Abstract: The present invention belongs to disperse reactive dyes with a vinyl-sulfone moiety, its synthesis and its usage in colouration of fibers type. The disperse reactive dyes of present invention have good dyeing activity and exhibit good dyeing performance on both polyamide fiber and polyester fiber on dyeing through Supercritical fluid dyeing technology.
DESC:FIELD OF THE INVENTION
The present invention relates to disperse reactive dyes with Vinylsulfone moiety, its synthesis and its usage in colouration of fibers. The present invention more particularly relates to colouration of Polyamide and Polyester fibers including but not limited to their Lycra and Cotton blends by Supercritical fluid dyeing technology as well as conventional dyeing and printing methods.
BACKGROUND OF THE INVENTION AND PRIOR ART
Traditionally, disperse dyes are used for dyeing synthetic fibers and its blend with other fibers such as cellulose acetate, polyurethane, nylon, silk and wool by usual exhaust dyeing, continuous dyeing and printing techniques.
US4820806 discloses monoazo and disazo compounds containing vinyl sulfone groups and its metal complexes. US4652634 discloses water soluble azo dyestuffs containing vinylsulfone groups for printing or dyeing of fibers. Indian patent application 201621024718 discloses disperse azo dyes of formula (I) comprising at least two SO2F groups either as substituent, sub-substituent or combination thereof. Further US4889923 and US2004077846A1 also disclose disperse dye molecules with Vinylsulfone substituent but did not exhibit good desired properties when dyed through supercritical fluid technology.
Recently due to higher environmental concerns and awareness on conservation of natural resources, more emphasis given to green technology and sustainable development. Textile processing is most water intensive industry and as a result different option for reduction in water consumption and different dyeing technologies are explored. Waterless dyeing using supercritical fluid (carbon dioxide) is one of the most recent developments and currently polyester is being processes with this technology. To utilize this technology for other synthetic as well as natural fibers and their blends is the main objective of present invention.
OBJECT OF THE INVENTION
It is an object of the present invention to provide disperse reactive azo dyes with at least one reactive vinyl sulfone moiety suitable for dyeing synthetic as well as natural fibers and their respective blends.
It is further object of the present invention to provide disperse reactive azo dyes suitable for dyeing synthetic textile materials using conventional methods as well as with super critical fluid dyeing technology.
It is another object of the invention to provide an economically feasible and environmental friendly method for dyeing polyamide/nylon fibers with fiber reactive disperse dyestuffs.
It is another object of the invention to provide an environment friendly process for dyeing synthetic textile materials with disperse reactive azo dyestuffs using SCF dyeing technology.
It is another object of the invention to provide an environment friendly method for dyeing polyamide, polyester, silk, wool; cotton and leather along with their respective blends with Lycra and cotton with disperse reactive azo dyestuffs using SCF dyeing technology.
It is another object of the invention to provide a method for dyeing polyamide/nylon, silk, wool, polyester and blends of these fibers with fiber reactive disperse dyestuffs in a supercritical carbon dioxide.
It is another object of the invention to provide a method for dyeing polyamide/nylon, silk, wool, polyester and blends of these fibers with better fastness properties.
SUMMARY OF THE INVENTION
According to one aspect of the present invention there is provided Disperse reactive Azo Dyes of formula (1),
wherein
X, Y and Z are, independently, hydrogen, methyl, methoxy, halogen, cyano, nitro, –SO2CH=CH2 and at least one of X, Y or Z is essentially –SO2CH=CH2;
R1 is hydrogen, methyl, hydroxyl or NHR5;
R5 is COR9, SO2R10;
R2 is hydrogen, chloro or methoxy;
R3 and R4 are independently hydrogen, C1-C4 alkyl; C1-C4 haloalkyl, -CH2CH2CN; -CH2CH=CH2; –CH2CH2OCOR6, –CH2CH2COOR7 or –CH2CH2SO2R8;
R6 is C1-C4 alkyl, and
R7 is Hydrogen, C1-C4 alkyl, -CH2CN, -CH2CH2CN;
R8 is Cl or F;
R9 is C1-C4 alkyl;
R10 is C1-C4 alkyl.
According to another aspect there is provided a process for Dyeing of fabric selected from polyamide/nylon, silk, wool, polyester or blends of these fibers with fiber-reactive dyes of formula 1 by Supercritical fluid dyeing process comprising the steps of:
i. Placing the dyestuff of formula-1 in a dyeing pot along with the fabric;
ii. Closing the dyeing pot tightly;
iii. Purging desired quantity of supercritical fluid to the tightly closed dyeing pot of step ii;
iv. Subjecting it to dyeing cycle at a temperature range of 100-130°C and at pressure of 200-300 bar pressure for atleast 90 minutes.
According to another aspect of the present invention there is provided a process for the preparation of intermediates of formula
wherein, X, Y and Z is selected from Hydrogen, Halogen, Cyano or Nitro and Z is Hydrogen, Halogen, methyl, methoxy, Cyano or Nitro wherein at least one of X, Y or Z is –SO2CH=CH2, comprising process steps of
a. Vinylization of (aminophenylsulfonyl)ethyl hydrogen sulfate in dilute alkali;
b. Mono and/or Di halogenation of vinyl substituent obtained in step a;
c. Optional Nitration/cynation/alkylation/alkoxylation of the monohalo substituent obtained in step (b) to obtain desired intermediate.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
The present invention relates to disperse reactive azo dyes and methods for applying these dyes to fibers by conventional as well as SCF dyeing technology.
Disperse azo dyes are generally prepared by diazotization of primary aromatic amine and subsequently coupled with suitable coupling component.
The disperse reactive azo dyes are used for dyeing synthetic and natural fibers and its blends with other fibers such as lycra, cellulose, polyurethane, nylon and wool and polyamide fibers by usual exhaust dyeing, continuous dyeing, SCF dyeing and printing techniques.
To solve excessive water consumption problem in conventional dyeing technology, the inventors of the present invention have engineered disperse reactive azo dyestuffs to make it suitable for SCF dyeing technology as well as low liquor ratio in conventional dyeing technology, which are showed as formula (1)
wherein
X, Y and Z are, independently, hydrogen, methyl, methoxy, halogen, cyano, nitro, –SO2CH=CH2 and at least one of X, Y or Z is essentially –SO2CH=CH2;
R1 is hydrogen, methyl, hydroxyl or NHR5;
R5 is COR9, SO2R10;
R2 is hydrogen, chloro or methoxy;
R3 and R4 are independently hydrogen, C1-C4 alkyl; C1-C4 haloalkyl, -CH2CH2CN; -CH2CH=CH2; –CH2CH2OCOR6, –CH2CH2COOR7, or –CH2CH2SO2R8;
R6 is C1-C4 alkyl, and
R7 is Hydrogen, C1-C4 alkyl, -CH2CN, -CH2CH2CN;
R8 is Cl or F,
R9 is C1-C4 alkyl,
R10 is C1-C4 alkyl.
