Abstract: A compound of Formula (1) and salts thereof: Formula (1) wherein: m is 1,2 or 3; R and R2 are each independently optionally substituted alkoxy; and R and R5 are each independently H, optionally substituted alkyl or optionally substituted aryl; provided that at least one of Rr and R2 carries an -OH group. The compounds are useful as dyes for ink jet printing inks.
FORM 2
THE PATENTS ACT 1970
[39 OF 1970]
&
THE PATENTS RULES, 2003
COMPLETE SPECIFICATION
[See Section 10; rule 13]
"DISAZO DYES AND INKS CONTAINING THEM"
AVECIA LIMITED, of Hexagon House, Blackley, Manchester M9 8ZS, United Kingdom,
The following specification particularly describes the invention and the manner in which it is to be performed:
SMC 60333
COMPOUNDS
This invention relates to compounds suitable for use as dyes, to inks and to their use in ink jet printing ("IJP"). IJP is a non-impact printing technique in which droplets of ink are ejected through a fine nozzle onto a substrate without bringing the nozzle into contact with the substrate.
There are many demanding performance requirements for dyes and inks used in UP. For example they desirably provide sharp, non-feathered images having good water-fastness, light-fastness and optical density. The inks are often required to dry quickly when applied to a substrate to prevent smudging, but they should not form a crust over the tip of an ink jet nozzle because this will stop the printer from working. The inks should also be stable to storage over time without decomposing or forming a precipitate which couid block the fine nozzle.
According to the present invention there is provided a compound of Formula (1) and salts thereof:
Formula (1) wherein:
m is 1, 2 or 3;
R1 and R2 are each independently optionally substituted alkoxy; and R4 and R5 are each independently H, optionally substituted aikyl or optionally substituted aryl; provided that at least one of R1 and R2 carries an -OH group. Preferably m is 1.
R1 and R2 are preferably each independently optionally substituted C^-alkoxy, provided that at least one of R1 and R2 carries an -OH group. The optional substituents which may be present on R1, R2, R4 and R5 are preferably selected from -NH2; halo, especially CI, Br and F; ester, especially -CO2-1-4-alkyl; -O-C1-4-alkyl; -CO2H; -SO3H; -OR3; and -SR3; wherein each R3 independently in H or C1-4-alkyl, provided that at least one of R1 and R2 carries an -OH group.
Preferably both R1 and R2 carry an -OH group.
Preferably R4 and R5 are each independently H, optionally substituted C1-4-alkyi or optionally substituted phenyl, more preferably H, or C1-4-alky! or phenyl carrying 1 or 2 groups selected from carboxy and sulpho. More preferably R4 and R5 are both H.
SMC 60333
In an especially preferred embodiment, m is 1 or 2; one of R1 and R2 is -OC1-4alkyl-OH and the other is -OC1-4-alkyl or -O-CM-alkyl:OH; and R4 and R5 are H.
The compounds of Formula (1) may be prepared by diazotising a compound of the Formula (2) to give a diazonium salt and coupling the resultant diazonium salt with a 1-hydroxy-3-sulpho-7-aminonaphthalene:
Formula (2) wherein R\ R2 and m are as hereinbefore defined.
The hydroxy group(s) on R1 and/or R2 may be protected during the diazotisation, for example using an acid labile or base labile protecting group. The acetoxy protecting group is particularly convenient and inexpensive.
The diazotisation is preferably performed at a temperature below 6°C, more preferably at a temperature in the range -10°C to 5°C. Preferably the diazotisation is performed in water, preferably at a pH below 7. Dilute mineral acid, e.g. HCI or H2SO4, may be used to achieve the desired acidic conditions.
The compound of Formula (2) may be prepared by diazotising a carboxy aniline compound and coupling onto an aniline compound carrying the R1 and R2 groups at the 2-and 5- positions respectively.
Preferred salts are alkali metal salts (especially lithium, sodium and potassium salts), ammonium and substituted ammonium salts and mixtures thereof. Especially preferred salts are sodium, potassium and lithium salts, salts with ammonia and volatile amines and mixtures thereof. The lithium salts have good solubility, forming particularly storage stable inks with low toxicity and a low tendency to block ink jet nozzles.
