Sign In to Follow Application
View All Documents & Correspondence

Curable Photochromic Composition Including A Segmented Polymer

Abstract: The present invention is directed to a curable photochromic composition including (a) a photochromic compound; (b) a segmented polymer having active hydrogen groups, at least one first segment, and at least one second segment, wherein (i) each first segment independently includes a fluorinated polymer segment, and (ii) each second segment independently includes a segment selected from a polycarbonate segment, a polyester segment, a polyether segment, a polyurethane segment, and a segment of copolymers thereof; and (c) a curing agent having reactive functional groups that are reactive with the active hydrogen groups of the segmented polymer, wherein the curing agent includes at least one of a polyisocyanate, a polyisothiocyanate, or an aminoplast. Also provided are photochromic films and articles, including multilayer articles, which include the curable photochromic composition.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
28 June 2022
Publication Number
44/2022
Publication Type
INA
Invention Field
POLYMER TECHNOLOGY
Status
Email
dev.robinson@AMSShardul.com
Parent Application

Applicants

TRANSITIONS OPTICAL, LTD.
IDA Industrial Estate Dunmore Road Tuam, Co. Galway

Inventors

1. ROBINSON, Stephen G.
4037 Dublane Ct. Murrysville, Pennsylvania 15668
2. TAYLOR, Cathy A.
1965 Red Coach Road Allison Park, Pennsylvania 15101

Specification

CURABLE PHOTOCHROMIC COMPOSITION INCLUDING

A SEGMENTED POLYMER

FIELD

[0001] The present invention relates to curable photochromic compositions, which include a photochromic compound, a segmented polymer that includes at least one first segment, and at least one second segment, and a curing agent. Photochromic articles prepared from such compositions are also provided.

BACKGROUND

[0002] In response to certain wavelengths of electromagnetic radiation (or “actinic radiation”), photochromic compounds, such as indeno-fused naphthopyrans, typically undergo a transformation from one form or state to another form, with each form having a characteristic or distinguishable absorption spectrum associated therewith. Typically, upon exposure to actinic radiation, many photochromic compounds are transformed from a closed-form, which corresponds to an unactivated (or bleached, e.g., substantially colorless) state of the photochromic compound, to an open-form, which corresponds to an activated (or colored) state of the photochromic compound. In the absence of exposure to actinic radiation, such photochromic compounds are reversibly transformed from the activated (or colored) state, back to the unactivated (or bleached) state. Compositions and articles, such as optical lenses, that contain photochromic compounds or have photochromic compounds applied thereto (e.g., in the form of a photochromic coating composition) typically display colorless (e.g., clear) and colored states that correspond to the colorless and colored states of the photochromic compounds contained therein or applied thereto.

[0003] Photochromic compounds can be used in curable compositions to form, for example, cured layers, such as cured films or sheets that are photochromic. With cured photochromic films, such as cured photochromic coatings, it is typically desirable that they provide a combination of hardness and photochromic performance. Generally, the kinetics associated with the reversible transformation of a photochromic compound between a closed-form (unactivated / colorless) and an open-form (activated / colored) is faster in a soft matrix, but slower in a hard matrix (of the cured film in which the photochromic

compound resides). Cured photochromic films having a soft matrix typically have reduced hardness, while those having a hard matrix typically have increased hardness. Pre-polymer resins often show improvements in hardness and dye kinetics, but are more sensitive to dye fatigue, or dye degradation.

[0004] It would be desirable to develop curable photochromic compositions that provide cured photochromic layers having acceptable hardness, improved kinetics, and improved dye fatigue.

SUMMARY

[0005] The present invention is directed to a curable photochromic composition comprising:

(a) a photochromic compound;

(b) a segmented polymer comprising active hydrogen groups, at least one first segment, and at least one second segment, wherein:

(i) each first segment independently comprises a fluorinated polymer segment, and

(ii) each second segment independently comprises a segment selected from the group consisting of a polycarbonate segment, a polyester segment, a polyether segment, a polyurethane segment, and a segment of copolymers thereof; and

(c) a curing agent comprising reactive functional groups that are reactive with the active hydrogen groups of the segmented polymer, wherein the curing agent comprises at least one of a polyisocyanate, a polyisothiocyanate, or an aminoplast.

[0006] The present invention also provides photochromic films and articles, including multilayer articles which comprise the curable photochromic composition.

[0007] The features that characterize the present invention are pointed out with particularity in the claims, which are annexed to and form a part of this disclosure. These and other features of the invention, its operating advantages and the specific objects obtained by its use will be more fully understood from the following detailed description in which non-limiting embodiments of the invention are illustrated and described.

DETAILED DESCRIPTION

[0008] As used herein, the articles “a”, “an”, and “the” include plural referents unless otherwise expressly and unequivocally limited to one referent.

[0009] Unless otherwise indicated, all ranges or ratios disclosed herein are to be understood to encompass any and all subranges or subratios subsumed therein. For example, a stated range or ratio of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges or subratios beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, such as but not limited to 1 to 6.1, 3.5 to 7.8, and 5.5 to 10.

[0010] Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification and claims are to be understood as modified in all instances by the term “about”.

[0011] As used herein, “at least one of’ is synonymous with “one or more of’, whether the elements are listed conjunctively or disjunctively. For example, the phrases “at least one of A, B, and C” and “at least one of A, B, or C” each mean any one of A, B, or C, or any combination of any two or more of A, B, or C. For example, A alone; or B alone; or C alone; or A and B; or A and C; or B and C; or all of A, B, and C.

[0012] As used herein, “selected from” is synonymous with “chosen from” whether the elements are listed conjunctively or disjunctively. Further, the phrases “selected from A, B, and C” and “selected from A, B, or C” each mean any one of A, B, or C, or any combination of any two or more of A, B, or C. For example, A alone; or B alone; or C alone; or A and B; or A and C; or B and C; or all of A, B, and C.

[0013] As used herein, molecular weight values of polymers, such as weight average molecular weights (Mw) and number average molecular weights (Mn), are determined by gel permeation chromatography using appropriate standards, such as polystyrene standards.