Under appropriate conditions, specially developed primary aromatic amine can be successfully diazotized and coupled with coupling component to get novel disperse reactive dyes of formula (1). These new disperse reactive dyes possesses excellent washing and light fastness properties.
The dyestuff of formula (1) can be used individually or as a mixture of derivatives of formula (1) for dyeing and printing using conventional methods as well as SCF dyeing technology.
Disperse reactive dyes used in the present invention essentially comprises substituent’s with at least one -SO2CH=CH2 group. The -SO2CH=CH2 substituent forms covalent bond with the amido substituent on the polyamide fiber under favorable condition of SCF dyeing. Further usage of the supercritical fluid technique for dyeing these disperse reactive dyes onto polyamide, wool, silk and polyester fibers leads to dyed material with much better fastness properties as also provides an energy efficient and economical option as also helps in significant reduction in environmental pollution.
The dyeing process of the present invention comprises the steps of:
i. Placing the dyestuff of formula-1 in a dyeing pot along with the fabric;
ii. Closing the dyeing pot tightly;
iii. Purging desired quantity of supercritical fluid to the tightly closed dyeing pot of step ii;
iv. Subjecting it to dyeing cycle at 100-130°C and 200-300 bar pressure for at least 90 minutes.
In one embodiment, the process step comprises of exactly weigh quantity of Dye of formula-1 and fabric are placed in dyeing pot and subsequently closed tightly. Desire quantity of Liquid CO2 is purge to this tightly closed dyeing pot which is than subjected to dyeing cycle at 120°C and 250 bar pressure for 90 minutes.
In one embodiment of the present invention, the method eliminates usage of co-solvent. In all the previous references for dyeing with supercritical fluid involved usage of co-solvent to improve dyeability particularly for the fiber reactive dyestuff to form covalent bond.
Farbwerke Hoechst have developed an identification scheme very much similar to the one described by Bode The general conclusion drawn from this information is that although there is no specific test for reactive dyes, it is possible to distinguish between them and all other class of dyes by treating the dyeing with certain solvents.
Disperse reactive dyes defined in the Formula (1) have excellent fixation and leveling properties in SCF dyeing and dyed fabrics demonstrate superior washing fastness and light fastness on the polyester, polyamide, wool, silk and leather fiber.
Reactive dyes by virtue of the covalent bond between the dye and the cellulose molecule are not removed from the fiber during such treatments. Similarly polyamide dyed with SCF dyeing method using dyes of formula-1 having minimum one reactive group were subjected to following solvent treatment,
i) Washing with Acetone
ii) Mixture of glacial acetic acid and ethanol (1:1 v/v)
iii) DMF
All dyes taken for study were showing significant stability even under such harsh condition and there was no stripping of dyes from dyed polyamide. This confirms existence of covalent bond between dye molecule and polyamide.
Additionally it was also confirmed by FTIR spectroscopy of Dye powder, Polyamide fabric and dyed polyamide fabric which indicate presence of sulphonamide bonding in the dyed material.
A process for the preparation of intermediate of formula
where, X, Y and Z is selected from –SO2CH=CH2, Hydrogen, Halogen, methyl, methoxy, Cyano or Nitro wherein at least one of X, Y or Z is –SO2CH=CH2, comprising process steps of:
a. Vinylization of (Aminophenylsulfonyl)ethyl hydrogen sulfate in dilute alkali;
b. Mono and/or Di halogenation of vinyl substituent obtained in step a;
c. Optional Nitration/cyanation/alkylation/alkoxylation of the monohalo substituent obtained in step (b) to obtain desired intermediate.
Examples:
The present invention is concretely explained as follows, but the present invention is not limited in these examples.
All primary amines used for the preparation of azo dyes are prepared using following procedures described in Example 1 to example 4,
Example-1: Preparation of 4-vinylsulfonyl Aniline:
In a three necked round bottom flask, take 175 ml ice water and charge 56 gms of commercially available 2-(4-aminophenylsulfonyl)ethyl hydrogen sulfate (para base ester) under stirring and continue stirring for another 30-40 minutes maintaining temperature <15°C. Then slowly charge 28 gms of Caustic Soda solution (50%) in 2 hrs maintaining temperature <15°C. After completions of caustic soda addition ensure pH of reaction mass it should be 12.0 to 12.5. Check TLC and if complete, filter and wash with water to bring it to neutral pH to get 34 gms of 4-Vinylsulfonyl aniline having melting point 58-60°C.
Example-2: Preparation of 2-Bromo-4-vinylsulfonyl Aniline:
In a three necked round bottom flask charge 50 gms of Hydrobromic acid (50%) and slowly charge 50 gms of 4-Vinylsulfonyl aniline with efficient stirring at 25-35°C. After completion of addition stir for 1 hr at RT and then slowly add 22 gms of Hydrogen peroxide (50%) and let temperature rises up to 50°C. continue stirring for 2 hrs at 45-50°C and then check TLC, if complete, filter reaction mass and wash with water and subsequently with warm water to get final 66 gms of 2-bromo-4-vinylsulfonyl aniline having melting point of 120-122°C.
Example-3: Preparation of 2:6-Dibromo-4-vinylsulfonyl Aniline:
In a three necked round bottom flask charge 75 gms of Hydrobromic acid (50%) and slowly charge 50 gms of 4-Vinylsulfonyl aniline with efficient stirring at 25-35°C. After completion of addition stir for 1 hr at RT. Add 200 ml of water and then slowly add 26 gms of Hydrogen peroxide (50%) and let temperature rises up to 50°C. continue stirring for 2 hrs at 45-50°C and then check TLC, if complete, adjust pH with caustic solution and complete crystallization. Filter reaction mass and wash with water and subsequently with warm water to get final 60 gms of 2:6-Dibromo-4-vinylsulfonyl aniline having melting point of 158-160°C.
Example-4: Preparation of 2-Bromo-6-Nitro-4-vinylsulfonyl Aniline:
In a three necked round bottom flask charge 120 gms of 98% sulfuric acid and slowly charge 50 gms of 2-Bromo-4-Vinylsulfonyl aniline with efficient stirring maintaining temperature <25°C. After completion of addition stir for 1 hr and cool to 15-20°C and slowly add 50 gms mixed acid maintaining temperature 15-20°C stir at this temperature for further 2 hrs and check TLC, if complete, drown reaction mass into ice water bath and stir for additional 2-3 hrs to get proper isolation of product. Filter, wash with water till neutral pH to get final 46 gms of 2-bromo-6-Nitro-4-vinylsulfonyl aniline having melting point of 135-137°C.
