Sign In to Follow Application
View All Documents & Correspondence

"Cut Off Shifted Optical Fibre With Large Effective Area"

Abstract: ABSTRACT CUT-OFF SHIFTED OPTICAL FIBRE WITH LARGE EFFECTIVE AREA The present disclosure provides an optical fibre (100). The optical fibre (100) includes a core region (102), a primary trench region (106) and a secondary trench region (108). The core region (102) has a radius r1. In addition, the core region (102) has a relative refractive index  Δ1. Further, the primary trench region (106) has a relative refractive index  Δ3. Furthermore, the primary trench region (106) has a curve parameter atrench-1. Moreover, the secondary trench region (108) has a relative refractive index  Δ4. Also, the secondary trench region (108) has a curve parameter atrench-2.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
02 August 2019
Publication Number
06/2021
Publication Type
INA
Invention Field
PHYSICS
Status
Email
patent@ipmetrix.com
Parent Application
Patent Number
Legal Status
Grant Date
2024-06-10
Renewal Date

Applicants

Sterlite Technologies Limited
House No. Street E-1, E-2, E-3 Bajaj Nagar MIDC Waluj, City Aurangabad State Maharashtra Country India Pin code 431136

Inventors

1. Apeksha Malaviya
House No. Sterlite Technologies Limited, Street E-1, E-2, E-3 Bajaj Nagar MIDC Waluj, City Aurangabad State Maharashtra Country India Pin code 431136
2. Srinivas Reddy
House No. Sterlite Technologies Limited, Street E-1, E-2, E-3 Bajaj Nagar MIDC Waluj, City Aurangabad State Maharashtra Country India Pin code 431136
3. MalleshwaraRao Lanke
House No. Sterlite Technologies Limited, Street E-1, E-2, E-3 Bajaj Nagar MIDC Waluj, City Aurangabad State Maharashtra Country India Pin code 431136
4. Anand Kumar Pandey
House No. Sterlite Technologies Limited, Street E-1, E-2, E-3 Bajaj Nagar MIDC Waluj, City Aurangabad State Maharashtra Country India Pin code 431136

Specification

Claims:CLAIMS

We claim:
1. An optical fibre (100) comprising:
a core region (102), wherein the core region (102) has a radius r1, wherein the core region (102) has a relative refractive index Δ1, wherein The relative refractive index Δ1 is in range of about 0 to 0.13;
a primary trench region (106), wherein the primary trench region (106) has a relative refractive index Δ3, wherein the primary trench region (106) has a curve parameter atrench-1; and
a secondary trench region (108) adjacent to the primary trench region (106), wherein the secondary trench region (108) has a relative refractive index Δ4, wherein the secondary trench region (108) has a curve parameter alpha atrench-2.

2. An optical fibre (100) as claimed in claim 1, further comprising a buffer clad region (104), wherein the buffer clad region (104) separates the core region (102) and the primary trench region (106).

3. An optical fibre (100) as claimed in claim 1, further comprising a buffer clad region (104), wherein the buffer clad region (104) separates the core region (102) and the primary trench region (106), wherein the buffer clad region (104) has a relative refractive index Δ2, wherein The relative refractive index Δ2 is in range of about -0.05 to 0.05, wherein the buffer clad region (104) has a radius r2, wherein the radius r2 is in range of about 6 micrometer to 6.4 micrometer. (Kindly confirm the values)

4. An optical fibre (100) as claimed in claim 1, further comprising a buffer clad region (104), wherein the buffer clad region (104) separates the core region (102) and the primary trench region (106), wherein the buffer clad region (104) has a relative refractive index ?2, wherein The relative refractive index ?2 is in range of about -0.05 to 0.05, wherein the buffer clad region (104) has a radius r2, wherein the radius r2 is in range of about 7.3 micrometer to 7.7 micrometer.

5. An optical fibre (100) as claimed in claim 1, further comprising a buffer clad region (104), wherein the buffer clad region (104) separates the core region (102) and the primary trench region (106), wherein the buffer clad region (104) has a relative refractive index Δ2.

6. An optical fibre (100) as claimed in claim 1, wherein the core region (102) has a curve parameter a1, wherein the curve parameter a1 is in range of about 6 to 9, wherein the core region (102) has the radius r1 in range of about 4.7 micrometer to 5.1 micrometer, wherein The relative refractive index Δ3 of the primary trench region (106) is in range of about -0.28 to -0.32, wherein The relative refractive index Δ4 of the secondary trench region (108) is in range of about -0.41 to -0.45, wherein the primary trench region (106) has a radius r3, wherein the radius r3 is in range of about 11 micrometer to 13 micrometer, wherein the secondary trench region (108) has a radius r4, wherein the radius r4 is in range of about 23 micrometer to 28 micrometer.

7. An optical fibre (100) as claimed in claim 1, wherein the core region (102) has a curve parameter a1, wherein the curve parameter a1 is in range of about 5 to 7, wherein the core region (102) has the radius r1 in range of about 5.5 micrometer to 5.9 micrometer, wherein The relative refractive index Δ3 of the primary trench region (106) is in range of about -0.28 to -0.32, wherein The relative refractive index Δ4 of the secondary trench region (108) is in range of about -0.42 to -0.48, wherein the primary trench region (106) has a radius r3, wherein the radius r3 is in range of about 10 micrometer to 14 micrometer, wherein the secondary trench region (108) has a radius r4, wherein the radius r4 is in range of about 16 micrometer to 20 micrometer.

8. An optical fibre (100) as claimed in claim 1, wherein the core region (102) is defined along a central longitudinal axis (112) of the optical fibre (100).

9. An optical fibre (100) as claimed in claim 1, wherein The relative refractive index Δ4 of the secondary trench region (108) is greater than The relative refractive index ?3 of the primary trench region (106).