The compounds may be converted into a desired salt using known techniques. For example, an alkali metal salt of a compound may be converted into the ammonium or substituted ammonia salt by dissolving an alkali metal salt of the compound in water, acidifying with a mineral acid and adjusting the pH of the solution to pH 9 to 9.5 with ammonia or the amine and removing the alkali metal cations by dialysis or by use of an ion exchange resin.
Examples of amines which may be used to form such salts include methylamine, dimethylamine, trimethylamine, ethylamine, n-propylamine, iso-propylamine, n-butylamine, iso-butylamine, sec-butylamine, tert-butylamine, piperidine, pyridine, morpholine, allyiamine, diethylamine, triethylamine, tetramethylamine and mixtures thereof. It is not essential that the dyes are completely in the form of the ammonium salt or substituted ammonium salt and mixed alkali metal and either ammonium salt or substituted
SMC 60333
ammonium salt are effective, especially those in which at least 50% of the cations are ammonium or substituted ammonium ions.
Still further salts are those with the counter ions described in US 5,830,265, claim 1, integer (b), which are included herein by reference thereto.
The compounds of Formula (1) may exist in tautomeric forms other than those shown in this specification. These tautomers are included within the scope of the present claims.
According to a second aspect of the present invention there is provided an ink comprising a compound of Formula (1) or salt thereof and a liquid medium or a low melting point solid medium.
A preferred ink comprises:
(a) from 0.01 to 30 parts of a compound of the Formula (1) or salt thereof; and
(b) from 70 to 99.99 parts of a liquid medium or a low melting point solid medium; wherein all parts are by weight and the number of parts of (a)+(b)=100.
The number of parts of component (a) is preferably from 0.1 to 20, more preferably from 0.5 to 15, and especially from 1 to 5 parts. The number of parts of component (b) is preferably from 99.9 to 80, more preferably from 99.5 to 85, especially from 99 to 95 parts.
When the medium is a liquid, preferably component (a) is completely dissolved in component (b). Preferably component (a) has a solubility in component (b) at 20°C of at least 10%. This allows the preparation of liquid dye concentrates which may be used as an ink or to prepare inks and reduces the chance of the dye precipitating if evaporation of the liquid medium occurs during storage.
Preferred liquid media include water, a mixture of water and an organic solvent and an organic solvent free from water.
When the liquid medium comprises a mixture of water and an organic solvent, the weight ratio of water to organic solvent is preferably from 99:1 to 1:99, more preferably from 99:1 to 50:50 and especially from 95:5 to 80:20.
It is preferred that the organic solvent present in the mixture of water and organic solvent is a .water-miscible organic solvent or a mixture of such solvents. Preferred water-miscible organic solvents include C1-6-alkanoIs, preferably methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol, ten>butanol, n-pentanol, cyclopentanol and cyclohexanol; linear amides, preferably dimethylformamide or dimethylacetamide; ketones and ketone-alcohols, preferably acetone, methyl ether ketone, cyclohexanone and diacetone alcohol; water-miscible ethers, preferably tetrahydrofuran and dioxane; diols, preferably diols having from 2 to 12 carbon atoms, for example pentane-1,5-dioI, ethylene glycol, propylene glycol, butylene glycol, pentylene glycol, hexylene glycol and thiodiglycol and oiigo- and poly-alkyleneglycols, preferably diethylene glycol, triethylene glycol, polyethylene glycol and polypropylene glycol; triols, preferably glycerol and 1,2,6-hexanetriol; mono-C1-4-
SMC 60333
alkyl ethers of diols, preferably mono-C1-4-alkyl ethers of diols having 2 to 12 carbon atoms, especially 2-methoxyethanol, 2-(2-rnethoxyethoxy)ethanol, 2-(2-ethoxyethoxy)-ethanol, 2-[2-(2-methoxyethoxy)ethoxy]ethanol, 2-[2-(2-ethoxyefrioxy)-ethoxy]-ethanol and ethy\eneglyco\ monoallyiether; cyclic amides, preferably 2-pyrrotfdone, N-methyl-2-pyrrolidone, N-ethyI-2-pyrrolidone, caprolactam and 1,3-dimethyIimidazolidone; cyclic esters, preferably caprolactone; sulphoxides, preferably dimethyl sulphoxide and sulpholane. Preferably the liquid medium comprises water and 2 or more, especially from 2 to 8, water-soluble organic solvents.