Example-5: Structural formula (2)
Structural formula (2) is synthesized by following method:
4-vinylsulfonyl Aniline 3.66 g, dissolved in 20 ml 30% HCl and cool down to 0-5 ºC with addition of ice and stirred well. Slowly add 1.45 gm sodium nitrite as 20% solution maintaining temperature below 5ºC and stir for 2 hrs at below 5ºC. Coupler, 3-(N:N’-Diethylamino) acetanilide 4.12 g is dissolved in dilute HCl 100 ml and the synthesized diazotized solution is added into this coupler solution at 0-5 ºC. The reaction mass is stirred for 1hr below 5ºC and filtered the crystal solid and washed with water. The 15 g of 50% wet cake is obtained. The yield is 92%. The ?max in acetone of Example-5 dyestuff is 492 nm and melting point is 106-108 ºC
Similarly, following dyes were also prepared using same procedures,
Fr.# X Y Z R1 R2 R3 R4
3 -SO2CH=CH2 H H H H -C2H5 -C2H5
4 -SO2CH=CH2 H H H H -C2H5 -C2H4CN
5 -SO2CH=CH2 H H H H -C2H4CN -C2H4CN
6 -SO2CH=CH2 H H -CH3 H -C2H5 -C2H4CN
7 -SO2CH=CH2 H H -NHCOCH3 H -C2H5 -C2H4CN
8 -SO2CH=CH2 H H -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
9 -SO2CH=CH2 H H -NHCOCH3 -OCH3 -C2H5 -C2H5
10 -SO2CH=CH2 H H -NHCOCH3 -OCH3 -C2H5 -C2H4CN
11 -SO2CH=CH2 H H -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
12 -SO2CH=CH2 -OCH3 H H H -C2H5 -C2H5
13 -SO2CH=CH2 -OCH3 H H H -C2H5 -C2H4CN
14 -SO2CH=CH2 -OCH3 H H H -C2H4CN -C2H4CN
15 -SO2CH=CH2 -OCH3 H -CH3 H -C2H5 -C2H4CN
16 -SO2CH=CH2 -OCH3 H -NHCOCH3 H -C2H5 -C2H5
17 -SO2CH=CH2 -OCH3 H -NHCOCH3 H -C2H5 -C2H4CN
18 -SO2CH=CH2 -OCH3 H -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
19 -SO2CH=CH2 -OCH3 H -NHCOCH3 -OCH3 -C2H5 -C2H5
20 -SO2CH=CH2 -OCH3 H -NHCOCH3 -OCH3 -C2H5 -C2H4CN
21 -SO2CH=CH2 -OCH3 H -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
22 -SO2CH=CH2 -OCH3 -CH3 H H -C2H5 -C2H5
23 -SO2CH=CH2 -OCH3 -CH3 H H -C2H5 -C2H4CN
24 -SO2CH=CH2 -OCH3 -CH3 H H -C2H4CN -C2H4CN
25 -SO2CH=CH2 -OCH3 -CH3 -CH3 H -C2H5 -C2H4CN
26 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 H -C2H5 -C2H5
27 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 H -C2H5 -C2H4CN
28 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
29 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 -OCH3 -C2H5 -C2H5
30 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 -OCH3 -C2H5 -C2H4CN
31 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
32 -SO2CH=CH2 -OCH3 -OCH3 H H -C2H5 -C2H5
33 -SO2CH=CH2 -OCH3 -OCH3 H H -C2H5 -C2H4CN
34 -SO2CH=CH2 -OCH3 -OCH3 H H -C2H4CN -C2H4CN
35 -SO2CH=CH2 -OCH3 -OCH3 -CH3 H -C2H5 -C2H4CN
36 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 H -C2H5 -C2H5
37 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 H -C2H5 -C2H4CN
38 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
39 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 -OCH3 -C2H5 -C2H5
40 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 -OCH3 -C2H5 -C2H4CN
41 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
42 -SO2CH=CH2 H H -NHCOCH3 Cl -C2H5 -C2H4CN
43 -SO2CH=CH2 -OCH3 H -NHCOCH3 Cl -C2H5 -C2H4CN
44 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 Cl -C2H5 -C2H4CN
45 H H -SO2CH=CH2 -NHCOCH3 Cl -C2H5 -C2H4CN
46 H H -SO2CH=CH2 H H -C2H5 -C2H4CN
47 H H -SO2CH=CH2 H H -C2H4CN -C2H4CN
48 H H -SO2CH=CH2 -NHCOCH3 H -C2H5 -C2H5
Example-6: Structural formula (49)
Structural formula (49) is synthesized by following method:
40% nitrosyl sulfuric acid 7 gm is added to the mixture of 2-Bromo-4-vinylsulfonyl aniline 5.24 g and 7.25 gms of 98% sulfuric acid at 15-20 ºC and stirred for 2 hrs below 20ºC. Coupler 3-(N:N’-Diethylamino) acetanilide 4.12 g is dissolved in dilute HCl 100 ml and the synthesized diazotized solution is added into this coupler solution at 0-5 ºC. The reaction mass is stirred for 1hr below 5ºC and filtered the crystal solid and washed with water. The 18 g of 50% wet cake is obtained. The yield is 91%. The ?max in acetone of Example-6 dyestuff is 508 nm and melting point is 134-136ºC
Similarly, following dyes were also prepared using same procedures,
Fr.# X Y Z R1 R2 R3 R4
50 -SO2CH=CH2 Br H H H -C2H5 -C2H5
51 -SO2CH=CH2 Br H H H -C2H5 -C2H4CN
52 -SO2CH=CH2 Br H H H -C2H4CN -C2H4CN
53 -SO2CH=CH2 Br H -CH3 H -C2H5 -C2H4CN
54 -SO2CH=CH2 Br H -NHCOCH3 H -C2H5 -C2H4CN
55 -SO2CH=CH2 Br H -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
56 -SO2CH=CH2 Br H -NHSO2CH3 H -C2H5 -C2H5
57 -SO2CH=CH2 Br H -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
58 -SO2CH=CH2 Br H -NHCOCH3 -OCH3 -C2H5 -C2H5
59 -SO2CH=CH2 Br H -NHCOCH3 -OCH3 -C2H5 -C2H4CN
60 -SO2CH=CH2 Br H -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
61 -SO2CH=CH2 Br H -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
62 -SO2CH=CH2 Br H -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
63 -SO2CH=CH2 Br H -NHCOCH3 Cl -C2H5 -C2H4CN
64 -SO2CH=CH2 Br H -NHCOCH3 Cl -C2H5 -C2H4CN
65 -SO2CH=CH2 Br H -NHCOCH3 Cl -C2H5 -C2H4CN
66 -SO2CH=CH2 Br H -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
67 -SO2CH=CH2 Br H -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
68 -SO2CH=CH2 Br H -CH3 H -C2H5 -C2H4SO2F
69 -SO2CH=CH2 Br H -CH3 H -C2H5 - C2H4SO2F
Example-7: Structural formula (70)
Structural formula (70) is synthesized by following method:
Take 25 gms of DMF in three necked round bottom flask and start stirring. Charge 2.8 gms of Zinc Cyanide, 0.2 gms of sodium cyanide and slowly heat up to 90 ºC with stirring. After reaching to 90ºC stir for 30’ and slowly charge 9.6 gms of dye of formula-48 by maintaining temperature between 90-95ºC. Once all dye is charged slowly increase temperature up to 100-110ºC and maintain for another 2-3 hrs and monitor reaction with TLC. If reaction is completed stop heating and slowly cool to 60ºC and charge 50 ml methanol for crystallization of product, let reaction mass cool down to RT and check for crystallization and filter. First wash with chilled methanol and followed by hot water washing. Once washing is completed treat this wet press cake with ammonia and again wash thoroughly with hot water. The 9.6 g of 70% wet cake is obtained. The yield is 79%. The ?max in acetone of Example-7 dyestuff is 537 nm and melting point is 120-122ºC.