[0014] As used herein, polydispersity index (PDI) values represent a ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the polymer (i.e., Mw/Mn).

[0015] As used herein, the term “polymer” means homopolymers (e.g., prepared from a single monomer species), copolymers (e.g., prepared from at least two monomer species), and graft polymers.

[0016] As used herein, the term “(meth)acrylate” and similar terms, such as

“(meth)acrylic acid ester”, means methacrylates and/or acrylates. As used herein, the term “(meth)acrylic acid” means methacrylic acid and/or acrylic acid.

[0017] As used herein, the term “photochromic” and similar terms, such as

“photochromic compound”, means having an absorption spectrum for at least visible radiation that varies in response to absorption of at least actinic radiation. Further, as used herein, the term “photochromic material” means any substance that is adapted to display photochromic properties (such as adapted to have an absorption spectrum for at least visible radiation that varies in response to absorption of at least actinic radiation) and which includes at least one photochromic compound.

[0018] As used herein, the term “actinic radiation” means electromagnetic radiation that is capable of causing a response in a material, such as, but not limited to, transforming a photochromic material from one form or state to another as will be discussed in further detail herein.

[0019] As used herein, the term “photochromic material” includes thermally reversible photochromic materials and compounds and non-thermally reversible photochromic materials and compounds. The term “thermally reversible photochromic compounds/materials” as used herein means compounds/materials capable of converting from a first state, for example a “clear state”, to a second state, for example a “colored state”, in response to actinic radiation, and reverting back to the first state in response to thermal energy. The term “non-thermally reversible photochromic compounds/materials” as used herein means compounds/materials capable of converting from a first state, for example a “clear state”, to a second state, for example a “colored state”, in response to actinic radiation, and reverting back to the first state in response to actinic radiation of substantially the same wavelength(s) as the absorption(s) of the colored state.

[0020] As used herein to modify the term “state”, the terms “first” and “second” are not intended to refer to any particular order or chronology, but instead refer to two different conditions or properties. For purposes of non-limiting illustration, the first state and the second state of a photochromic compound can differ with respect to at least one optical property, such as but not limited to the absorption of visible and/or UV radiation. Thus, the photochromic compounds of the present invention can have a different absorption spectrum in each of the first and second states. For example, while not limiting herein, a photochromic compound of the present invention can be clear in the first state and colored in the second state. Alternatively, a photochromic compound of the present invention can have a first color in the first state and a second color in the second state.

[0021] As used herein, the term “optical” means pertaining to or associated with light and/or vision. For example, according to various non-limiting embodiments disclosed herein, the optical article or element or device can be chosen from ophthalmic articles, elements and devices, display articles, elements and devices, windows, mirrors, and active and passive liquid crystal cell articles, elements and devices.

[0022] As used herein, the term “ophthalmic” means pertaining to or associated with the eye and vision. Non-limiting examples of ophthalmic articles or elements include corrective and non-corrective lenses, including single vision or multi-vision lenses, which can be either segmented or non-segmented multi-vision lenses (such as, but not limited to, bifocal lenses, trifocal lenses and progressive lenses), as well as other elements used to correct, protect, or enhance (cosmetically or otherwise) vision, including without limitation, contact lenses, intra-ocular lenses, magnifying lenses, and protective lenses or visors.

[0023] As used herein, the term “display” means the visible or machine-readable representation of information in words, numbers, symbols, designs or drawings. Non-limiting examples of display elements include screens, monitors, and security elements, such as security marks.

[0024] As used herein, the term “window” means an aperture adapted to permit the transmission of radiation there-through. Non-limiting examples of windows include automotive and aircraft transparencies, windshields, filters, shutters, and optical switches.

[0025] As used herein, the term “mirror” means a surface that specularly reflects a large fraction of incident light.

[0026] As used herein, the term “liquid crystal cell” refers to a structure containing a liquid crystal material that is capable of being ordered. A non-limiting example of a liquid crystal cell element is a liquid crystal display.

[0027] As used herein, spatial or directional terms, such as “left”, “right”, “inner”,

“outer”, “above”, “below”, and the like, relate to various orientations of the invention as may be described further herein, such as articles and multilayer articles of the present invention. It is to be understood, however, that the invention can assume various alternative orientations to those described herein and, accordingly, such terms are not to be considered as limiting.

[0028] As used herein, the terms “formed over”, “deposited over”, “provided over”,

“applied over”, “residing over”, or “positioned over” mean formed, deposited, provided, applied, residing, or positioned on but not necessarily in direct (or abutting) contact with the underlying element, or surface of the underlying element. For example, a layer “positioned over” a substrate does not preclude the presence of one or more other layers, coatings, or films of the same or different composition located between the positioned or formed layer and the substrate.

[0029] All documents, such as but not limited to issued patents and patent applications, referred to herein, and unless otherwise indicated, are to be considered to be “incorporated by reference” in their entirety.

[0030] As used herein, recitations of “linear or branched” groups, such as linear or branched alkyl, are herein understood to include a methylene group or a methyl group; groups that are linear, such as linear C2-C20 alkyl groups; and groups that are appropriately branched, such as branched C3-C20 alkyl groups.

[0031] As used herein, recitations of “optionally substituted” group, means a group, including but not limited to, alkyl group, cycloalkyl group, heterocycloalkyl group, aryl group, and/or heteroaryl group, in which at least one hydrogen thereof has been optionally replaced or substituted with a group that is other than hydrogen, such as, but not limited to, halo groups (e.g., F, C1, I, and Br), hydroxyl groups, ether groups, thiol groups, thio ether groups, carboxylic acid groups, carboxylic acid ester groups, phosphoric acid groups, phosphoric acid ester groups, sulfonic acid groups, sulfonic acid ester groups, nitro groups, cyano groups, alkyl groups (including aralkyl groups); alkenyl groups; alkynyl groups; haloalkyl groups; perhaloalkyl groups; heterocycloalkyl groups; aryl groups (including alkaryl groups, including hydroxyl substituted aryl, such as phenol, and including poly-fused-ring aryl); heteroaryl groups (including poly-fused-ring heteroaryl groups); or amine groups, such as -N(R11’)(R12’) where R11' and R12’ are each independently selected from

hydrogen, linear or branched C1-C20 alkyl, C3-C12 cycloalkyl, C3-C12 heterocycloalkyl, aryl, or heteroaryl.