10. An optical fibre (100) as claimed in claim 1, further comprising a third trench region, wherein the third trench region (114) is adjacent to the secondary trench region (108), wherein the third trench region (114) has a radius r5, wherein the radius r5 of the third trench region (114) is in range of about 38 micrometer to 42 micrometer.

11. An optical fibre (100) as claimed in claim 1, further comprising a cladding region (110), wherein the cladding region (110) has a radius rclad, wherein the radius rclad of the cladding region (110) is up to 62.5 micrometer, wherein the cladding region (110) has a relative refractive index ?clad of about 0.
12. An optical fibre (100) as claimed in claim 1, wherein the optical fibre (100) has a cable cutoff wavelength up to 1530 nanometer, wherein the optical fibre (100) has a mode field diameter in range of about 12 micrometer to 13 micrometer, wherein the optical fibre (100) has attenuation of up to 0.17 dB/km at a wavelength of about 1550 nanometer, wherein the optical fibre (100) has chromatic dispersion in range of about 17 picosecond per nanometer-kilometer to 23 picosecond per nanometer-kilometer at wavelength of about 1550 nanometer, wherein the optical fibre (100) has an effective area in range of about 110 micrometer square to 135 micrometer square, wherein the optical fibre (100) has macrobend loss up to 0.1 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeter and macrobend loss up to 0.03 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeter.

13. An optical fibre (100) comprising:
a core region (102), wherein the core region (102) has a radius r1, wherein the core region (102) has a relative refractive index Δ1, wherein The relative refractive index Δ1 is in range of about 0 to 0.13;
a primary trench region (106), wherein the primary trench region (106) has a relative refractive index Δ3, wherein the primary trench region (106) has a curve parameter atrench-1; and
a secondary trench region (108) adjacent to the primary trench region (106), wherein the secondary trench region (108) has a relative refractive index Δ4, wherein the secondary trench region (108) has a curve parameter atrench-1, wherein The relative refractive index ?4 of the secondary trench region (108) is greater than The relative refractive index Δ3 of the primary trench region (106),
wherein the optical fibre (100) has a cable cutoff wavelength up to 1530 nanometer, wherein the optical fibre (100) has a mode field diameter in range of about 12 micrometer to 13 micrometer, wherein the optical fibre (100) has chromatic dispersion in range of about 17 picosecond per nanometer-kilometer to 23 picosecond per nanometer kilometer at wavelength of about 1550 nanometer, wherein the optical fibre (100) has an effective area in range of about 110 micrometer square to 135 micrometer square, wherein the optical fibre (100) has macrobend loss up to 0.1 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeter and macrobend loss up to 0.03 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeter.

14. An optical fibre (100) as claimed in claim 13, further comprising a buffer clad region (104), wherein the buffer clad region (104) separates the core region (102) and the primary trench region (106).

15. An optical fibre (100) as claimed in claim 13, further comprising a buffer clad region (104), wherein the buffer clad region (104) separates the core region (102) and the primary trench region (106), wherein the buffer clad region (104) has a relative refractive index Δ2, wherein The relative refractive index Δ2 is in range of about -0.05 to 0.05, wherein the buffer clad region (104) has a radius r2, wherein the radius r2 is in range of about 6 micrometer to 6.4 micrometer, wherein the core region (102) has a curve parameter a1, wherein the curve parameter a1 is in range of about 6 to 9, wherein the core region (102) has the radius r1 in range of about 4.7 micrometer to 5.1 micrometer, wherein The relative refractive index Δ3 of the primary trench region (106) is in range of about -0.28 to -0.32, wherein The relative refractive index Δ4 of the secondary trench region (108) is in range of about -0.41 to -0.45, wherein the primary trench region (106) has a radius r3, wherein the radius r3 is in range of about 11 micrometer to 13 micrometer, wherein the secondary trench region (108) has a radius r4, wherein the radius r4 is in range of about 23 micrometer to 28 micrometer.

16. An optical fibre (100) as claimed in claim 13, further comprising a buffer clad region (104), wherein the buffer clad region (104) separates the core region (102) and the primary trench region (106), wherein the buffer clad region (104) has a relative refractive index ?2, wherein The relative refractive index ?2 is in range of about -0.05 to 0.05, wherein the buffer clad region (104) has a radius r2, wherein the radius r2 is in range of about 7.3 micrometer to 7.7 micrometer, wherein the core region (102) has a curve parameter a1, wherein the curve parameter a1 is in range of about 5 to 7, wherein the core region (102) has the radius r1 in range of about 5.5 micrometer to 5.9 micrometer, wherein The relative refractive index Δ3 of the primary trench region (106) is in range of about -0.28 to -0.32, wherein The relative refractive index Δ4 of the secondary trench region (108) is in range of about -0.42 to -0.48, wherein the primary trench region (106) has a radius r3, wherein the radius r3 is in range of about 10 micrometer to 14 micrometer, wherein the secondary trench region (108) has a radius r4, wherein the radius r4 is in range of about 16 micrometer to 20 micrometer.

17. An optical fibre (100) as claimed in claim 13, further comprising a buffer clad region (104), wherein the buffer clad region (104) separates the core region (102) and the primary trench region (106), wherein the buffer clad region (104) has a relative refractive index Δ2.

18. An optical fibre (100) as claimed in claim 13, wherein the core region (102) is defined along a central longitudinal axis (112) of the optical fibre (100).

19. An optical fibre (100) as claimed in claim 13, further comprising a third trench region (114), wherein the third trench region (114) is adjacent to the secondary trench region (108), wherein the third trench region (114) has a radius r5, wherein the radius r5 of the third trench region (114) is in range of about 38 micrometer to 42 micrometer.