Similarly, following dyes were also prepared using same procedures,
Fr.# X Y Z R1 R2 R3 R4
71 -SO2CH=CH2 CN H H H -C2H5 -C2H5
72 -SO2CH=CH2 CN H H H -C2H5 -C2H4CN
73 -SO2CH=CH2 CN H H H -C2H4CN -C2H4CN
74 -SO2CH=CH2 CN H -CH3 H -C2H5 -C2H4CN
75 -SO2CH=CH2 CN H -NHCOCH3 H -C2H5 -C2H4CN
76 -SO2CH=CH2 CN H -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
77 -SO2CH=CH2 CN H -NHSO2CH3 H -C2H5 -C2H5
78 -SO2CH=CH2 CN H -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
79 -SO2CH=CH2 CN H -NHCOCH3 -OCH3 -C2H5 -C2H5
80 -SO2CH=CH2 CN H -NHCOCH3 -OCH3 -C2H5 -C2H4CN
81 -SO2CH=CH2 CN H -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
82 -SO2CH=CH2 CN H -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
83 -SO2CH=CH2 CN H -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
84 -SO2CH=CH2 CN H -NHCOCH3 Cl -C2H5 -C2H4CN
85 -SO2CH=CH2 CN H -NHCOCH3 Cl -C2H5 -C2H4CN
86 -SO2CH=CH2 CN H -NHCOCH3 Cl -C2H5 -C2H4CN
87 -SO2CH=CH2 CN H -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
88 -SO2CH=CH2 CN H -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
89 -SO2CH=CH2 CN H -CH3 H -C2H5 -C2H4SO2F
90 -SO2CH=CH2 CN H -CH3 H -C2H5 - C2H4SO2F
Example-8: Structural formula (91)
Structural formula (91) is synthesized by following method:
40% nitrosyl sulfuric acid 7 gms is added to the mixture of 2:6-DiBromo-4-vinyl sulfonyl aniline 6.82 g and 9.5 gms of 98% sulfuric acid at 15-20 ºC and stirred for 2 hrs below 20ºC. Coupler 3-(N:N’-Diethylamino) acetanilide 4.12 g is dissolved in dilute HCl 100 ml and the synthesized diazotized solution is added into this coupler solution at 0-5 ºC. The reaction mass is stirred for 1hr below 5ºC and filtered the crystal solid and washed with water. The 20 g of 50% wet cake is obtained. The yield is 90%. The ?max in acetone of Example-8 dyestuff is 466 nm and melting point is 122-124ºC
Similarly, following dyes were also prepared using same procedures,
Fr.# X Y Z R1 R2 R3 R4
92 -SO2CH=CH2 Br Br H H -C2H5 -C2H5
93 -SO2CH=CH2 Br Br H H -C2H5 -C2H4CN
94 -SO2CH=CH2 Br Br H H -C2H4CN -C2H4CN
95 -SO2CH=CH2 Br Br -CH3 H -C2H5 -C2H4CN
96 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H5 -C2H4CN
97 -SO2CH=CH2 Br Br -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
98 -SO2CH=CH2 Br Br -NHSO2CH3 H -C2H5 -C2H5
99 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
100 -SO2CH=CH2 Br Br -NHCOCH3 -OCH3 -C2H5 -C2H5
101 -SO2CH=CH2 Br Br -NHCOCH3 -OCH3 -C2H5 -C2H4CN
102 -SO2CH=CH2 Br Br -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
103 -SO2CH=CH2 Br Br -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
104 -SO2CH=CH2 Br Br -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
105 -SO2CH=CH2 Br Br -NHCOCH3 Cl -C2H5 -C2H4CN
106 -SO2CH=CH2 Br Br -NHCOCH3 Cl -C2H5 -C2H4CN
107 -SO2CH=CH2 Br Br -NHCOCH3 Cl -C2H5 -C2H4CN
108 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
109 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
110 -SO2CH=CH2 Br Br -CH3 H -C2H5 -C2H4SO2F
111 -SO2CH=CH2 Br Br -CH3 H -C2H5 - C2H4SO2F
Example-9: Structural formula (112)
Structural formula (112) is synthesized by following method:
Take 25 gms of DMF in three necked round bottom flask and start stirring. Charge 2.8 gms of Zinc Cyanide, 0.2 gms of sodium cyanide and slowly heat up to 90 ºC with stirring. After reaching to 90ºC stir for 30’ and slowly charge 11.16 gms of dye of formula-5 by maintaining temperature between 90-95ºC. Once all dye is charged slowly increase temperature up to 100-110ºC and maintain for another 2-3 hrs and monitor reaction with TLC. If reaction is completed stop heating and slowly cool to 60ºC and charge 50 ml methanol for crystallization of product, let reaction mass cool down to RT and check for crystallization and filter. First wash with chilled methanol and followed by hot water washing. Once washing is completed treat this wet press cake with ammonia and again wash thoroughly with hot water. The 10.4g of 70% wet cake is obtained. The yield is 81%. The ?max in acetone of Example-9 dyestuff is 630 nm and melting point is 194-196ºC.
Similarly, following dyes were also prepared using same procedures,
Fr.# X Y Z R1 R2 R3 R4
113 -SO2CH=CH2 CN CN H H -C2H5 -C2H5
114 -SO2CH=CH2 CN CN H H -C2H5 -C2H4CN
115 -SO2CH=CH2 CN CN H H -C2H4CN -C2H4CN
116 -SO2CH=CH2 CN CN -CH3 H -C2H5 -C2H4CN
117 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H5 -C2H4CN
118 -SO2CH=CH2 CN CN -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
119 -SO2CH=CH2 CN CN -NHSO2CH3 H -C2H5 -C2H5
120 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
121 -SO2CH=CH2 CN CN -NHCOCH3 -OCH3 -C2H5 -C2H5
122 -SO2CH=CH2 CN CN -NHCOCH3 -OCH3 -C2H5 -C2H4CN
123 -SO2CH=CH2 CN CN -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
124 -SO2CH=CH2 CN CN -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
125 -SO2CH=CH2 CN CN -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
126 -SO2CH=CH2 CN CN -NHCOCH3 Cl -C2H5 -C2H4CN
127 -SO2CH=CH2 CN CN -NHCOCH3 Cl -C2H5 -C2H4CN
128 -SO2CH=CH2 CN CN -NHCOCH3 Cl -C2H5 -C2H4CN
129 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
130 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
131 -SO2CH=CH2 CN CN -CH3 H -C2H5 -C2H4SO2F
132 -SO2CH=CH2 CN CN -CH3 H -C2H5 - C2H4SO2F
Example-10: Structural formula (133)
Structural formula (133) is synthesized by following method:
40% nitrosyl sulfuric acid 7 gms is added to the mixture of 2-Bromo-6-Nitro-4-vinyl sulfonyl aniline 5.82 g and 8 gms of 98% sulfuric acid at 15-20 ºC and stirred for 2 hrs below 20ºC. Coupler 3-(N:N’-Diethylamino) acetanilide 4.12 g is dissolved in dilute HCl 100 ml and the synthesized diazotized solution is added into this coupler solution at 0-5 ºC. The reaction mass is stirred for 1hr below 5ºC and filtered the crystal solid and washed with water. The 18.70 g of 50% wet cake is obtained. The yield is 92%. The ?max in acetone of Example-10 dyestuff is 556 nm and melting point is 150-152ºC.