[0032] As used herein, recitations of “halo substituted” and related terms (such as, but not limited to, haloalkyl groups, haloalkenyl groups, haloalkynyl groups, haloaryl groups and halo-heteroaryl groups) means a group in which at least one, and up to and including all of the available hydrogen groups thereof is substituted with a halo group. The term “halo-substituted” is inclusive of “perhalo-substituted”. As used herein, the term perhalo-substituted group and related terms (such as, but not limited to, perhaloalkyl groups, perhaloalkenyl groups, perhaloalkynyl groups, perhaloaryl groups and perhalo-heteroaryl groups) means a group in which all of the available hydrogen groups thereof are substituted with a halo group. For example, perhalomethyl is -CX3; perhalophenyl is -C6X5, where X represents one or more halo groups, such as but not limited to F.

[0033] Representative alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, octyl, nonyl and decyl. Representative alkenyl groups include, but are not limited to, vinyl, allyl and propenyl. Representative alkynyl groups include, but are not limited to, ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, and 2-butynyl. Representative cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cyclooctyl substituents. Representative heterocycloalkyl groups include, but are not limited to, imidazolyl, tetrahydrofuranyl, tetrahydropyranyl and piperidinyl. Representative aryl groups include, but are not limited to, phenyl, naphthyl, anthracynyl and triptycenyl. Representative heteroaryl groups include, but are not limited to, furanyl, pyranyl, pyridinyl, isoquinoline, and pyrimidinyl. Representative aralkyl groups include, but are not limited to, benzyl, and phenethyl.

[0034] The term “alkyl” as used herein, means linear or branched alkyl, such as but not limited to linear or branched C1-C25 alkyl, or linear or branched C1-C10 alkyl, or linear or branched C2-C10 alkyl. Examples of alkyl groups from which the various alkyl groups of the present invention can be selected from, include, but are not limited to, those recited previously herein. The term “cycloalkyl” as used herein means groups that are appropriately cyclic, such as but not limited to, C3-C12 cycloalkyl (including, but not limited to, cyclic C5-C7 alkyl) groups. Examples of cycloalkyl groups include those recited previously herein.

The term “cycloalkyl” as used herein also includes: bridged ring polycycloalkyl groups (or bridged ring polycyclic alkyl groups), such as but not limited to, bicyclo[2.2.1]heptyl (or norbomyl) and bicyclo[2.2.2]octyl; and fused ring polycycloalkyl groups (or fused ring polycyclic alkyl groups), such as, but not limited to, octahydro-1H-indenyl, and decahydronaphthalenyl.

[0035] The term “heterocycloalkyl” as used herein means groups that are appropriately cyclic, such as but not limited to C3-C12 heterocycloalkyl groups or C5-C7 heterocycloalkyl groups, and which have at least one hetero atom in the cyclic ring, such as, but not limited to, O, S, N, P, and combinations thereof. Examples of heterocycloalkyl groups include, but are not limited to, those recited previously herein. The term “heterocycloalkyl” as used herein also includes: bridged ring polycyclic heterocycloalkyl groups, such as but not limited to 7-oxabicyclo[2.2.1]heptanyl; and fused ring polycyclic heterocycloalkyl groups, such as but not limited to octahydrocyclopenta[b]pyranyl, and octahy dro-1H-isochromenyl .

[0036] The term “heteroaryl”, as used herein, includes but is not limited to C5-C18 heteroaryl, such as but not limited to C5-C10 heteroaryl (including fused ring polycyclic heteroaryl groups) and means an aryl group having at least one hetero atom in the aromatic ring, or in at least one aromatic ring in the case of a fused ring polycyclic heteroaryl group. Examples of heteroaryl groups include, but are not limited to, those recited previously herein. The term “aralkyl”, as used herein, includes but is not limited to C6-C24 aralkyl, such as but not limited to C6-C10 aralkyl, and means an aryl group substituted with an alkyl group. Examples of aralkyl groups include, but are not limited to, those recited previously herein. As previously mentioned, the curable photochromic compositions of the present invention include a segmented polymer (b) having active hydrogen groups. The segmented polymer (b) includes (i) at least one first segment; and (ii) at least one second segment. Either or both of the (i) at least one first segment and (ii) the at least one second segment can comprise active hydrogen groups as discussed in detail below.

[0037] Each of the at least one first segment(s) (i) independently comprises a fluorinated polymer segment. Suitable examples of fluorinated polymers from which the fluorinated polymer segment is derived can include, but are not limited to, fluoroethylene-alkyl vinyl ether alternating copolymers (such as those described in U.S. Patent No.

4,345,057) available from Asahi Glass Company under the name LUMIFLON; and fluoroaliphatic polymeric esters commercially available from 3M of St. Paul, Minnesota under the name FLUORAD.

[0038] The fluorinated polymer segment (i) can include active hydrogen groups such as any of the active hydrogen groups mentioned herein below, e.g., hydroxyl groups. Generally, the first segment (i) is present in the segmented polymer (b) in an amount of from 5 percent by weight to 70 percent by weight, such as from 5 percent by weight to 60 percent by weight, such as from 8 percent by weight to 55 percent by weight, based on total weight of the segment polymer.

[0039] Further, the first segment (i) can comprise from 2 percent by weight to 40 percent by weight of the curable photochromic composition, such as from 2 percent by weight to 30 percent by weight, based on the weight of total solids present in the curable photochromic composition.

[0040] The segmented polymer (b) of the curable photochromic compositions of the present invention, further includes at least one second segment (ii), in which each second segment independently includes at least one of a polycarbonate segment, a polyester segment, a poly ether segment, a polyurethane segment, combinations of two or more thereof, or copolymers of two or more thereof.