20. An optical fibre (100) as claimed in claim 13, further comprising a cladding region (110), wherein the cladding region (110) has a radius rclad, wherein the radius rclad of the cladding region (110) is up to 62.5 micrometer, wherein the cladding region (110) has a relative refractive index Δclad of about 0.
Dated this 2nd day of August 2019 Signature:
Arun Kishore Narasani
(IN/PA/1049)
, Description:TECHNICAL FIELD
The present disclosure relates to the field of optical fibre. Particularly, the present disclosure relates to a cutoff shifted optical fibre with high mode field diameter.

BACKGROUND
With the advancement of science and technology, various modern technologies are being employed for communication purposes. One of the most important modern communication technologies is optical fibre communication technology using a variety of optical fibres. Optical fibre is used to transmit information as light pulses from one end to another. The telecommunication industry is continuously striving for designs to achieve high optical signal to noise ratio and low losses. The ongoing research suggests that the optical fibre of G.654.E category is an improved version of G.654.B and an alternative to G.652.D that faces challenges in 400G transmission in territorial long haul communication due to non-linear effects. In addition, major challenges in 400G long haul communication are due to non-linear effects, low optical signal to noise ratio and high attenuation.
In light of the above stated discussion, there is a need for an optical fibre that overcomes the above sited drawbacks.

OBJECT OF THE DISCLOSURE
A primary object of the present disclosure is to provide an optical fibre with low loss.
Another object of the present disclosure is to provide the optical fibre with large mode field diameter.

SUMMARY
In an aspect, the present disclosure provides an optical fibre. The optical fibre includes a core region. In addition, the optical fibre includes a primary trench region. Further, the optical fibre includes a secondary trench region adjacent to the primary trench region. The core region has a radius r1. Furthermore, the core region has a relative refractive index Δ1. The relative refractive index Δ1 is in range of about 0 to 0.13. Moreover, the primary trench region has a relative refractive index Δ3. The primary trench region has a curve parameter atrench-1. Also, the secondary trench region has a relative refractive index Δ4. The secondary trench region has curve parameter atrench-2.
In an embodiment of the present disclosure, the optical fibre includes a buffer clad region. The buffer clad region separates the core region and the primary trench region.
In an embodiment of the present disclosure, the optical fibre includes a buffer clad region. In addition, the buffer clad region has a relative refractive index profile Δ2. The relative refractive index Δ2 is in range of about -0.05 to 0.05. The buffer clad region has a radius r2. The radius r2 is in range of about 6 micrometers to 6.4 micrometer.
In an embodiment of the present disclosure, the optical fibre includes a buffer clad region. The buffer clad region separates the core region and the primary trench region. In addition, the buffer clad region has a relative refractive index ?2. The relative refractive index Δ2 is in range of about -0.05 to 0.05. Further, the buffer clad region has a radius r2. The radius r2 is in range of about 7.3 micrometer to 7.7 micrometer.
In an embodiment of the present disclosure, the optical fibre includes a buffer clad region. The buffer clad region separates the core region and the primary trench region. The buffer clad region has a relative refractive index Δ2.
In an embodiment of the present disclosure, the core region has a curve parameter a1. The curve parameter a1 is in range of about 6 to 9. The core region has the radius r1 in range of about 4.7 micrometer to 5.1 micrometer. The relative refractive index Δ3 of the primary trench region is in range of about -0.28 to -0.32. The curve parameter of the primary trench region atrench-1 is in range of about 5 to 7. The relative refractive index Δ4 of the secondary trench region is in range of about -0.41 to -0.45. The curve parameter of the secondary trench region atrench-2 is in range of about 6 to 9. The primary trench region has a radius r3. The radius r3 is in range of about 11 micrometer to 13 micrometer. The secondary trench region has a radius r4. The radius r4 is in range of about 23 micrometer to 28 micrometer.
In an embodiment of the present disclosure, the core region has a curve parameter a1. The curve parameter a1 is in range of about 5 to 7. In addition, the core region has the radius r1 in range of about 5.5 micrometer to 5.9 micrometer. The relative refractive index ?3 of the primary trench region is in range of about -0.28 to -0.32. The curve parameter of the primary trench region atrench-1 is in range of about 5 to 7. The relative refractive index ?4 of the secondary trench region is in range of about -0.42 to -0.48. The curve parameter of the secondary trench region atrench-2 is in range of about 7 to 9. The optical fibre includes a third trench region. The third trench region is adjacent to the secondary trench region. The relative refractive index ?5 of the third trench region is in range of about -0.1 to -0.15. The primary trench region has a radius r3. The radius r3 is in range of about 10 micrometer to 14 micrometer. The secondary trench region has a radius r4. The radius r4 is in range of about 16 micrometer to 20 micrometer. The third trench region has a radius r5. The radius r5 is in range of about 38 micrometer to 42 micrometer.
In an embodiment of the present disclosure, the core region is defined along a central longitudinal axis of the optical fibre.
In an embodiment of the present disclosure, The relative refractive index ?4 of the secondary trench region is greater than The relative refractive index ?3 of the primary trench region.
In an embodiment of the present disclosure, the optical fibre includes a cladding region. The cladding region has a radius rclad. The radius rclad of the cladding region is up to 62.5 micrometer. Further, the cladding region has a relative refractive index ?clad of about 0.
In an embodiment of the present disclosure, the optical fibre has a cable cutoff wavelength up to 1530 nanometer. Also, the optical fibre has attenuation of up to 0.17 dB/km at a wavelength of about 1550 nanometer. In addition, the optical fibre has a mode field diameter in range of about 12 micrometer to 13 micrometer. Further, the optical fibre has chromatic dispersion in range of about 17 picosecond per nanometer-kilometer to 23 picosecond per nanometer-kilometer at wavelength of about 1550 nanometer. Furthermore, the optical fibre has an effective area in range of about 110 micrometer square to 135 micrometer square. Moreover, the optical fibre has macrobend loss up to 0.1 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeter and macrobend loss up to 0.03 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeter.
In another aspect, the present disclosure provides an optical fibre. The optical fibre includes a core region. In addition, the optical fibre includes a primary trench region. Further, the optical fibre includes a secondary trench region adjacent to the primary trench region. The core region has a radius r1. Furthermore, the core region has a relative refractive index ?1. The relative refractive index ?1 is in range of about 0 to 0.13. Moreover, the primary trench region has a relative refractive index ?3. The primary trench region has a curve parameter atrench-1. Also, the secondary trench region has a relative refractive index ?4. The secondary trench region has an curve parameter atrench-2. Also, The relative refractive index ?4 of the secondary trench region is greater than The relative refractive index ?3 of the primary trench region. Also, the optical fibre has a cable cutoff wavelength up to 1530 nanometer. Also, The optical fibre has attenuation of up to 0.17 dB/km at a wavelength of about 1550 nanometer. The optical fibre has a mode field diameter in range of about 12 micrometer to 13 micrometer. Also, the optical fibre has chromatic dispersion in range of about 17 picosecond per nanometer-kilometer to 23 picosecond per nanometer kilometer at wavelength of about 1550 nanometer. Also, the optical fibre has an effective area in range of about 110 micrometer square to 135 micrometer square. The optical fibre has macrobend loss up to 0.1 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeters and macrobend loss up to 0.03 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeters.