Similarly, following dyes were also prepared using same procedures,
Fr.# X Y Z R1 R2 R3 R4
134 -SO2CH=CH2 Br NO2 H H -C2H5 -C2H5
135 -SO2CH=CH2 Br NO2 H H -C2H5 -C2H4CN
136 -SO2CH=CH2 Br NO2 H H -C2H4CN -C2H4CN
137 -SO2CH=CH2 Br NO2 -CH3 H -C2H5 -C2H4CN
138 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H5 -C2H4CN
139 -SO2CH=CH2 Br NO2 -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
140 -SO2CH=CH2 Br NO2 -NHSO2CH3 H -C2H5 -C2H5
141 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
142 -SO2CH=CH2 Br NO2 -NHCOCH3 -OCH3 -C2H5 -C2H5
143 -SO2CH=CH2 Br NO2 -NHCOCH3 -OCH3 -C2H5 -C2H4CN
144 -SO2CH=CH2 Br NO2 -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
145 -SO2CH=CH2 Br NO2 -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
146 -SO2CH=CH2 Br NO2 -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
147 -SO2CH=CH2 Br NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
148 -SO2CH=CH2 Br NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
149 -SO2CH=CH2 Br NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
150 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
151 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
152 -SO2CH=CH2 Br NO2 -CH3 H -C2H5 -C2H4SO2F
153 -SO2CH=CH2 Br NO2 -CH3 H -C2H5 - C2H4SO2F
Example-11: Structural formula (154)
Structural formula (154) is synthesized by following method:
Take 25 gms of DMF in three necked round bottom flask and start stirring. Charge 2.8 gms of Zinc Cyanide, 0.2 gms of sodium cyanide and slowly heat up to 90 ºC with stirring. After reaching to 90ºC stir for 30’ and slowly charge 10 gms of dye of formula-6 by maintaining temperature between 90-95ºC. Once all dye is charged slowly increase temperature up to 100-110ºC and maintain for another 2-3 hrs and monitor reaction with TLC. If reaction is completed stop heating and slowly cool to 60ºC and charge 50 ml methanol for crystallization of product, let reaction mass cool down to RT and check for crystallization and filter. First wash with chilled methanol and followed by hot water washing. Once washing is completed treat this wet press cake with ammonia and again wash thoroughly with hot water. The 10.3g of 70% wet cake is obtained. The yield is 80%. The ?max in acetone of Example-11 dyestuff is 609 nm and melting point is 233-235ºC.
Similarly, following dyes were also prepared using same procedures,
Fr.# X Y Z R1 R2 R3 R4
155 -SO2CH=CH2 CN NO2 H H -C2H5 -C2H5
156 -SO2CH=CH2 CN NO2 H H -C2H5 -C2H4CN
157 -SO2CH=CH2 CN NO2 H H -C2H4CN -C2H4CN
158 -SO2CH=CH2 CN NO2 -CH3 H -C2H5 -C2H4CN
159 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H5 -C2H4CN
160 -SO2CH=CH2 CN NO2 -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
161 -SO2CH=CH2 CN NO2 -NHSO2CH3 H -C2H5 -C2H5
162 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
163 -SO2CH=CH2 CN NO2 -NHCOCH3 -OCH3 -C2H5 -C2H5
164 -SO2CH=CH2 CN NO2 -NHCOCH3 -OCH3 -C2H5 -C2H4CN
165 -SO2CH=CH2 CN NO2 -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
166 -SO2CH=CH2 CN NO2 -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
167 -SO2CH=CH2 CN NO2 -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
168 -SO2CH=CH2 CN NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
169 -SO2CH=CH2 CN NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
170 -SO2CH=CH2 CN NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
171 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
172 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
173 -SO2CH=CH2 CN NO2 -CH3 H -C2H5 -C2H4SO2F
174 -SO2CH=CH2 CN NO2 -CH3 H -C2H5 - C2H4SO2F
Above wet press cake is further used in four different dyeing methods,
1. Conventional Exhaust Dyeing of Polyester
2.0 g of the obtained wet press cake is milled with 2.0g of naphthalenesulfonic acid-formaldehyde condensate and 50g of water and 500 g of glass beads (average side is 0.8mm of diameter.) for 24 hr and after milling, the mass is filtered to separate glass beads. The 20g of the obtained finished liquid is added in the 100 ml of water and kept the pH 4 with acetic acid, and 10g piece of polyester is added into the dye bath for exhaust dyeing. The dyeing bath is heated to 135 ºC and kept for 40min. After proper rinsing, washing and drying, the dyed material is evaluated for reflectance, washing fastness, lightfastness and sublimation fastness.
2. Dyeing of Polyester with Super Critical Fluid (CO2)
Laboratory Dyeing of polyester fabrics with super critical fluid (CO2) comprises the steps of placing dyes up to 2% of the weight of polyester fabric and 10 gms of polyester fabric in dyeing pot depending upon the shade requirement. Close the dyeing pot tightly, Purging desired quantity of Liquid CO2 to this tightly closed dyeing pot; subjecting it to dyeing cycle at 120°C and 250 bar pressure for 90 minutes. After proper rinsing, washing and drying, the dyed material is evaluated for reflectance, washing fastness, lightfastness and sublimation fastness.
3. Conventional dyeing of polyamide (Data required for comparison)
The 0.2g of dye powder added in the 250 ml of water and kept the pH 4 and 10g piece of polyamide is added into the dye bath for exhaust dyeing. The dyeing bath is heated to 98 ºC and kept for 60 min. After proper rinsing, washing and drying, the dyed material is evaluated for reflectance, washing fastness, lightfastness and sublimation fastness.
4. Dyeing with Super Critical Fluid (CO2) of Polyamide
Laboratory Dyeing of polyester fabrics with super critical fluid (CO2) comprises the steps of placing dyes of formula-I (up to 2% of the weight of polyester fabric) and 10 gms of polyamide fabric in dyeing pot. Close the dyeing pot tightly, Purging desired quantity of Liquid CO2 to this tightly closed dyeing pot; subjecting it to dyeing cycle at 120°C and 250 bar pressure for 90 minutes. After proper rinsing, washing and drying, the dyed material is evaluated for reflectance, washing fastness, light fastness and sublimation fastness. All above differently dyed fabrics were evaluated for Reflectance Spectra for colour measurements and Fastness properties using following test methods, Washing Fastness as per Test Method AATCC 61 2A, Light Fastness as per Test Method ISO 105 B02 and Sublimation Test at 180 deg for 30 sec and at 200 deg for 30 sec.