[0041] The at least one second segment (ii) can be terminated with a group derived from (i.e., a group which is the residue of) an active hydrogen-containing compound. Suitable active hydrogen-containing compounds include art-recognized capping agents (such as one or more of the capping agents described herein below with regard to the capped polyisocyanate curing agent).

[0042] Each polycarbonate segment of each second segment of the segmented polymer can independently be prepared in accordance with art-recognized methods. For purposes of non-limiting illustration, each polycarbonate segment can independently be prepared from the reaction of a polyol, such as a diol, with a carbonyl dihalide, such as carbonyl dichloride, with removal of the resulting halide acid, such as HCl. For purposes of further non-limiting illustration, each polycarbonate segment can independently be prepared from a transesterification reaction of a polyol, such as a diol, and a dihydrocarbyl carbonate, such as diphenyl carbonate, with removal of the resulting hydroxyl functional hydrocarbyl, such as phenol.

[0043] Examples of polyols having at least two hydroxyl groups, from which each polycarbonate segment can be independently prepared, include, but are not limited to, glycerin, trimethylolpropane, trimethylolethane, trishydroxyethylisocyanurate, pentaerythritol, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-, 1,2- and 1,4-butanediols, pentane diols (such as, but not limited to, 1,5-pentane diol), heptanediol, hexanediol, octanediol, 4,4'-(propane-2,2-diyl)dicyclohexanol, 4,4'-methylenedicyclohexanol, neopentyl glycol, 2,2,3-trimethylpentane-l,3-diol, 1,4-dimethylolcyclohexane, 2,2,4-trimethylpentane diol, 4,4'-(propane-2,2-diyl)diphenol, 4,4'-methylenediphenol, and like polyols.

[0044] Each polycarbonate segment of each second segment can independently be free of active hydrogen functionality, or include one or more active hydrogen functional groups each independently selected from hydroxyl, thiol, primary amine, or secondary amine. Active hydrogen functionality can be independently introduced into each polycarbonate segment during formation thereof, or after formation thereof, in accordance with art-recognized methods. With some embodiments, at least some of the polycarbonate segments have hydroxyl functionality. Polycarbonate segments having hydroxyl functionality can, with some embodiments, be prepared from polycarbonate polyols, such as polycarbonate diols. Polycarbonate polyols, such as polycarbonate diols, can, with some further embodiments, be selected from commercially available polycarbonate polyols, such as, but not limited to, ETERNACOLL polycarbonate diols from UBE Industries.

[0045] Each polycarbonate segment of each second segment, can have any suitable molecular weight. For example, each polycarbonate segment of each second segment, independently can have an Mn of less than 20,000, such as less than 15,000. Each polycarbonate segment of each second segment can have an Mn greater than 3,000, such as 3,000 to 20,000, or such as 3,000 to 15,000.

[0046] Each polyester segment of the each second segment of the segmented polymer can independently be prepared in accordance with art-recognized methods. For purposes of non-limiting illustration, each polyester segment independently can be prepared by reacting carboxylic acid functional materials (and/or cyclic anhydrides thereof, and/or esters thereof) having carboxylic acid functionalities (or effective carboxylic acid functionalities, such as in the case of cyclic anhydrides and carboxylic acid esters) of at least 2, and polyols having hydroxy functionalities of at least 2. The molar equivalents ratio of carboxylic acid groups to hydroxy groups of the reactants is selected such that the resulting polyester segment has hydroxyl functionality and/or carboxylic acid functionality, and a desired molecular weight.

[0047] Examples of multifunctional carboxylic acids useful in preparing each polyester segment include, but are not limited to, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, endobicyclo-2,2,1,5-heptyne-2,3-dicarboxylic acid, tetrachlorophthalic acid, cyclohexanedioic acid, succinic acid, isophthalic acid, terephthalic acid, azelaic acid, maleic acid, trimesic acid, 3,6-dichlorophthalic acid, adipic acid, sebacic acid, and like multifunctional carboxylic acids (optionally including appropriate cyclic anhydrides thereof and/or esters thereof).

[0048] Examples of polyols that can be used to prepare each polyester segment of the second segment include, but are not limited to, those polyol examples recited previously herein.

[0049] Each polyester segment of each second segment can independently be free of active hydrogen functionality, or include one or more active hydrogen functional groups each independently selected from hydroxyl, thiol, primary amine, or secondary amine. Active hydrogen functionality can be independently introduced into each polyester segment during formation thereof, or after formation thereof, in accordance with art-recognized methods.

[0050] Each polyester segment of each second segment, can have any suitable molecular weight. For example, each polyester segment of each second segment, independently can have a Mn of less than 20,000, such as less than 15,000. Each polyester segment of each second segment can have an Mn greater than 3,000, such as 3,000 to 20,000, or such as 3,000 to 15,000.

[0051] Each polyether segment of the each second segment of the segmented polymer can independently be prepared in accordance with art-recognized methods. For purposes of non-limiting illustration, each poly ether segment independently can be prepared from the reaction of polyols having two or more hydroxy groups and polyepoxides having

two or more epoxide (or oxirane) groups, which are reacted in proportions such that the resulting polyether has hydroxy functionality and/or oxirane functionality. The polyols and polyepoxides used in the preparation of the polyether segment can be selected from, for example, aliphatic, cycloaliphatic or aromatic polyols or polyepoxides, or mixtures thereof. Specific examples of polyols include those recited previously herein. Polyepoxides useful in preparing the polyether segments can include those resulting from the reaction of a polyol and epichlorohydrin. One or more of the polyols recited previously herein can be reacted with epichlorohydrin, so as to result in the formation of a polyepoxide. For purposes of non-limiting illustration, each poly ether segment independently can be prepared from: 4,4'-(propane-2,2-diyl)diphenol and the diglycidyl ether of 4,4'-(propane-2,2-diyl)diphenol; or 4,4’-(propane-2,2-diyl)dicylcohexanol and the diglycidyl ether of 4,4’ -(propane-2, 2-diyl)dicylcohexanol.

[0052] Each polyether segment of each second segment can independently be free of active hydrogen functionality, or include one or more active hydrogen functional groups each independently selected from hydroxyl, thiol, primary amine, or secondary amine. Active hydrogen functionality can be independently introduced into each polyether segment during formation thereof, or after formation thereof, in accordance with art-recognized methods.