Especially preferred water-soluble organic solvents are cyclic amides, especially 2-pyrrolidone, N-methyf-pyrrolidone and N-ethyf-pyrrolidone; diols, especially 1,5-pentane diol, ethyleneglycol, thiodiglycol, diethyleneglycol and triethyleneglycol; and mono- C1-4-alkyI and C1-4-aIkyl ethers of diols, more preferably mono- C1-4-alkyl ethers of diols having 2 to 12 carbon atoms, especially ((2-methoxy)-2-ethoxy)-2-ethoxyethanol.
Examples of further suitable ink media comprising a mixture of water and one or more organic solvents are described in US 4,963,189, US 4,703,113, US 4,626,284 and EP 4,251,50A.
When the liquid medium comprises an organic solvent free from water, (i.e. less than 1% water by weight) the solvent preferably has a boiling point of from 30° to 200°C, more preferably of from 40° to 150°C, especially from 50 to 125°C. The organic solvent may be water-immiscible, water-miscible or a mixture of such solvents. Preferred water-miscible organic solvents are any of the hereinbefore described water-miscible organic solvents and mixtures thereof. Preferred water-immiscible solvents include, for example, aliphatic hydrocarbons; esters, preferably ethyl acetate; chlorinated hydrocarbons, preferably CH2Cl2; and ethers, preferably diethyl ether; and mixtures thereof.
When the liquid medium comprises a water-immiscible organic solvent, preferably a polar solvent is included because this enhances solubility of the compound in the liquid medium. Examples of polar solvents include C1-4-alcohols. In view of the foregoing preferences it is especially preferred that where the liquid medium is an organic solvent free from water it comprises a ketone (especially methyl ethyl ketone) &/or an alcohol (especially a C1-4-alkanol, more especially ethanol or propanol).
The organic solvent free from water may be a single organic solvent or a mixture of two or more organic solvents. It is preferred that when the medium is an organic solvent free from water it is a mixture of 2 to 5 different organic solvents. This allows a medium to be selected which gives good control over the drying characteristics and storage stability of the ink.
Ink media comprising an organic solvent free from water are particularly useful where fast drying times are required and particularly when printing onto hydrophobic and non-absorbent substrates, for example plastics, metal and glass.
SMC 60333
Preferred low melting solid media have a melting point in the range from 60°C to 125°C. Suitable low melting point solids include long "chain fatty acids or alcohols, preferably those with C18_24 chains, and sulphonamides. The compound of Formula (1) may be dissolved in the low melting point solid or may be finely dispersed in it.
The compounds of the invention may be used as the sole colorant in inks because of their attractive black shade. However, if desired, one may combine the compounds with one or more further colorants if a slightly different shade is required for a particular end use. The further colorants are preferably dyes. When further colorants are included in the ink these are preferably selected from black, cyan and yellow colorants and combinations thereof.
Preferred black colorants include C.I.Food Black 2, C.I.Direct Black 19, C.I.Reactive Black 31, PRO-JET Fast Black 2, C.I.Direct Black 195; C.I.Direct Black 168; and black dyes described in patents by Lexmark (e.g. EP 0 539,178 A2, Example 1, 2, 3, 4 and 5), Orient Chemicals (e.g. EP 0 347 803 A2, pages 5-6, azo dyes 3, 4, 5, 6, 7, 8,12, 13, 14, 15 and 16) and Seiko Epson Corporation.
Preferred cyan colorants include C.I.Direct Blue 199; C.I.Acid Blue 9; C.I.Direct Blue 307; C.I.Reactive Blue 71; and C.I.Direct Blue 85.
Preferred yellow colorants include C.I.Direct Yellow 142; C.I.Direct Yellow 132; C.I.Direct Yellow 86; C.I.Direct Yellow 85; and C.I.Acid Yellow 23.