DYE ?max nm (Ref) Washing Fastness Light Fastness Sublimation Fastness
AC CO PA PES
180 200
Formula-2 510 3-4 5 3-4 4-5 4-5 4-5 4-5
Formula-49 508 2-3 3 2 3 1-2 4-5 3-4
Formula-70 517 4 3-4 1-2 3-4 5 4-5 3
Formula-91 465.5 4 5 3-4 4-5 5 4-5 4
Formula-112 630 4 5 4 4-5 2 4-5 4
Formula-133 560 2-3 3-4 2 3 4-5 2 3-4
Formula-154 620 2-3 4 2-3 3-4 4 4-5 4-5
These dyes were also applied to polyamide fabric using conventional dyeing method but it does not give proper dyeing which provide confirmation on formation of covalent bond with polyamide when dyeing using SCF carbon dioxide.
To further confirm fixation on polyamide, dyed polyamide fabric using carbon dioxide is subjected to after treatment with Acetone, Ethanol: Acetic acid (1:1 mixture) and even with DMF and in all very little dye get removed in washing.
DYE Dyeing without after treatment After treatment with
Acetone at RT DMF at RT LEO+AA (1:1) RT
% Strength % Strength % Strength % Strength
Formula-2 100 % 99.78% 99.80% 97.67%
Formula-49 100 % 100.2% 99.76% 99.2%
Formula-70 100 % 100.9% 99.34% 98.67%
Formula-91 100 % 99.95% 100% 97.03%
Formula-112 100 % 103.9% 101.3% 99.8 %
Formula-133 100 % 101 % 99.47% 95.67%
Formula-154 100 % 100 % 99.20% 94.97%
For further confirmation FTIR spectrum of Dye powder-Formula-2 (Figure 1) and SCF dyed polyamide fabric (Figure 2) is performed which clearly shows presence of strong peak representing sulphonamide stretching at 3296 in FTIR of SCF dyed polyamide fabric and absence of strong stretching at 1303 and 1332 representing Vinyl sulfone in dyed polyamide which is present in dye powder FTIR.
Figure 1: FTIR spectrum of Dye powder-Formula-2
Figure 2: FTIR spectrum of SCF dyed polyamide fabric
,CLAIMS:1. Disperse reactive Azo Dyes of formula (1),
wherein
X, Y and Z are, independently, hydrogen, methyl, methoxy, halogen, cyano, nitro, –SO2CH=CH2 and at least one of X, Y or Z is essentially –SO2CH=CH2
R1 is hydrogen, methyl, hydroxyl or NHR5;
R5 is COR9, SO2R10;
R2 is hydrogen, chloro or methoxy;
R3 and R4 are independently hydrogen, C1-C4 alkyl; C1-C4 haloalkyl, -CH2CH2CN; -CH2CH=CH2; –CH2CH2OCOR6, –CH2CH2COOR7, or –CH2CH2SO2R8
R6 is C1-C4 alkyl, and
R7 is Hydrogen, C1-C4 alkyl, -CH2CN, -CH2CH2CN;
R8 is Cl or F
R9 is C1-C4 alkyl,
R10 is C1-C4 alkyl.
2. Disperse reactive Azo Dyes as claimed in claim 1, wherein the substituents X, Y, Z, R1, R2, R3 and R4 in formula (1) is substituted to provide dye molecules of formula as follows:
Fr.# X Y Z R1 R2 R3 R4
2 -SO2CH=CH2 H H -NHCOCH3 H -C2H5 -C2H5
3 -SO2CH=CH2 H H H H -C2H5 -C2H5
4 -SO2CH=CH2 H H H H -C2H5 -C2H4CN
5 -SO2CH=CH2 H H H H -C2H4CN -C2H4CN
6 -SO2CH=CH2 H H -CH3 H -C2H5 -C2H4CN
7 -SO2CH=CH2 H H -NHCOCH3 H -C2H5 -C2H4CN
8 -SO2CH=CH2 H H -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
9 -SO2CH=CH2 H H -NHCOCH3 -OCH3 -C2H5 -C2H5
10 -SO2CH=CH2 H H -NHCOCH3 -OCH3 -C2H5 -C2H4CN
11 -SO2CH=CH2 H H -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
12 -SO2CH=CH2 -OCH3 H H H -C2H5 -C2H5
13 -SO2CH=CH2 -OCH3 H H H -C2H5 -C2H4CN
14 -SO2CH=CH2 -OCH3 H H H -C2H4CN -C2H4CN
15 -SO2CH=CH2 -OCH3 H -CH3 H -C2H5 -C2H4CN
16 -SO2CH=CH2 -OCH3 H -NHCOCH3 H -C2H5 -C2H5
17 -SO2CH=CH2 -OCH3 H -NHCOCH3 H -C2H5 -C2H4CN
18 -SO2CH=CH2 -OCH3 H -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
19 -SO2CH=CH2 -OCH3 H -NHCOCH3 -OCH3 -C2H5 -C2H5
20 -SO2CH=CH2 -OCH3 H -NHCOCH3 -OCH3 -C2H5 -C2H4CN
21 -SO2CH=CH2 -OCH3 H -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
22 -SO2CH=CH2 -OCH3 -CH3 H H -C2H5 -C2H5
23 -SO2CH=CH2 -OCH3 -CH3 H H -C2H5 -C2H4CN
24 -SO2CH=CH2 -OCH3 -CH3 H H -C2H4CN -C2H4CN
25 -SO2CH=CH2 -OCH3 -CH3 -CH3 H -C2H5 -C2H4CN
26 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 H -C2H5 -C2H5
27 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 H -C2H5 -C2H4CN
28 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
29 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 -OCH3 -C2H5 -C2H5
30 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 -OCH3 -C2H5 -C2H4CN
31 -SO2CH=CH2 -OCH3 -CH3 -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
32 -SO2CH=CH2 -OCH3 -OCH3 H H -C2H5 -C2H5
33 -SO2CH=CH2 -OCH3 -OCH3 H H -C2H5 -C2H4CN
34 -SO2CH=CH2 -OCH3 -OCH3 H H -C2H4CN -C2H4CN
35 -SO2CH=CH2 -OCH3 -OCH3 -CH3 H -C2H5 -C2H4CN
36 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 H -C2H5 -C2H5
37 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 H -C2H5 -C2H4CN
38 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
39 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 -OCH3 -C2H5 -C2H5
40 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 -OCH3 -C2H5 -C2H4CN
41 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
42 -SO2CH=CH2 H H -NHCOCH3 Cl -C2H5 -C2H4CN
43 -SO2CH=CH2 -OCH3 H -NHCOCH3 Cl -C2H5 -C2H4CN
44 -SO2CH=CH2 -OCH3 -OCH3 -NHCOCH3 Cl -C2H5 -C2H4CN
45 H H -SO2CH=CH2 -NHCOCH3 Cl -C2H5 -C2H4CN
46 H H -SO2CH=CH2 H H -C2H5 -C2H4CN
47 H H -SO2CH=CH2 H H -C2H4CN -C2H4CN
48 H H -SO2CH=CH2 -NHCOCH3 H -C2H5 -C2H5
49 -SO2CH=CH2 Br H -NHCOCH3 H -C2H5 -C2H5