STATEMENT OF THE DISCLOSURE
In an aspect, the present disclosure relates to an optical fibre. The optical fibre includes a core region. In addition, the optical fibre includes a primary trench region. Further, the optical fibre includes a secondary trench region adjacent to the primary trench region. The core region has a radius r1. Furthermore, the core region has a relative refractive index ?1. The relative refractive index ?1 is in range of about 0 to 0.13. Moreover, the primary trench region has a relative refractive index ?3. The primary trench region has a curve parameter atrench-1. Also, the secondary trench region has a relative refractive index ?4. The secondary trench region has a curve parameter atrench-2. Also, the relative refractive index ?4 of the secondary trench region is greater than the relative refractive index ?3 of the primary trench region. Also, the optical fibre has a cable cutoff wavelength up to 1530 nanometer. Also, the optical fibre has attenuation of up to 0.17 dB/km at a wavelength of about 1550 nanometer. The optical fibre has a mode field diameter in range of about 12 micrometer to 13 micrometer. Also, the optical fibre has chromatic dispersion in range of about 17 picosecond per nanometer-kilometer to 23 picosecond per nanometer kilometer at wavelength of about 1550 nanometer. Also, the optical fibre has an effective area in range of about 110 micrometer square to 135 micrometer square. The optical fibre has macrobend loss up to 0.1 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeter and macrobend loss up to 0.03 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeter.

BRIEF DESCRIPTION OF FIGURES
Having thus described the disclosure in general terms, reference will now be made to the accompanying figures, wherein:
FIG. 1 illustrates a cross sectional view of an optical fibre, in accordance with an embodiment of the present disclosure;
FIG. 2 illustrates a cross sectional view of the optical fibre, in accordance with another embodiment of the present disclosure;
FIG. 3 illustrates an example of graph between refractive index and radius of the optical fibre, in accordance with an embodiment of the present disclosure; and
FIG. 4 illustrates another example of graph between refractive index and radius of the optical fibre, in accordance with another embodiment of the present disclosure.
It should be noted that the accompanying figures are intended to present illustrations of exemplary embodiments of the present disclosure. These figures are not intended to limit the scope of the present disclosure. It should also be noted that accompanying figures are not necessarily drawn to scale.

DETAILED DESCRIPTION
Reference will now be made in detail to selected embodiments of the present disclosure in conjunction with accompanying figures. The embodiments described herein are not intended to limit the scope of the disclosure, and the present disclosure should not be construed as limited to the embodiments described. This disclosure may be embodied in different forms without departing from the scope and spirit of the disclosure. It should be understood that the accompanying figures are intended and provided to illustrate embodiments of the disclosure described below and are not necessarily drawn to scale. In the drawings, like numbers refer to like elements throughout, and thicknesses and dimensions of some components may be exaggerated for providing better clarity and ease of understanding.
It should be noted that the terms "first", "second", and the like, herein do not denote any order, ranking, quantity, or importance, but rather are used to distinguish one element from another. Further, the terms "a" and "an" herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
FIG. 1 illustrates a cross-sectional view of an optical fibre 100, in accordance with various embodiments of the present disclosure. In general, optical fibre is a thin strand of glass or plastic capable of transmitting optical signals. In an embodiment of the present disclosure, the optical fibre 100 is configured to transmit information over long distances with high optical signal to noise ratio, low non-linear effects, low latency and low attenuation. The optical fibre 100 of the present disclosure is fully compliant with the requirement of ITU (International Telecommunication Union-Telecommunication Standardization Sector)-G.654 E standards.
In an embodiment of the present disclosure, the optical fibre includes a core region 102. The core region 102 is associated with refractive index profile. The refractive index profile provides relation between refractive index and radius of the optical fiber 102. Moreover, the refractive index of the optical fibre 100 changes with an increase in radius. Further, refractive index profile is modified based on regulation of a plurality of parameters. The plurality of parameters includes but may not be limited to curve parameter alpha, relative refractive index delta and radius. The core region 102 has a curve parameter a1. In general, the curve parameter alpha indicates shape of refractive index profile. The core region 102 has the curve parameter a1 in range of about 6 to 9. In an embodiment of the present disclosure, value of the curve parameter a1 of the core region 102 may vary. In an example, the core region 102 has the curve parameter a1 of about 8. The core region 102 is defined along a central longitudinal axis 112 of the optical fibre 100. In general, longitudinal axis is an imaginary axis passing through center of the optical fibre.
The core region 102 has a relative refractive index ?1. The relative refractive index ?1 of the core region 102 is in range of about 0 to 0.13. In an embodiment of the present disclosure, The relative refractive index ?1 of the core region 102 may vary. In an example, The relative refractive index ?1 of the core region 102 is 0.12.
The core region 102 has a first radius r1. The core region 102 has the first radius r1 in range of about 4.7 micrometer to 5.1 micrometer. In an embodiment of the present disclosure, the first radius r1 of the core region 102 may vary. In an example, the core region 102 has the first radius r1 of about 4.9 micrometer.
The optical fibre 100 includes a buffer clad region 104. The buffer clad region 104 separates the core region 102 and the primary trench region 106. The buffer clad region 104 has a relative refractive index ?2. The buffer clad region 104 has The relative refractive index ?2 in range of about -0.05 to 0.05. In an embodiment of the present disclosure, The relative refractive index ?2 of the buffer clad region 104 may vary. The buffer clad region 104 has a radius r2. The radius r2 of the buffer clad region 104 is in range of about 6 micrometer to 6.4 micrometer. In an embodiment of the present disclosure, the radius r2 of the buffer clad region 104 may vary. In an example, the buffer clad region 104 has the radius r2 of about 6.2 micrometer.
The optical fibre 100 includes the primary trench region 106. The primary trench region 106 has a radius r3. The radius r3 of the primary trench region 106 is in range of about 11 micrometer to 13 micrometer. In an embodiment of the present disclosure, the radius r3 of the primary trench region 106 region may vary. In an example, the primary trench region 106 has the radius r3 of about 12 micrometer.
The primary trench region 106 has a relative refractive index ?3. The relative refractive index ?3 of the primary trench region 106 is in range of about -0.28 to -0.32. In an embodiment of the present disclosure, The relative refractive index ?3 of the primary trench region 106 may vary. In an example, The relative refractive index ?3 of the primary trench region 106 is about -0.3. The relative refractive index ?3 of the primary trench region 106 indicates relative refractive index difference represented by percentage.