However, as mentioned above, it is not normally necessary to use further colorants in conjunction with the compounds of the present invention.
The ink may also contain additional components conventionally used in ink jet printing inks, for example viscosity and surface tension modifiers, corrosion inhibitors, biocides, kogation reducing additives and surfactants which may be ionic or non-ionic.
A further aspect of the invention provides a process for printing an image on a substrate comprising applying an ink containing a compound of Formula (1) to the substrate by means of an ink jet printer.
The ink used in this process is preferably as defined in the second aspect of the present invention.
The ink jet printer preferably applies the ink to the substrate in the form of droplets which are ejected through a small orifice onto the substrate. Preferred ink jet printers are piezoelectric ink jet printers and thermal ink jet printers. In thermal ink jet printers, programmed pulses of heat are applied to the ink in a reservoir by means of a resistor adjacent to the orifice, thereby causing the ink to be ejected in the form of small droplets directed towards the substrate during relative movement between the substrate and the orifice. In piezoelectric ink jet printers the oscillation of a small crystal causes ejection of the ink from the orifice.
SMC 60333
The substrate is preferably paper, plastic, a textile, metal or glass, more preferably paper, an overhead projector slide or a textile material, especially paper.
Preferred papers are plain or treated papers which may have an acid, alkaline or neutral character.
Preferred papers are plain or treated papers which may have an acid, alkaline or neutral character. Examples of commercially available treated papers include HP Premium Coated Paper (available from Hewlett Packard Inc), HP Photopaper (available from Hewlett Packard Inc), Stylus Pro 720 dpi Coated Paper, Epson Photo Quality Glossy Film (available from Seiko Epson Corp.), Epson Photo Quality Glossy Paper (available from Seiko Epson Corp.), Canon HR 101 High Resolution Paper (available from Canon), Canon GP 201 Glossy Paper (available from Canon), and Canon HG 101 and HG201 High Gloss Film (available from Canon).
A further aspect of the present invention provides a paper, an overhead projector slide or a textile material printed with an ink, a compound or by means of a printing process as hereinbefore defined.
A still further as aspect of the present invention provides an ink jet printer cartridge, optionally refillable, containing an ink according to the second aspect of the present invention.
The compounds and inks of the invention have attractive, neutral black shades and are particularly well suited for the ink jet printing of text and images. The inks have good storage stability and low tendency to block the very fine nozzles used in ink jet printers. Furthermore, the resultant images have good optical density, light-fastness, wet-fastness and resistance to fading in the presence of oxidising air pollutants .
The invention is further illustrated by the following examples in which all parts and percentages are by weight unless specified otherwise.
Example 1 - Preparation of
Step 1 - Preparation of 1.4-bis-f2-acetoxvethoxv)hvdroguinone
Hydroquinone bis-(2-hydroxyethyl)ether (179g), acetic acid (100ml) and acetic anhydride (300ml) were stirred and heated under reflux overnight. After cooling to room
SMC 60333
temperature and drowning into water (2\) the product was isolated by filtration, washed with water, dried and recrystallised from ethanol to give 2l2g of product. Step 2 - Preparation of 2-Nitro-1,4-bis-f2-acetoxvethoxv)hvdroquinone
The product of step 1 (211.5g) was dissolved in acetic acid (1800ml). A mixture of nitric acid (51.9ml) and acetic acid (200ml) was then added over 20 minutes keeping the temperature below 20°C. After stirring at room temperature overnight the solution was drowned into water (9l) and the product isolated by filtration, washed with water and recrystallised from ethanol to give 209g of product.
Step 3 - Preparation of 2.5-di-f2-acetoxvethoxv)aniline
2-Nitro-1,4-bis-(2-acetoxyethoxy)hydroquinone (115g) was dissolved in ethanol at 50°C and reduced with hydrogen in the presence of palladium catalyst (2g, 5%Pd/C). When uptake of hydrogen ceased the solution was screened to remove the catalyst and the filtrates allowed to coo! to room temperature. The crystalline solid was isolated by filtration and dried under vacuum to give 90g of product.