50 -SO2CH=CH2 Br H H H -C2H5 -C2H5
51 -SO2CH=CH2 Br H H H -C2H5 -C2H4CN
52 -SO2CH=CH2 Br H H H -C2H4CN -C2H4CN
53 -SO2CH=CH2 Br H -CH3 H -C2H5 -C2H4CN
54 -SO2CH=CH2 Br H -NHCOCH3 H -C2H5 -C2H4CN
55 -SO2CH=CH2 Br H -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
56 -SO2CH=CH2 Br H -NHSO2CH3 H -C2H5 -C2H5
57 -SO2CH=CH2 Br H -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
58 -SO2CH=CH2 Br H -NHCOCH3 -OCH3 -C2H5 -C2H5
59 -SO2CH=CH2 Br H -NHCOCH3 -OCH3 -C2H5 -C2H4CN
60 -SO2CH=CH2 Br H -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
61 -SO2CH=CH2 Br H -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
62 -SO2CH=CH2 Br H -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
63 -SO2CH=CH2 Br H -NHCOCH3 Cl -C2H5 -C2H4CN
64 -SO2CH=CH2 Br H -NHCOCH3 Cl -C2H5 -C2H4CN
65 -SO2CH=CH2 Br H -NHCOCH3 Cl -C2H5 -C2H4CN
66 -SO2CH=CH2 Br H -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
67 -SO2CH=CH2 Br H -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
68 -SO2CH=CH2 Br H -CH3 H -C2H5 -C2H4SO2F
69 -SO2CH=CH2 Br H -CH3 H -C2H5 - C2H4SO2F
70 -SO2CH=CH2 CN H -NHCOCH3 H -C2H5 -C2H5
71 -SO2CH=CH2 CN H H H -C2H5 -C2H5
72 -SO2CH=CH2 CN H H H -C2H5 -C2H4CN
73 -SO2CH=CH2 CN H H H -C2H4CN -C2H4CN
74 -SO2CH=CH2 CN H -CH3 H -C2H5 -C2H4CN
75 -SO2CH=CH2 CN H -NHCOCH3 H -C2H5 -C2H4CN
76 -SO2CH=CH2 CN H -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
77 -SO2CH=CH2 CN H -NHSO2CH3 H -C2H5 -C2H5
78 -SO2CH=CH2 CN H -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
79 -SO2CH=CH2 CN H -NHCOCH3 -OCH3 -C2H5 -C2H5
80 -SO2CH=CH2 CN H -NHCOCH3 -OCH3 -C2H5 -C2H4CN
81 -SO2CH=CH2 CN H -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
82 -SO2CH=CH2 CN H -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
83 -SO2CH=CH2 CN H -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
84 -SO2CH=CH2 CN H -NHCOCH3 Cl -C2H5 -C2H4CN
85 -SO2CH=CH2 CN H -NHCOCH3 Cl -C2H5 -C2H4CN
86 -SO2CH=CH2 CN H -NHCOCH3 Cl -C2H5 -C2H4CN
87 -SO2CH=CH2 CN H -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
88 -SO2CH=CH2 CN H -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
89 -SO2CH=CH2 CN H -CH3 H -C2H5 -C2H4SO2F
90 -SO2CH=CH2 CN H -CH3 H -C2H5 - C2H4SO2F
91 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H5 -C2H5
92 -SO2CH=CH2 Br Br H H -C2H5 -C2H5
93 -SO2CH=CH2 Br Br H H -C2H5 -C2H4CN
94 -SO2CH=CH2 Br Br H H -C2H4CN -C2H4CN
95 -SO2CH=CH2 Br Br -CH3 H -C2H5 -C2H4CN
96 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H5 -C2H4CN
97 -SO2CH=CH2 Br Br -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
98 -SO2CH=CH2 Br Br -NHSO2CH3 H -C2H5 -C2H5
99 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
100 -SO2CH=CH2 Br Br -NHCOCH3 -OCH3 -C2H5 -C2H5
101 -SO2CH=CH2 Br Br -NHCOCH3 -OCH3 -C2H5 -C2H4CN
102 -SO2CH=CH2 Br Br -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
103 -SO2CH=CH2 Br Br -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
104 -SO2CH=CH2 Br Br -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
105 -SO2CH=CH2 Br Br -NHCOCH3 Cl -C2H5 -C2H4CN
106 -SO2CH=CH2 Br Br -NHCOCH3 Cl -C2H5 -C2H4CN
107 -SO2CH=CH2 Br Br -NHCOCH3 Cl -C2H5 -C2H4CN
108 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
109 -SO2CH=CH2 Br Br -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
110 -SO2CH=CH2 Br Br -CH3 H -C2H5 -C2H4SO2F
111 -SO2CH=CH2 Br Br -CH3 H -C2H5 - C2H4SO2F
112 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H5 -C2H5
113 -SO2CH=CH2 CN CN H H -C2H5 -C2H5
114 -SO2CH=CH2 CN CN H H -C2H5 -C2H4CN
115 -SO2CH=CH2 CN CN H H -C2H4CN -C2H4CN
116 -SO2CH=CH2 CN CN -CH3 H -C2H5 -C2H4CN
117 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H5 -C2H4CN
118 -SO2CH=CH2 CN CN -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
119 -SO2CH=CH2 CN CN -NHSO2CH3 H -C2H5 -C2H5
120 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
121 -SO2CH=CH2 CN CN -NHCOCH3 -OCH3 -C2H5 -C2H5
122 -SO2CH=CH2 CN CN -NHCOCH3 -OCH3 -C2H5 -C2H4CN
123 -SO2CH=CH2 CN CN -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
124 -SO2CH=CH2 CN CN -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
125 -SO2CH=CH2 CN CN -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
126 -SO2CH=CH2 CN CN -NHCOCH3 Cl -C2H5 -C2H4CN
127 -SO2CH=CH2 CN CN -NHCOCH3 Cl -C2H5 -C2H4CN
128 -SO2CH=CH2 CN CN -NHCOCH3 Cl -C2H5 -C2H4CN
129 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
130 -SO2CH=CH2 CN CN -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
131 -SO2CH=CH2 CN CN -CH3 H -C2H5 -C2H4SO2F
132 -SO2CH=CH2 CN CN -CH3 H -C2H5 - C2H4SO2F
133 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H5 -C2H5
134 -SO2CH=CH2 Br NO2 H H -C2H5 -C2H5
135 -SO2CH=CH2 Br NO2 H H -C2H5 -C2H4CN
136 -SO2CH=CH2 Br NO2 H H -C2H4CN -C2H4CN
137 -SO2CH=CH2 Br NO2 -CH3 H -C2H5 -C2H4CN
138 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H5 -C2H4CN
139 -SO2CH=CH2 Br NO2 -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
140 -SO2CH=CH2 Br NO2 -NHSO2CH3 H -C2H5 -C2H5
141 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