[0053] Each polyether segment of each second segment, can have any suitable molecular weight. For example, each polyether segment of each second segment, independently can have an Mn of less than 20,000, such as less than 15,000. Each poly ether segment of each second segment can have an Mn greater than 3,000, such as 3,000 to 20,000, or such as 3,000 to 15,000.

[0054] Each polyurethane segment of each second segment of the segmented polymer can independently be prepared in accordance with art-recognized methods. For purposes of non-limiting illustration, each polyurethane segment independently can be prepared from the reaction of a polyisocyanate having at least two isocyanate groups with a polyol having at least two hydroxy groups, with an appropriate molar excess of hydroxyl groups, so as to form a hydroxyl functional polyurethane having at least 2 hydroxyl groups; or an appropriate molar excess of isocyanate groups so as to form a polyurethane having at least 2 isocyanate groups. Examples of polyisocyanates useful in the preparation of

polyurethane segments include, but are not limited to, aliphatic, aromatic, cycloaliphatic and heterocyclic polyisocyanates, and mixtures of such polyisocyanates.

[0055] Further examples of polyisocyanates useful in the preparation of polyurethane segments include, but are not limited to, toluene-2, 4-diisocyanate; toluene-2, 6-diisocyanate; diphenyl methane-4, 4'-diisocyanate; diphenyl methane-2, 4'-diisocyanate; para-phenylene diisocyanate; biphenyl diisocyanate; 3,3'-dimethyl-4,4'-diphenylene diisocyanate; tetramethylene- 1,4-diisocyanate; hexamethylene- 1,6-diisocyanate; 2,2,4-trimethyl hexane- 1,6-diisocyanate; 2,4,4-trimethyl hexane- 1,6-diisocyanate; lysine methyl ester diisocyanate; bis(isocyanato ethyl)fumarate; isophorone diisocyanate; ethylene diisocyanate; dodecane- 1,12-diisocyanate; cyclobutane-1, 3-diisocyanate; cyclohexane-1, 3-diisocyanate; cyclohexane- 1,4-diisocyanate; methyl cyclohexyl diisocyanate; hexahydrotoluene-2, 4-diisocyanate; hexahydrotoluene-2, 6-diisocyanate; hexahydrophenylene- 1 ,3 -diisocyanate; hexahydrophenylene- 1 ,4-diisocyanate; perhydrodiphenylmethane-2,4'-diisocyanate; perhydrodiphenylmethane-4,4'-diisocyanate; norbomane diisocyanate; and mixtures thereof.

[0056] Examples of polyols having at least two hydroxyl groups, from which the polyurethane segments of the second segment can be prepared, include, but are not limited to, those polyols recited previously herein.

[0057] Each polyurethane segment of each second segment can independently be free of active hydrogen functionality, or include one or more active hydrogen functional groups each independently selected from hydroxyl, thiol, primary amine, or secondary amine. Active hydrogen functionality can be independently introduced into each polyurethane segment during formation thereof, or after formation thereof, in accordance with art-recognized methods.

[0058] Each polyurethane segment of each second segment, can have any suitable molecular weight. For example, each polyurethane segment of each second segment, independently can have a Mn of less than 20,000, such as less than 15,000. Each polyurethane segment of each second segment can have an Mn greater than 3,000, such as 3,000 to 20,000, or such as 3,000 to 15,000.

[0059] Each second segment, of the segmented polymers of the curable compositions of the present invention, independently can include at least one of a

polycarbonate segment, a polycarbonate-polyester segment, a polycarbonate-polyurethane segment, a polyether-polyurethane segment, or a polycarbonate-polyester-polyurethane segment. Each second segment may comprise combinations of polyols chain extended with difunctional linkers for example but not limited to dicarboxylic acids to give ester linkages or bischloroformates to give carbonate linkages or diisocyanates to give urethane linkages or diols to give ether linkages or combinations of ester and urethane linkages such that the second segment has a final Mn of less than 20,000 and greater than 3,000, such as from 3,000 to 15,000.

[0060] Each polycarbonate-polyester segment of each second segment of the segmented polymer can independently be prepared in accordance with art-recognized methods. For purposes of non-limiting illustration, each polycarbonate-polyester segment independently can be prepared in accordance with the description provided previously herein with regard to the preparation of a polyester segment, in which at least some of the polyols are polycarbonate polyols. The polycarbonate polyols can be prepared in accordance with the description provided previously herein with regard to the preparation of a polycarbonate segment, with the molar ratios of the reactants adjusted such that the resulting polycarbonate has hydroxyl functionality, and correspondingly is a polycarbonate polyol.

[0061] Each polycarbonate-polyurethane segment of each second segment of the segmented polymer can independently be prepared in accordance with art-recognized methods. For purposes of non-limiting illustration, each polycarbonate-polyurethane segment independently can be prepared in accordance with the description provided previously herein with regard to the preparation of a polyurethane segment, in which at least some of the polyols are polycarbonate polyols. The polycarbonate polyols can be prepared in accordance with the description provided previously herein with regard to the preparation of a polycarbonate segment, with the molar ratios of the reactants adjusted such that the resulting polycarbonate has hydroxyl functionality, and correspondingly is a polycarbonate polyol.

[0062] Each polyether-polyurethane segment of each second segment of the segmented polymer independently can be prepared in accordance with art-recognized methods. For purposes of non-limiting illustration, each polyether-polyurethane segment independently can be prepared in accordance with the description provided previously herein with regard to the preparation of a polyurethane segment, in which at least some of the polyols are polyether polyols. The polyether polyols can be prepared in accordance with the description provided previously herein with regard to the preparation of a poly ether segment, with the molar ratios of the reactants adjusted such that the resulting polyether has hydroxyl functionality, and correspondingly is a poly ether polyol.