The primary trench region 106 has a curve parameter atrench-1. The curve parameter atrench-1 of the primary trench region 106 is in range of about 5 to 7. In an embodiment of the present disclosure, the curve parameter atrench-1 of the primary trench region 106 may vary. In an example, the curve parameter atrench-1 of the primary trench region 106 is about 6.
The optical fibre 100 includes a secondary trench region 108. The secondary trench region 108 is adjacent to the primary trench region 106. The secondary trench region 108 has a radius r4. The secondary trench region 108 has the radius r4 in range of about 23 micrometer to 28 micrometer. In an embodiment of the present disclosure, the radius r4 of the secondary trench region 108 may vary. In an example, the secondary trench region 108 has the radius r4 of about 25 micrometer.
The secondary trench region 108 has a relative refractive index ?4. The relative refractive index ?4 is in range of about -0.41 to -0.45. In an embodiment of the present disclosure, the relative refractive index ?4 of the secondary trench region 108 may vary. In an example, the secondary trench region 108 has The relative refractive index ?4 of about -0.43. In an embodiment of the present disclosure, The relative refractive index ?4 of the secondary trench region 108 is greater than The relative refractive index ?3 of the primary trench region 106.
The secondary trench region 108 has a curve parameter atrench-2. The secondary trench region 108 has the curve parameter atrench-2 in range of about 6 to 9. In an embodiment of the present disclosure, the curve parameter atrench-2 of the secondary trench region 108 may vary. In an example,the secondary trench region 108 has curve parameter atrench-2 in range of about 8.
The first optical fibre 100 includes a cladding region 110. The cladding region 110 has a radius rclad. The cladding region 110 has the radius rclad of up to 62.5 micrometer. In an embodiment of the present disclosure, the radius rclad of the cladding region 110 may vary. The cladding region 110 has a relative refractive index ?clad. The relative refractive index ?clad of the cladding region 110 is of about 0.
The optical fibre 100 has a mode field diameter. The optical fibre 100 has a mode field diameter in range of about 12 micrometer to 13 micrometer at wavelength of about 1550 nanometer. In an embodiment of the present disclosure, the mode field diameter of the optical fibre 100 at wavelength of about 1550 nanometer may vary. In an example, the optical fibre 100 has the mode field diameter of about 12.2 micrometer at wavelength of about 1550 nanometer. In an embodiment, the optical fibre 100 has attenuation of up to 0.17 dB/km at a wavelength of about 1550 nanometer. The optical fibre 100 has chromatic dispersion in range of about 17 picosecond per nanometer-kilometer to 23 picosecond per nanometer-kilometer at wavelength of about 1550 nanometer. In an embodiment of the present disclosure, chromatic dispersion of the optical fibre 100 at wavelength of about 1550 nanometer may vary. In an example, the optical fibre 100 has chromatic dispersion of about 21.5 picosecond per nanometer-kilometer. The optical fibre 100 has chromatic dispersion of up to 29 picosecond per nanometer-kilometer at wavelength of about 1625 nanometer. In an embodiment of the present disclosure, chromatic dispersion of the optical fibre 100 at wavelength of about 1625 nanometer may vary. In an example, the optical fibre 100 has chromatic dispersion of about 26 picosecond per nanometer-kilometer at wavelength of about 1625 nanometer.
The optical fibre 100 has a cable cutoff wavelength up to 1530 nanometer. In an embodiment of the present disclosure, cable cutoff wavelength of the optical fibre 100 may vary. In an example, the optical fibre 100 has the cable cutoff wavelength of about 1480 nanometer. The optical fibre 100 has macrobend loss up to 0.1 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeter and macrobend loss up to 0.03 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeter. In an example, the optical fibre 100 has the macrobend loss of about 0.01 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeter. In an example, the optical fibre 100 has the macrobend loss of about 0.045 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeter.
FIG. 2 illustrates a cross sectional view of the optical fibre 100, in accordance with another embodiment of the present disclosure. The optical fibre 100 is a G.654 E single mode optical fibre. However, the optical fibre 100 is not limited to above mentioned optical fibre. In general, optical fibre is used for transmitting information as light pulses from one end to another. In addition, the optical fibre 100 is a thin strand of glass or plastic capable of transmitting optical signals. In general, optical fibre refers to a medium associated with transmission of information over long distances in the form of light pulses. Further, the optical fibre 100 uses light to transmit voice and data communications over long distances. In addition, optical fibres are used in optical fibre cables to transmit information over large distances.
In an embodiment of the present disclosure, the optical fibre 100 is used for 400G long haul applications. In another embodiment of the present disclosure, the optical fibre 100 is utilized for other applications. In an embodiment of the present disclosure, the optical fibre 100 complies with specific telecommunication standards. The telecommunication standards are defined by International Telecommunication Union-Telecommunication (hereinafter “ITU-T”). In an embodiment of the present disclosure, the optical fibre 100 is compliant with G.654E recommendation standard set by the ITU-T.
The optical fibre 100 includes the core region 102. In an embodiment of the present disclosure, the core region 102 has the radius r1 in range of about 5.5 micrometer to 5.9 micrometer. In another embodiment of the present disclosure, the radius r1 of the core region 102 may vary. In an example, the radius r1 of the core region 102 is of about 5.7 micrometer. The core region 102 has the curve parameter a1. In general, curve parameter alpha indicates shape of refractive index profile. In an embodiment of the present disclosure, the core region 102 has the curve parameter a1 in range of about 5 to 7. In another embodiment of the present disclosure, the curve parameter a1 of the core region 102 may vary. In an example, the core region 102 has the curve parameter a1 of about 6.
The core region 102 has The relative refractive index ?1. In an embodiment of the present disclosure, The relative refractive index ?1 is in range of about 0 to 0.1. In another embodiment of the present disclosure, The relative refractive index ?1 of the core region 102 may vary. In an example, The relative refractive index ?1 is of about 0.1.
The optical fibre 100 includes the buffer clad region 104. The buffer clad region 104 separates the core region 102 and the primary trench region 106. The buffer clad region 104 has The relative refractive index ?2. The buffer clad region 104 has The relative refractive index ?2 in range of about 0. In an embodiment of the present disclosure, The relative refractive index ?2 of the buffer clad region 104 may vary. The buffer clad region 104 has the radius r2 in range of about 7.3 micrometer to 7.7 micrometer. In another embodiment of the present disclosure, the radius r2 of the buffer clad region 104 may vary. In an example, the buffer clad region 104 has the radius r2 of about 7.5 micrometer.