Step 4 - Preparation of 4-(4-carboxvphenvl)azo-2,5-di-f2-acetoxvethoxy)aniline
4-Aminobenzoic acid (8.22g) was stirred in a mixture of water (300ml) and hydrochloric acid (20ml). After cooling below 10°C, sodium nitrite (4.55g) was added slowly. After stirring for a further hour, excess nitrous acid was destroyed using sulphamic acid. 2,5-di-(2-acetoxyethoxy)aniline (17.82g) was dissolved in acetone (500ml) and added to the above diazonium salt solution. After stirring overnight at room temperature the precipitated product was filtered-off, washed with water and used without further purification.
Step 5 -Preparation of Title Product
The product of step 4 was dissolved in water by raising to pH9. Sodium nitrite (8.28g) was added and the mixture added to a mixture of water (100ml) and hydrochloric acid (20ml). After stirring for 1 hour at room temperature, excess nitrous acid was destroyed using sulphamic acid to give a diazonium salt solution.
1-Hydroxy-3-su!pho-7-aminonaphthalene (16.2g) was dissolved in water (300ml) and the pH raised to 10 by addition of sodium hydroxide solution (2M). After cooling to below 10°C, sodium carbonate (10g) was added. The diazonium salt solution prepared described above was then added slowly, maintaining the pH at 10.5-11. After stirring for 1 hour sodium hydroxide (120g) was added and the solution heated to 60-65°C for 2 hours. The pH was adjusted to 7 and ammonium chloride (15%w/v) added to precipitate the dye which was isolated by filtration at 70°C. The isolated solid was washed with hot ammonium chloride solution (20%w/v) and pulled dry on the filter. After conversion to the
free acid the black dye was re-disso!ved in ammonia solution and dialysed to low conductivity.
The title product in the form of its ammonium salt was isolated by evaporating the water at 50°C. The title product had a λmax at 572nm.
Example 2 - Preparation of
This was prepared by the method described in Example 1 except that in step 4 there was used 5-amino isophthalic acid (10.86g) in place of 4-aminobenzoic acid. The resultant compound had a λ,max at 568nm.
Example 3 - Preparation of
The method of Example 1 may be repeated except that in place of 4-aminobenzoic acid in step 4 there is used 2-amino terephthalic acid.
Examples 4 to 11
Inks 1 and 2 were prepared having the following formulations:
Ink 1:
Component
Dye from Example 1 (NH4+salt)
thiodiglycol
2-pyrollidone
Parts (by weight)
3
9
9
Ink 2:
cyclohexanol 1
water 81
Component Parts (by weight)
Dye from Example 2(Li+ salt) 3
thiodiglycol 9
2-pyrol!idone 9
cyclohexanol .1
water 81
10
Inks 1 and 2 were loaded into empty cartridges of a Canon 4300 thermal ink jet printer and printed onto the substrates indicated in Table A below. The optical density ("ROD") of the resultant prints were measured using an X-rite spectrometer and the results are also shown in Table A.
15
Table A
Example Ink Substrate ROD
4 1 XA 1.32
5 2 XA 1.31
6 1 SPP 1.44
7 2 SPP 2.08
8 1 HG201 2.38
9 2 HG201 2.33
10 1 GP301 1.99
11 2 GP301 2.02
Key: XA = Xerox Acid Paper
20 SPP = Seiko Epson Photo Paper
HG201 = Canon HG201 Paper GP301 = Canon GP301 Paper
Examples 12 to 21 - Mixtures
25 The dye mixtures described in Table B may be prepared in which all parts are by
weight and are shown in brackets. CID means C.I.Direct, CIR means C.I.Reactive and CIA means C.I.Acid.
SMC 60333
Inks
The inks described in Tables I and II may be prepared wherein the Dye/Mixture described in the first column is the Dye or mixture made in the above example of the same number. Numbers quoted in the second column onwards refer to the number of parts of the relevant ingredient and all parts are by weight. The inks may be applied to paper by thermal or piezo ink jet printing.