[0063] Each polycarbonate-polyester-polyurethane segment of each second segment of the segmented polymer can independently be prepared in accordance with art-recognized methods. For purposes of non-limiting illustration, each polycarbonate-polyester-polyurethane segment can independently be prepared in accordance with the description provided previously herein with regard to the preparation of a polyurethane segment, in which at least some of the polyols are polycarbonate-polyester polyols. The polycarbonate-polyester polyols can be prepared in accordance with the description as provided previously herein, in which the molar ratio of reactants is adjusted such that the resulting polymer has hydroxyl functionality, and correspondingly is a polycarbonate-polyester polyol.

[0064] Generally, the second segment (ii) is present in the segmented polymer (b) in an amount of from 30 percent by weight to 95 percent by weight, such as from 40 percent by weight to 95 percent by weight, such as from 45 percent by weight to 92 percent by weight, based on total weight of the segment polymer. Further, the second segment (ii) comprises from 15 percent by weight to 70 percent by weight, such as 20 to 60 percent by weight, or such as 22 to 55 percent by weight, of the curable photochromic composition, based on the total solids weight present in the curable photochromic composition. The total solids weight of the curable photochromic composition does not include the weight of any volatile components, such as solvents, and includes the weight of non-volatile components, including the photochromic compound(s); the segmented polymer; the curing agent; and any optional non-volatile additives, such as, but not limited to, ultraviolet light stabilizers, heat stabilizers, etc., as described further herein.

[0065] As mentioned previously, the segmented polymer(s) (b), of the curable photochromic compositions of the present invention, includes active hydrogen groups. For example, at least one first segment and/or at least one second segment of each segmented polymer independently can include one or more active hydrogen groups.

[0066] The active hydrogen equivalent weight of the segmented polymer (b) generally is selected such that a cured article, such as a cured coating layer or cured polymeric film (or sheet), prepared from the curable photochromic compositions of the present invention, has desirable properties including, but not limited to, a desirable level of hardness, or desirable photochromic performance (such as reduced fade half-life (T1/2) values).

[0067] The segmented polymer (b) can have an active hydrogen equivalent weight of less than or equal to 20,000 grams per equivalent (g/eq), such as less than 18,000 g/eq, or less than 15,000 g/eq. The segmented polymer (b) can have an active hydrogen equivalent weight of from 1,000 to 15,000 g/eq, or from 1,000 to 13,000 g/eq, or from 1,000 to 10,000 g/eq. Each active hydrogen group of the segmented polymer (b) independently is selected from hydroxyl (-OH), thiol (-SH), primary amine (-NH2), or secondary amine (-NHR’ or cyclic amine).

[0068] The R’ group of each secondary amine group (-NHR’) can be selected from any suitable organic group, such as a linear or branched C1-C20 alkyl group, cycloalkyl group, or aryl group, including those classes and examples thereof recited previously herein. The cyclic amines from which the secondary amine group can be selected include, but are not limited to, those represented by the following Formula (A):

[0069] With reference to Formula (A), subscript p is at least 3, such as 3, 4, 5, 6, or

7; and Y independently for each p is selected from -CH2-, -CH(R”), or -C(R”)2-, provided that one Y includes a single bond to the segmented polymer. Each R’’ can be selected from any suitable organic group, such as a linear or branched C1-C20 alkyl group, cycloalkyl group, or aryl group, including those classes and examples thereof recited previously herein. Examples of cyclic amine groups from which each secondary amine group of the segmented polymer can be independently selected, include, but are not limited to, azetidinyl, pyrrolidinyl, piperidinyl, azepanyl, and azoconyl.

[0070] Each active hydrogen group of the segmented polymer can be hydroxyl. The segmented polymer (b) can have a hydroxyl equivalent weight of less than or equal to 18,000 grams per equivalent (g/eq). For example, the segmented polymer can have a hydroxyl equivalent weight of from 1,000 to 15,000 g/eq, or from 1,200 to 13,000 g/eq, or from 1,500 to 11,000 g/eq. The hydroxyl equivalent weight of the segmented polymer can be calculated by dividing the mass of the resin solids by the difference between the sum of the moles of alcohol from the alcohol containing components and the sum of the moles of isocyanate from the isocyanate containing components.

[0071] Each first segment (i) and each second segment (ii) of the segmented polymer

(b) can be formed separately. Subsequently, the previously formed first segment(s) and the previously formed second segment(s) are combined together (such as reacted together resulting in the formation of covalent bond(s) there-between) so as to form the segmented polymer of the curable photochromic compositions of the present invention. Alternatively, each first segment can be initially formed, and subsequently, each second segment can be formed by polymerization from (or off of) the backbone of the previously formed first segment(s).

[0072] With the segmented polymers of the curable photochromic compositions of the present invention, at least one first segment and at least one second segment are covalently bonded to each other by a linking group selected from the group consisting of a carboxylic acid ester linking group (-C(O)O-), a thioester linking group (-C(O)-S-), an amide linking group (-C(O)-N(R1)-), a urethane linking group (-N(H)-C(O)-O-), a thiourethane linking group (-N(H)-C(O)-S-), a urea linking group (-N(R1)-C(O)-N(R1)-), a thiourea linking group (-N(R1)-C(S)-N(R1)-), a carbonate linking group (-O-C(O)-O-), an ether linking group (-O-), and a thioether linking group (-S-). Each R1 group of the above recited linking groups can each be independently selected from hydrogen or any suitable organic group, such as a linear or branched C1-C20 alkyl group, cycloalkyl group, or aryl group, including those classes and examples thereof recited previously herein.

[0073] Generally, each second segment is covalently bonded to at least one first segment. The segmented polymers of the curable photochromic compositions of the present invention are free of gelation (are not gelled). Further, at least one first segment and at least one second segment, of the segmented polymer (b), can be covalently bonded (or linked) to each other by a multi-functional linking group, such as a difunctional linking group. Each functional group of the multi-functional linking group can be selected from a precursor of a linking group described above. For purposes of non-limiting illustration, an isocyanate functional group (-NCO) is a precursor of a linking group, such as but not limited to a urethane linking group (-N(H)-C(O)-O-), a thiourethane linking group (-N(H)-C(O)-S-), or a urea linking group (-N(H)-C(O)-N(R1)-), where R1 is selected from hydrogen and any suitable organic group, such as described previously herein.