The optical fibre 100 includes the primary trench region 106. The primary trench region 106 has the radius r3. The radius r3 of the primary trench region 106 is in range of about 10 micrometer to 14 micrometer. In an embodiment of the present disclosure, the radius r3 of the primary trench region 106 may vary. In an example, the primary trench region 106 has the radius r3 of about 12 micrometer.
The primary trench region 106 has a relative refractive index ?3. The relative refractive index ?3 of the primary trench region 106 is in range of about -0.28 to -0.32. In an embodiment of the present disclosure, The relative refractive index ?3 of the primary trench region 106 may vary. In an example, The relative refractive index ?3 of the primary trench region 106 is about -0.3.
The primary trench region 106 has a curve parameter atrench-1. The curve parameter atrench-1 of the primary trench region 106 is in range of about 5 to 7. In an embodiment of the present disclosure, the curve parameter atrench-1 of the primary trench region 106 may vary. In an example, the curve parameter atrench-1 of the primary trench region 106 is about 6.
The optical fibre 100 includes the secondary trench region 108. The secondary trench region 108 is adjacent to the primary trench region 106. The secondary trench region 108 has a radius r4. The secondary trench region 108 has the radius r4 in range of about 16 micrometer to 20 micrometer. In an embodiment of the present disclosure, the radius r4 of the secondary trench region 108 may vary. In an example, the secondary trench region 108 has the radius r4 of about 18 micrometer.
The secondary trench region 108 has a relative refractive index ?4. The relative refractive index ?4 is in range of about -0.42 to -0.48. In an embodiment of the present disclosure, the relative refractive index ?4 of the secondary trench region 108 may vary. In an example, the secondary trench region 108 has The relative refractive index ?4 of about -0.45. In an embodiment of the present disclosure, The relative refractive index ?4 of the secondary trench region 108 is greater than The relative refractive index ?3 of the primary trench region 106.
The secondary trench region 108 has the curve parameter alpha atrench-2. The secondary trench region 108 has the curve parameter alpha atrench-2 in range of about 7 to 9. In an embodiment of the present disclosure, the curve parameter alpha atrench-2 of the secondary trench region 108 may vary. In an example, the secondary trench region 108 has the curve parameter alpha atrench-2 in range of about 8.
The optical fibre 100 includes the third trench region 114. The third trench region 114 is adjacent to the secondary trench region 108. The third trench region 114 has a radius r5. The third trench region 114 has the radius r5 in range of about 38 micrometer to 42 micrometer. In an embodiment of the present disclosure, the radius r5 of the third trench region 114 may vary. In an example, the third trench region 114 has the radius r5 of about 40 micrometer.
The third trench region 114 has a relative refractive index ?5. The relative refractive index ?5 is in range of about -0.1 to -0.15. In an embodiment of the present disclosure, the relative refractive index ?5 of the third trench region 114 may vary. In an example, the third trench region 114 has The relative refractive index ?5 of about -0.13.
The optical fibre 100 includes the cladding region 110. The cladding region 110 has the radius rclad. The cladding region 110 has the radius rclad of up to 62.5 micrometer. In an embodiment of the present disclosure, the radius rclad of the cladding region 110 may vary. The cladding region 110 has a relative refractive index ?clad. The relative refractive index ?clad of the cladding region 110 is of about 0.
The optical fibre 100 has a mode field diameter. The optical fibre 100 has a mode field diameter in range of about 12 micrometer to 13 micrometer at wavelength of about 1550 nanometer. In an embodiment of the present disclosure, the mode field diameter of the optical fibre 100 at wavelength of about 1550 nanometer may vary. In an embodiment, the optical fibre 100 has attenuation of up to 0.17 dB/km at a wavelength of about 1550 nanometer. In an example, the optical fibre 100 has the mode field diameter of about 12.7 micrometer at wavelength of about 1550. The optical fibre 100 has chromatic dispersion in range of about 17 picosecond per nanometer-kilometer to 23 picosecond per nanometer-kilometer at wavelength of about 1550 nanometer. In an embodiment of the present disclosure, chromatic dispersion of the optical fibre 100 at wavelength of about 1550 nanometer may vary. In an example, the optical fibre 100 has chromatic dispersion of about 22.3 picosecond per nanometer-kilometer. The optical fibre 100 has chromatic dispersion of up to 29 picosecond per nanometer-kilometer at wavelength of about 1625 nanometer. In an embodiment of the present disclosure, chromatic dispersion of the optical fibre 100 at wavelength of about 1625 nanometer may vary. In an example, the optical fibre 100 has chromatic dispersion of about 26.8 picosecond per nanometer-kilometer at wavelength of about 1625 nanometer.
The optical fibre 100 has a cable cutoff wavelength up to 1530 nanometer. In an embodiment of the present disclosure, cable cutoff wavelength of the optical fibre 100 may vary. In an example, the optical fibre 100 has the cable cutoff wavelength of about 1425 nanometer. The optical fibre 100 has macrobend loss up to 0.1 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeter and macrobend loss up to 0.03 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeter. In an example, the optical fibre 100 has the macrobend loss of about 0.015 decibel per 100 turns corresponding to wavelength of 1550 nanometer at bending radius of about 30 millimeter. In an example, the optical fibre 100 has the macrobend loss of about 0.06 decibel per 100 turns corresponding to wavelength of 1625 nanometer at bending radius of about 30 millimeter.
FIG.3 illustrates an example of a graph 300 between refractive index and radius of the optical fibre 100, in accordance with an embodiment of the present disclosure. The core region 102 is associated with refractive index profile. In an embodiment of the present disclosure, refractive index profile provides the relation between refractive index and radius of the optical fibre 100. In addition, radius of the core region 102 is in range of about 4.7 micrometer to 5.1 micrometer. Furthermore, the graph 300 illustrates relation between refractive index and radius of the core region 102. Moreover, the refractive index of the optical fibre 100 changes with an increase in radius of the optical fibre 100. Further, refractive index profile is modified based on regulation of a plurality of parameters. The plurality of parameters includes but may not be limited to curve parameter alpha, relative refractive index delta and radius. The curve parameter alpha is a non-dimensional parameter that is indicative of the shape of refractive index profile. The refractive index profile and relative refractive index of the optical fiber is given by the following equations:
Relative Refractive Index is given by,