142 -SO2CH=CH2 Br NO2 -NHCOCH3 -OCH3 -C2H5 -C2H5
143 -SO2CH=CH2 Br NO2 -NHCOCH3 -OCH3 -C2H5 -C2H4CN
144 -SO2CH=CH2 Br NO2 -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
145 -SO2CH=CH2 Br NO2 -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
146 -SO2CH=CH2 Br NO2 -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
147 -SO2CH=CH2 Br NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
148 -SO2CH=CH2 Br NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
149 -SO2CH=CH2 Br NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
150 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
151 -SO2CH=CH2 Br NO2 -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
152 -SO2CH=CH2 Br NO2 -CH3 H -C2H5 -C2H4SO2F
153 -SO2CH=CH2 Br NO2 -CH3 H -C2H5 - C2H4SO2F
154 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H5 -C2H5
155 -SO2CH=CH2 CN NO2 H H -C2H5 -C2H5
156 -SO2CH=CH2 CN NO2 H H -C2H5 -C2H4CN
157 -SO2CH=CH2 CN NO2 H H -C2H4CN -C2H4CN
158 -SO2CH=CH2 CN NO2 -CH3 H -C2H5 -C2H4CN
159 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H5 -C2H4CN
160 -SO2CH=CH2 CN NO2 -NHCOCH3 H -CH2-CH=CH2 -CH2-CH=CH2
161 -SO2CH=CH2 CN NO2 -NHSO2CH3 H -C2H5 -C2H5
162 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H4OCOCH3 -C2H4OCOCH3
163 -SO2CH=CH2 CN NO2 -NHCOCH3 -OCH3 -C2H5 -C2H5
164 -SO2CH=CH2 CN NO2 -NHCOCH3 -OCH3 -C2H5 -C2H4CN
165 -SO2CH=CH2 CN NO2 -NHCOCH3 -OCH3 -CH2-CH=CH2 -CH2-CH=CH2
166 -SO2CH=CH2 CN NO2 -NHSO2CH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
167 -SO2CH=CH2 CN NO2 -NHCOCH3 -OCH3 -C2H4OCOCH3 -C2H4OCOCH3
168 -SO2CH=CH2 CN NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
169 -SO2CH=CH2 CN NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
170 -SO2CH=CH2 CN NO2 -NHCOCH3 Cl -C2H5 -C2H4CN
171 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H4COOC2H5 -C2H4COOC2H5
172 -SO2CH=CH2 CN NO2 -NHCOCH3 H -C2H4COOCH3 -C2H4COOCH3
173 -SO2CH=CH2 CN NO2 -CH3 H -C2H5 -C2H4SO2F
174 -SO2CH=CH2 CN NO2 -CH3 H -C2H5 - C2H4SO2F
3. A process for dyeing and printing fiber materials which comprises treating the fiber materials with a dye of the formula (1) as claimed in any one of the preceding claims.
4. A process for Dyeing of fabric selected from polyamide/nylon, silk, wool, polyester or blends of these fibers with fiber-reactive dyes of formula 1 by Supercritical fluid dyeing process comprising the steps of:
i. Placing the dyestuff of formula-1 in a dyeing pot along with the fabric;
ii. Closing the dyeing pot tightly;
iii. Purging desired quantity of supercritical fluid to the tightly closed dyeing pot of step ii;
iv. Subjecting it to dyeing cycle at a temperature range of 100-130°C and at pressure of 200-300 bar pressure for atleast 90 minutes.
5. A process as claimed in claim 1, wherein dyeing of polyester fiber and polyamide fiber is carried out at 100-120°C.
6. A process as claimed in claim 1, wherein dyeing is carried out at a pressure of 250 bar.
7. A process for the preparation of intermediates of formula
wherein, X, Y and Z is selected from Hydrogen, Halogen, Cyano or Nitro and Z is Hydrogen, Halogen, methyl, methoxy, Cyano or Nitro wherein at least one of X, Y or Z is –SO2CH=CH2, comprising process steps of
a. Vinylization of (aminophenylsulfonyl)ethyl hydrogen sulfate in dilute alkali;
b. Mono and/or Di halogenation of vinyl substituent obtained in step a;
c. Optional Nitration/cyanation/alkylation/alkoxylation of the monohalo substituent obtained in step (b) to obtain desired intermediate.
| # | Name | Date |
|---|---|---|
| 1 | Form 3 [24-03-2017(online)].pdf | 2017-03-24 |
| 2 | Description(Provisional) [24-03-2017(online)].pdf | 2017-03-24 |
| 3 | PROOF OF RIGHT [12-06-2017(online)].pdf | 2017-06-12 |
| 4 | Form 26 [12-06-2017(online)].pdf | 2017-06-12 |
| 5 | 201721010502-ORIGINAL UNDER RULE 6 (1A)-14-06-2017.pdf | 2017-06-14 |
| 6 | 201721010502-PostDating-(19-03-2018)-(E-6-54-2018-MUM).pdf | 2018-03-19 |
| 7 | 201721010502-APPLICATIONFORPOSTDATING [19-03-2018(online)].pdf | 2018-03-19 |
| 8 | 201721010502-ENDORSEMENT BY INVENTORS [23-06-2018(online)].pdf | 2018-06-23 |
| 9 | 201721010502-DRAWING [23-06-2018(online)].pdf | 2018-06-23 |
| 10 | 201721010502-COMPLETE SPECIFICATION [23-06-2018(online)].pdf | 2018-06-23 |
| 11 | 201721010502-FORM 18 [25-05-2021(online)].pdf | 2021-05-25 |
| 12 | 201721010502-FER.pdf | 2021-10-18 |
| 13 | 201721010502-OTHERS [04-02-2022(online)].pdf | 2022-02-04 |
| 14 | 201721010502-MARKED COPIES OF AMENDEMENTS [04-02-2022(online)].pdf | 2022-02-04 |
| 15 | 201721010502-FORM 13 [04-02-2022(online)].pdf | 2022-02-04 |
| 16 | 201721010502-FER_SER_REPLY [04-02-2022(online)].pdf | 2022-02-04 |
| 17 | 201721010502-CLAIMS [04-02-2022(online)].pdf | 2022-02-04 |
| 18 | 201721010502-AMMENDED DOCUMENTS [04-02-2022(online)].pdf | 2022-02-04 |
| 19 | 201721010502-PatentCertificate07-09-2022.pdf | 2022-09-07 |
| 20 | 201721010502-IntimationOfGrant07-09-2022.pdf | 2022-09-07 |
| 1 | 201721010502SearchstrategyE_04-08-2021.pdf |