[0074] For purposes of non-limiting illustration, a difunctional linking group (such as, but not limited to, a diisocyanate, or dicarboxylic acid, or dicarboxylic acid ester, or dihaloformate functional linking group) and an active hydrogen functional second segment (such as a hydroxy functional second segment) can be reacted together, such that the second segment includes at least one functional group of the difunctional linking group. For purposes of further non-limiting illustration, a diisocyanate functional linking group and a di-hydroxy functional second segment (or second segment precursor) can be reacted together with a functional ratio of isocyanate groups to hydroxyl groups of 1.1:1 to 3:1, or 1.5:1 to 2:1. The resulting isocyanate functionalized second segment can then be reacted together with an active hydrogen functional first segment, so as to form a segmented polymer according to the present invention. For purposes including, but not limited to, controlling molecular weight and/or crosslinking, prior to reaction together with the active hydrogen functional first segment, at least a portion of (e.g., 1% to 60%, or 30% to 50%) the isocyanate groups of the isocyanate functionalized second segment can be capped (or blocked) with a capping agent (such as one or more of the capping agents recited further herein with regard to the capped polyisocyanate curing agent). Further alternatively, prior to (and/or during) reaction together with the di-hydroxy functional second segment, at least a portion of (e.g., 1% to 50%, or 30% to 60%) the isocyanate groups of the diisocyanate functional linking group can be capped with a capping agent.

[0075] Without intending to be bound by any theory, it is believed that a cured coating layer or a cured film, prepared from the curable photochromic compositions of the present invention, includes domains that are composed substantially of second segments, which can be referred to herein as “second segment domains”. It is further believed, without intending to be bound by an theory, that at least some (e.g., at least a major amount) of the photochromic compounds, of the curable photochromic compositions of the present invention, reside within the second segment domains of the cured coatings or films. It is additionally believed, without intending to be bound by any theory, that photochromic compounds residing within the second segment domains have an enhanced range of molecular freedom/motion, which allows the photochromic compounds to more easily and quickly transition between open and closed forms, such as in response to exposure to and removal of a source of actinic radiation, thus resulting in enhanced photochromic performance properties associated with the cured article.

[0076] The segmented polymer (b) can, with some embodiments, be present in the curable photochromic composition of the present invention in an amount of from 20 to 98 percent by weight, or from 30 to 98 percent by weight, or from 40 to 98 percent by weight, or from 35 to 80 percent by weight, in each case based on total weight of resin solids of the curable photochromic composition.

[0077] As used herein, the term “total weight of resin solids” means the total weight of the segmented polymer and the curing agent, and does not include the weight of the photochromic compound(s).

[0078] The curable photochromic compositions of the present invention include a curing agent (c) that includes reactive functional groups that are reactive with the active hydrogen groups of the segmented polymer (b), in which the curing agent includes at least one of, a polyisocyanate, a polyisothiocyanate, or an aminoplast.

[0079] The polyisocyanate curing (or crosslinking) agent includes at least two isocyanate groups (-NCO). Examples of isocyanate functional materials from which the polyisocyanate curing agent can be selected can include, but are not limited to, toluene-2, 4-diisocyanate; toluene-2, 6-diisocyanate; diphenyl methane-4,4' -diisocyanate; diphenyl m ethane-2, 4'-diisocyanate; para-phenylene diisocyanate; biphenyl diisocyanate; 3,3'-dimethyl-4,4'-diphenylene diisocyanate; tetramethylene-1, 4-diisocyanate; hexamethylene-1, 6-diisocyanate; 2,2,4-trimethyl hexane- 1,6-diisocyanate; lysine methyl ester diisocyanate; bis(isocyanato ethyl)fumarate; isophorone diisocyanate; ethylene diisocyanate; dodecane-1, 12-diisocyanate; cyclobutane-1, 3-diisocyanate; cyclohexane-1, 3-diisocyanate; cyclohexane-1, 4-diisocyanate; methyl cyclohexyl diisocyanate; hexahydrotoluene-2,4-diisocyanate; hexahydrotoluene-2, 6-diisocyanate; hexahydrophenylene-1, 3 -diisocyanate; hexahydrophenylene- 1,4-diisocyanate; perhydrodiphenylmethane-2,4'-diisocyanate;

perhydrodiphenylmethane-4,4'-diisocyanate; norbomane diisocyanate; and mixtures thereof.

[0080] The polyisocyanate curing agent can be selected from polyisocyanates prepared from dimers and turners of diisocyanate monomers. Dimers and turners of diisocyanate monomers can be prepared by art-recognized methods, such as described in U.S. Pat. No. 5,777,061 at column 3, line 44 through column 4, line 40. Dimers and turners of the above recited diisocyanate monomers can contain linkages selected from the group consisting of isocyanurate, uretdione, biuret, allophanate and combinations thereof.

WHAT IS CLAIMED IS:

1. A curable photochromic composition comprising:

(a) a photochromic compound;

(b) a segmented polymer comprising active hydrogen groups, at least one first segment, and at least one second segment, wherein:

(i) each first segment independently comprises a fluorinated polymer segment, and

(ii) each second segment independently comprises a segment selected from the group consisting of a polycarbonate segment, a polyester segment, a polyether segment, a polyurethane segment, and a segment of copolymers thereof; and

(c) a curing agent comprising reactive functional groups that are reactive with the active hydrogen groups of the segmented polymer, wherein the curing agent comprises at least one of a polyisocyanate, a polyisothiocyanate, or an aminoplast.

2. The curable photochromic composition of claim 1 , wherein at least a portion of each second segment (ii) is terminated with a group derived from an active hydrogen-containing compound.

3. The curable photochromic composition of claims 1 or 2, wherein:

the segmented polymer (b) has an active hydrogen equivalent weight of from 1,000 to 15,000 g/eq, and

each active hydrogen group of the segmented polymer (b) is independently selected from the group consisting of hydroxyl groups, thiol groups, primary amine groups, and secondary amine groups.