Index profile is given by:
n(r)=n_max [1-2?1(r/R1)^a ]^0.5 for r=R1
n(r)= n_clad for R1=r

Documents

Orders

Section Controller Decision Date

Application Documents

# Name Date
1 201921031253-IntimationOfGrant10-06-2024.pdf 2024-06-10
1 201921031253-STATEMENT OF UNDERTAKING (FORM 3) [02-08-2019(online)].pdf 2019-08-02
2 201921031253-PatentCertificate10-06-2024.pdf 2024-06-10
2 201921031253-REQUEST FOR EXAMINATION (FORM-18) [02-08-2019(online)].pdf 2019-08-02
3 201921031253-Response to office action [29-04-2024(online)].pdf 2024-04-29
3 201921031253-POWER OF AUTHORITY [02-08-2019(online)].pdf 2019-08-02
4 201921031253-FORM 18 [02-08-2019(online)].pdf 2019-08-02
4 201921031253-Annexure [12-01-2024(online)].pdf 2024-01-12
5 201921031253-FORM 13 [12-01-2024(online)].pdf 2024-01-12
5 201921031253-FORM 1 [02-08-2019(online)].pdf 2019-08-02
6 201921031253-FORM 3 [12-01-2024(online)].pdf 2024-01-12
6 201921031253-DRAWINGS [02-08-2019(online)].pdf 2019-08-02
7 201921031253-FORM-26 [12-01-2024(online)].pdf 2024-01-12
7 201921031253-DECLARATION OF INVENTORSHIP (FORM 5) [02-08-2019(online)].pdf 2019-08-02
8 201921031253-PETITION UNDER RULE 137 [12-01-2024(online)].pdf 2024-01-12
8 201921031253-COMPLETE SPECIFICATION [02-08-2019(online)].pdf 2019-08-02
9 201921031253-POA [12-01-2024(online)].pdf 2024-01-12
9 Abstract1.jpg 2019-10-26
10 201921031253-RELEVANT DOCUMENTS [12-01-2024(online)].pdf 2024-01-12
10 201921031253-REQUEST FOR CERTIFIED COPY [05-11-2019(online)].pdf 2019-11-05
11 201921031253-CORRESPONDENCE(IPO)-(CERTIFIED COPY)-(14-11-2019).pdf 2019-11-14
11 201921031253-Response to office action [12-01-2024(online)].pdf 2024-01-12
12 201921031253-FORM 3 [27-03-2020(online)].pdf 2020-03-27
12 201921031253-Written submissions and relevant documents [12-01-2024(online)].pdf 2024-01-12
13 201921031253-Correspondence to notify the Controller [22-12-2023(online)].pdf 2023-12-22
13 201921031253-Request Letter-Correspondence [19-04-2020(online)].pdf 2020-04-19
14 201921031253-CORRESPONDENCE(IPO)-(CERTIFIED COPY OF WIPO DAS)-(15-5-2020).pdf 2020-06-10
14 201921031253-FORM-26 [22-12-2023(online)].pdf 2023-12-22
15 201921031253-FORM 3 [29-09-2020(online)].pdf 2020-09-29
15 201921031253-US(14)-HearingNotice-(HearingDate-28-12-2023).pdf 2023-12-07
16 201921031253-COMPLETE SPECIFICATION [21-12-2021(online)].pdf 2021-12-21
16 201921031253-FER.pdf 2021-10-19
17 201921031253-Proof of Right [21-12-2021(online)].pdf 2021-12-21
17 201921031253-CORRESPONDENCE [21-12-2021(online)].pdf 2021-12-21
18 201921031253-DRAWING [21-12-2021(online)].pdf 2021-12-21
18 201921031253-PETITION UNDER RULE 137 [21-12-2021(online)].pdf 2021-12-21
19 201921031253-FER_SER_REPLY [21-12-2021(online)].pdf 2021-12-21
19 201921031253-FORM-26 [21-12-2021(online)].pdf 2021-12-21
20 201921031253-FORM 3 [21-12-2021(online)].pdf 2021-12-21
21 201921031253-FER_SER_REPLY [21-12-2021(online)].pdf 2021-12-21
