 | abstract-01171-kol-2006.jpg | 2011-10-07 |