The following abbreviations are used in Table I and II:
PG = propylene glycol
DEG = diethylene glycol
NMP = N-methyl pyrollidone
DMK = dimethylketone
IPA = isopropanol
MEOH = methanol
2P = 2-pyrollidone
MIBK = methylisobutyl ketone
P12 = propane-1,2-diol
BDL = butane-2,3-diol
CET= cetyl ammonium bromide
PHO = Na2HPO4 and
TBT = tertiary butanol
TDG = thiodiglycol
SMC 60333
We Claim:
1. A compound of Formula (1) and salts thereof:
Formula (1) wherein:
m is 1, 2 or 3;
R1 and R2 are each independently optionally substituted alkoxy; and
R4 and R5 are each independently H, optionally substituted alkyl or
optionally substituted aryl;
provided that at least one of R1 and R2 carries an -OH group.
2. A compound as claimed in claim 1, wherein R4 and R5 are H.
3. A compound as claimed in any one of the preceding claims, wherein R1 and R2 are each independently optionally substituted C1-4-alkoxy wherein the substituents are selected from -NH2; halo; ester; -O-C1-4-alkyl; -CO2H; -SO3H; -OR3; and -SR3; wherein each R3 independently in H or Ci-4-alkyl, provided that at least one of R1 and R2 carries an
-OH group.
4. A compound as claimed in any one of the preceding claims, wherein both R1 and R2 carry an -OH group.
5. A compound as claimed in any one of the preceding claims, wherein m is 1 or 2; one of R1 and R2 is -OC1-4-alkyl-OH and the other is -OC1-4-alkyl or -O-C1-4-alkyl-OH; and
R4 and R5 are H.
6. A compound as claimed in claim 1 having any one of the following
formulae and salts thereof:
7. A process for printing an image on a substrate comprising applying an
ink containing a compound as claimed in any one of claims 1 to 6 to the
substrate by means of an ink jet printer.
8. A paper, an overhead projector slide or a textile material printed with an ink such as herein described, a compound as claimed in any one of claims 1 to 6 or by means of a process as claimed in claim 7.
9. An ink jet printer cartridge, optionally refillable, containing an ink such as herein described.
Dated this 21st day of June, 2001.
(JAYANTA PAL) OF REMFRY & SAGAR ATTORNEY FOR THE-APPLICANTS.
| # | Name | Date |
|---|---|---|
| 1 | 186-MUMNP-2005-ABSTRACT(11-3-2005).pdf | 2018-08-09 |
| 1 | 186-MUMNP-2005_EXAMREPORT.pdf | 2018-08-09 |
| 2 | 186-mumnp-2005-abstract(25-5-2009).doc | 2018-08-09 |
| 2 | 186-MUMNP-2005-WO INTERNATIONAL PUBLICATION REPORT(11-3-2005).pdf | 2018-08-09 |
| 3 | 186-MUMNP-2005-POWER OF AUTHORITY(26-6-2006).pdf | 2018-08-09 |
| 3 | 186-mumnp-2005-abstract(25-5-2009).pdf | 2018-08-09 |
| 4 | 186-mumnp-2005-power of authority(25-5-2009).pdf | 2018-08-09 |
| 4 | 186-mumnp-2005-assignment(26-6-2006).pdf | 2018-08-09 |
| 5 | 186-mumnp-2005-other document(26-6-2006).pdf | 2018-08-09 |
| 5 | 186-MUMNP-2005-CLAIMS(11-3-2005).pdf | 2018-08-09 |