4. The curable photochromic composition of any one of claims 1 to 3, wherein each active hydrogen group of the segmented polymer (b) is hydroxyl.

5. The curable photochromic composition of any one of claims 1 to 4, wherein at least one first segment (i) and at least one second segment (ii) are covalently bonded to each other by a linking group selected from the group consisting of a carboxylic acid ester linking group, a thioester linking group, an amide linking group, a urethane linking group, a thiourethane linking group, a urea linking group, a thiourea linking group, a carbonate linking group, an ether linking group, and a thioether linking group.

6. The curable photochromic composition of any one of claims 1 to 5, wherein the second segment (ii) is present in the segmented polymer (b) in an amount of from 40 percent by weight to 95 percent by weight, based on total weight of the segmented polymer.

7. The curable photochromic composition of any one of claims 1 to 6, wherein the curable photochromic composition comprises a total amount of second segments (ii) of from 15 percent by weight to 50 percent by weight, based on total solids weight of the curable photochromic composition.

8. The curable photochromic composition of any one of claims 1 to 7, wherein each second segment (ii) independently comprises at least one of a polycarbonate segment, a polycarbonate-polyester segment, a polycarbonate-polyurethane segment, a polyether segment, or a polycarbonate-polyester-polyurethane segment.

9. The curable photochromic composition of any one of claims 1 to 8, wherein: the curing agent (c) comprises at least one of a polyisocyanate comprising reactive isocyanate groups, or a polyisothiocyanate comprising reactive isothiocyanate groups,

and

a molar ratio of reactive functional groups of the curing agent (c) to active hydrogen groups of the segmented polymer (b) is at least 4:1.

10. The curable photochromic composition of any one of claims 1 to 9, wherein the molar ratio of reactive functional groups of the curing agent (c) to active hydrogen groups of the segmented polymer (b) is at least 5 : 1 and less than or equal to 60: 1.

11. The curable photochromic composition of any one of claims 1 to 10, wherein the curing agent (c) comprises a polyisocyanate, comprising reactive isocyanate groups.

12. The curable photochromic composition of claim 11, wherein the polyisocyanate is an aliphatic polyisocyanate,

13. The curable photochromic composition of any one of claims 1 to 12, wherein the curing agent (c) comprises a polyisocyanate and at least some of the reactive isocyanate groups comprising the polyisocyanate curing agent are blocked with a blocking agent, and each blocking agent is independently selected from the group consisting of methylethyl ketoxime, pyrazole, and dialkyl pyrazole.

14. The curable photochromic composition of any one of claims 1 to 13, wherein the photochromic compound (a) is selected from the group consisting of naphthopyrans, benzopyrans, phenanthropyrans, indenonaphthopyrans, spiro(indoline)naphthoxazines, spiro(indoline)pyridobenzoxazines, spiro(benzindoline)pyridobenzoxazines, spiro(benzindoline)naphthoxazines, spiro(indoline)-benzoxazines, fulgides, fulgimides, and mixtures of such photochromic compounds.

15. The curable photochromic composition of any one of claims 1 to 14, wherein the fluorinated polymer segment comprises an active hydrogen group.

16. A polymeric film comprising the curable photochromic composition of any one of claims 1 to 15.

17. An article comprising:

(A) a substrate; and

(B) a photochromic layer over at least one surface of the substrate, wherein the photochromic layer is formed from the curable photochromic composition of any one of claims 1 to 15.

18. A photochromic multilayer article comprising at least one photochromic layer formed from the curable photochromic composition of any one of claims 1 to 15.

Documents

Application Documents

# Name Date
1 202217037089-FORM 18 [12-12-2023(online)].pdf 2023-12-12
1 202217037089.pdf 2022-06-28
2 202217037089-STATEMENT OF UNDERTAKING (FORM 3) [28-06-2022(online)].pdf 2022-06-28
2 202217037089-FORM 3 [11-12-2023(online)].pdf 2023-12-11
3 202217037089-POWER OF AUTHORITY [28-06-2022(online)].pdf 2022-06-28
3 202217037089-FORM 3 [17-05-2023(online)].pdf 2023-05-17
4 202217037089-FORM 1 [28-06-2022(online)].pdf 2022-06-28
4 202217037089-FORM 3 [16-11-2022(online)].pdf 2022-11-16
5 202217037089-FIGURE OF ABSTRACT [28-06-2022(online)].jpg 2022-06-28
5 202217037089-Proof of Right [03-08-2022(online)].pdf 2022-08-03
6 202217037089-DECLARATION OF INVENTORSHIP (FORM 5) [28-06-2022(online)].pdf 2022-06-28
6 202217037089-COMPLETE SPECIFICATION [28-06-2022(online)].pdf 2022-06-28
7 202217037089-DECLARATION OF INVENTORSHIP (FORM 5) [28-06-2022(online)].pdf 2022-06-28
7 202217037089-COMPLETE SPECIFICATION [28-06-2022(online)].pdf 2022-06-28
8 202217037089-Proof of Right [03-08-2022(online)].pdf 2022-08-03
8 202217037089-FIGURE OF ABSTRACT [28-06-2022(online)].jpg 2022-06-28
9 202217037089-FORM 3 [16-11-2022(online)].pdf 2022-11-16
9 202217037089-FORM 1 [28-06-2022(online)].pdf 2022-06-28
10 202217037089-FORM 3 [17-05-2023(online)].pdf 2023-05-17
10 202217037089-POWER OF AUTHORITY [28-06-2022(online)].pdf 2022-06-28
11 202217037089-FORM 3 [11-12-2023(online)].pdf 2023-12-11
11 202217037089-STATEMENT OF UNDERTAKING (FORM 3) [28-06-2022(online)].pdf 2022-06-28
12 202217037089.pdf 2022-06-28
12 202217037089-FORM 18 [12-12-2023(online)].pdf 2023-12-12
13 202217037089-FER.pdf 2025-07-03
14 202217037089-FORM 3 [05-09-2025(online)].pdf 2025-09-05

Search Strategy

1 202217037089_SearchStrategyNew_E_photochromicE_26-06-2025.pdf