21 201921031253-FORM-26 [21-12-2021(online)].pdf 2021-12-21
22 201921031253-DRAWING [21-12-2021(online)].pdf 2021-12-21
22 201921031253-PETITION UNDER RULE 137 [21-12-2021(online)].pdf 2021-12-21
23 201921031253-CORRESPONDENCE [21-12-2021(online)].pdf 2021-12-21
23 201921031253-Proof of Right [21-12-2021(online)].pdf 2021-12-21
24 201921031253-FER.pdf 2021-10-19
24 201921031253-COMPLETE SPECIFICATION [21-12-2021(online)].pdf 2021-12-21
25 201921031253-US(14)-HearingNotice-(HearingDate-28-12-2023).pdf 2023-12-07
25 201921031253-FORM 3 [29-09-2020(online)].pdf 2020-09-29
26 201921031253-CORRESPONDENCE(IPO)-(CERTIFIED COPY OF WIPO DAS)-(15-5-2020).pdf 2020-06-10
26 201921031253-FORM-26 [22-12-2023(online)].pdf 2023-12-22
27 201921031253-Correspondence to notify the Controller [22-12-2023(online)].pdf 2023-12-22
27 201921031253-Request Letter-Correspondence [19-04-2020(online)].pdf 2020-04-19
28 201921031253-FORM 3 [27-03-2020(online)].pdf 2020-03-27
28 201921031253-Written submissions and relevant documents [12-01-2024(online)].pdf 2024-01-12
29 201921031253-CORRESPONDENCE(IPO)-(CERTIFIED COPY)-(14-11-2019).pdf 2019-11-14
29 201921031253-Response to office action [12-01-2024(online)].pdf 2024-01-12
30 201921031253-RELEVANT DOCUMENTS [12-01-2024(online)].pdf 2024-01-12
30 201921031253-REQUEST FOR CERTIFIED COPY [05-11-2019(online)].pdf 2019-11-05
31 201921031253-POA [12-01-2024(online)].pdf 2024-01-12
31 Abstract1.jpg 2019-10-26
32 201921031253-COMPLETE SPECIFICATION [02-08-2019(online)].pdf 2019-08-02
32 201921031253-PETITION UNDER RULE 137 [12-01-2024(online)].pdf 2024-01-12
33 201921031253-DECLARATION OF INVENTORSHIP (FORM 5) [02-08-2019(online)].pdf 2019-08-02
33 201921031253-FORM-26 [12-01-2024(online)].pdf 2024-01-12
34 201921031253-DRAWINGS [02-08-2019(online)].pdf 2019-08-02
34 201921031253-FORM 3 [12-01-2024(online)].pdf 2024-01-12
35 201921031253-FORM 1 [02-08-2019(online)].pdf 2019-08-02
35 201921031253-FORM 13 [12-01-2024(online)].pdf 2024-01-12
36 201921031253-Annexure [12-01-2024(online)].pdf 2024-01-12
36 201921031253-FORM 18 [02-08-2019(online)].pdf 2019-08-02
37 201921031253-Response to office action [29-04-2024(online)].pdf 2024-04-29
37 201921031253-POWER OF AUTHORITY [02-08-2019(online)].pdf 2019-08-02
38 201921031253-REQUEST FOR EXAMINATION (FORM-18) [02-08-2019(online)].pdf 2019-08-02
38 201921031253-PatentCertificate10-06-2024.pdf 2024-06-10
39 201921031253-STATEMENT OF UNDERTAKING (FORM 3) [02-08-2019(online)].pdf 2019-08-02
39 201921031253-IntimationOfGrant10-06-2024.pdf 2024-06-10

Search Strategy

1 201921031253_SearchE_15-04-2021.pdf

ERegister / Renewals

3rd: 03 Sep 2024

From 02/08/2021 - To 02/08/2022

4th: 03 Sep 2024

From 02/08/2022 - To 02/08/2023

5th: 03 Sep 2024

From 02/08/2023 - To 02/08/2024

6th: 03 Sep 2024

From 02/08/2024 - To 02/08/2025

7th: 01 Aug 2025

From 02/08/2025 - To 02/08/2026