| 6 | 186-mumnp-2005-form 6(26-6-2006).pdf | 2018-08-09 |
| 7 | 186-mumnp-2005-form 5(25-5-2009).pdf | 2018-08-09 |
| 7 | 186-mumnp-2005-claims(25-5-2009).pdf | 2018-08-09 |
| 8 | 186-MUMNP-2005-FORM 5(11-3-2005).pdf | 2018-08-09 |
| 8 | 186-mumnp-2005-correspondence(25-5-2009).pdf | 2018-08-09 |
| 9 | 186-MUMNP-2005-CORRESPONDENCE(IPO)-(27-3-2014).pdf | 2018-08-09 |
| 9 | 186-mumnp-2005-form 3(25-5-2009).pdf | 2018-08-09 |
| 10 | 186-MUMNP-2005-DESCRIPTION(COMPLETE)-(11-3-2005).pdf | 2018-08-09 |
| 10 | 186-MUMNP-2005-FORM 3(11-3-2005).pdf | 2018-08-09 |
| 11 | 186-mumnp-2005-form 2(title page)-(25-5-2009).pdf | 2018-08-09 |
| 12 | 186-mumnp-2005-description(complete)-(25-5-2009).pdf | 2018-08-09 |
| 12 | 186-MUMNP-2005-FORM 2(TITLE PAGE)-(11-3-2005).pdf | 2018-08-09 |
| 13 | 186-mumnp-2005-form 1(11-3-2005).pdf | 2018-08-09 |
| 13 | 186-MUMNP-2005-FORM 2(COMPLETE)-(11-3-2005).pdf | 2018-08-09 |
| 14 | 186-mumnp-2005-form 13(25-5-2009).pdf | 2018-08-09 |
| 14 | 186-mumnp-2005-form 2(25-5-2009).pdf | 2018-08-09 |
| 15 | 186-mumnp-2005-form 18(2-9-2005).pdf | 2018-08-09 |
| 16 | 186-mumnp-2005-form 18(2-9-2005).pdf | 2018-08-09 |
| 17 | 186-mumnp-2005-form 13(25-5-2009).pdf | 2018-08-09 |
| 17 | 186-mumnp-2005-form 2(25-5-2009).pdf | 2018-08-09 |
| 18 | 186-MUMNP-2005-FORM 2(COMPLETE)-(11-3-2005).pdf | 2018-08-09 |
| 18 | 186-mumnp-2005-form 1(11-3-2005).pdf | 2018-08-09 |
| 19 | 186-mumnp-2005-description(complete)-(25-5-2009).pdf | 2018-08-09 |
| 19 | 186-MUMNP-2005-FORM 2(TITLE PAGE)-(11-3-2005).pdf | 2018-08-09 |
| 20 | 186-mumnp-2005-form 2(title page)-(25-5-2009).pdf | 2018-08-09 |
| 21 | 186-MUMNP-2005-DESCRIPTION(COMPLETE)-(11-3-2005).pdf | 2018-08-09 |
| 21 | 186-MUMNP-2005-FORM 3(11-3-2005).pdf | 2018-08-09 |
| 22 | 186-MUMNP-2005-CORRESPONDENCE(IPO)-(27-3-2014).pdf | 2018-08-09 |
| 22 | 186-mumnp-2005-form 3(25-5-2009).pdf | 2018-08-09 |
| 23 | 186-mumnp-2005-correspondence(25-5-2009).pdf | 2018-08-09 |
| 23 | 186-MUMNP-2005-FORM 5(11-3-2005).pdf | 2018-08-09 |
| 24 | 186-mumnp-2005-claims(25-5-2009).pdf | 2018-08-09 |
| 24 | 186-mumnp-2005-form 5(25-5-2009).pdf | 2018-08-09 |
| 25 | 186-mumnp-2005-form 6(26-6-2006).pdf | 2018-08-09 |
| 26 | 186-MUMNP-2005-CLAIMS(11-3-2005).pdf | 2018-08-09 |
| 26 | 186-mumnp-2005-other document(26-6-2006).pdf | 2018-08-09 |
| 27 | 186-mumnp-2005-power of authority(25-5-2009).pdf | 2018-08-09 |
| 27 | 186-mumnp-2005-assignment(26-6-2006).pdf | 2018-08-09 |
| 28 | 186-MUMNP-2005-POWER OF AUTHORITY(26-6-2006).pdf | 2018-08-09 |
| 28 | 186-mumnp-2005-abstract(25-5-2009).pdf | 2018-08-09 |
| 29 | 186-MUMNP-2005-WO INTERNATIONAL PUBLICATION REPORT(11-3-2005).pdf | 2018-08-09 |
| 30 | 186-MUMNP-2005_EXAMREPORT.pdf | 2018-08-09 |
| 30 | 186-MUMNP-2005-ABSTRACT(11-3-2005).pdf | 2018-08-09 |