Sign In to Follow Application
View All Documents & Correspondence

Electrical Connection Terminal

Abstract: The invention concerns an electrical connection assembly (300) comprising: — a conductive plate (102) with a drillhole (104) in it, — a first small column (320) with a hole (326) passing axially through it and comprising a shoulder (324) intended to come into abutment against one of the faces of the conductive plate (102), and — a second small column (306) with a hole (316) passing axially through it and comprising a shoulder (312) intended to come into abutment against the other face of the conductive plate (102), a first cylinder (308) the radius of which is adapted to enable it to enter the hole (326) in the first small column (320) and the length of which is such that, when the shoulder (312) is in abutment, the free end of the first cylinder (308) projects beyond the conductive plate (102), and a second cylinder (310) the radius of which is adapted to enable it to enter the drillhole (104), and the connection assembly (300) being such that the free end of the first cylinder (308) is crimped by radial expansion and then by axial compression in the hole (326) in the first small column (320).

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
08 April 2010
Publication Number
42/2013
Publication Type
INA
Invention Field
ELECTRICAL
Status
Email
Parent Application

Applicants

ELDRE
2-4  rue du Dery  ZA Les Fousseaux  F-49480 SAINT SYLVAIN d’ANJOU  France

Inventors

1. HUBLIER Philippe
C/o ELDRE  2-4  rue du Dery  ZA Les Fousseaux  F-49480 SAINT SYLVAIN d’ANJOU  France
2. HAMON Fabrice
C/o ELDRE  2-4  rue du Dery  ZA Les Fousseaux  F-49480 SAINT SYLVAIN d’ANJOU  France

Specification

ELECTRICAL CONNECTION TERMINAL
The present invention concerns an electrical connection assembly and a tool provided for producing such an assembly.
In an electrical box, an electrically conductive plate serving as an electrical conductor makes it possible to connect together various electronic power components, for example a cable, a circuit breaker or the like. Because of the length of the conductive plate and the manufacturing tolerances of the surrounding elements, certain electrical components are situated at a certain distance from the conductive plate and are not in contact with it.
The document GB-A-2 154 079 shows a connection assembly of the prior art.
One object of the present invention is to propose an electrical connection assembly that does not have the drawbacks of the prior art and in particular enables the conductive plate and electrical components to be put in contact.
For this purpose, an electrical connection assembly is proposed comprising:
— a conductive plate with a drillhole in it,
— a first small column with a hole passing axially through
it and comprising a shoulder intended to come into abutment against one of the faces of the conductive plate, and
— a second small column with a hole passing axially through it and comprising a shoulder intended to come into abutment against the other face of the conductive plate, a first cylinder the radius of which is adapted to enable it to enter the hole in the first small column and the length of which is such that, when the shoulder is in abutment, the free end of the first cylinder projects beyond the conductive plate, and a second cylinder the radius of which is adapted to enable it to enter the drillhole,
the connection assembly being characterised in that the free end of the first cylinder is crimped by radial expansion and then by axial compression in the hole in the first small column.
Advantageously, the hole in the first small column is bevelled on the crimping side.
According to a particular embodiment, the first small column comprises a hollow cylinder the radius of which is adapted to enable it to enter the drillhole.
Advantageously, the lengths of the hollow cylinder and second cylinder are such that, when the shoulder of the first small column and the shoulder of the second small column are in abutment against the conductive plate, the hollow cylinder and the second cylinder are in abutment
against each other.
According to a particular embodiment, the length of the second cylinder is greater than the thickness of the conductive plate and the shoulder of the first column has a hole passing axially through it, the radius of which is adapted to enable it to be fitted on the second cylinder.
The invention also proposes a tool comprising a first part comprising a body in which a hollow recess is hollowed out and a second part comprising a body on which a punch is produced designed to enter the hollow recess, the tool being characterised in that the punch is fixed to the body by means of a grooved zone.
The features of the invention mentioned above, as well as others, will appear more clearly from a reading of the following description of an example embodiment, the said description being given in relation to the accompanying drawings, among which:
Figure la, figure lb and figure lc show steps of assembly of an electrical connection assembly according to a first embodiment of the invention,
figure 2 shows a conductive plate according to a variant embodiment,
figure 3a and figure 3b show steps of assembling an electrical connection assembly according to a second embodiment of the invention,
figure 4a and figure 4b show steps of assembling an electrical connection assembly according to a third embodiment of the invention,
figure 5a and figure 5b show the two parts of a tool according to the invention.
Figure la shows an electrical connection assembly 100 comprising an electrically conductive plate 102 and at least one small column 106 that are not assembled.
The connection assembly 100 is intended to be installed in an electrical box. The conductive plate 102 is fixed in the electrical box and electrical components are fitted in the electrical box so as to come into contact with the conductive plate 102 or one of the small columns 106 according to the distance between the electrical component and the conductive plate 102. That is to say if, after installation of the electrical component, the latter is in contact with the conductive plate 102, it is not necessary to provide a small column 106 but if, after installation of the electrical component, the latter is not in contact with the conductive plate 102, it is necessary to provide a small column 106.
The conductive plate 102 has in it a drillhole 104 intended to receive the small column 106. For this purpose, the small column 106 comprises a cylinder 108, the radius of which is adapted to enable it to enter the drillhole 104 (figure lb). The small column 106 is hollow and has a hole 114 passing axially through it.
A shoulder 110 on the small column 106 stops the small column 106 in abutment against the conductive plate 102. The length of the cylinder 108 is such that, when the shoulder 110 is in abutment, the free end of the cylinder 108 projects beyond the conductive plate 102.
Figure lc shows the connection assembly 100 after crimping of the small column 106 on the conductive plate 102. The crimping takes place by radial expansion of the free end of the cylinder 108 of the small column 106 and then by axial compression thereof. After the axial compression, the crimped end of the small column 106 is flush with the conductive plate 102.
A tool, described below, is introduced into the hole 114 through the end disposed on the side opposite to the side through which the small column 106 is introduced into the drillhole 104. The tool is designed to exert a radial expansion force on the free end of the first cylinder 106 and to compress it against the face of the conductive plate 102.
Crimping is not carried out solely by axial compression with the first cylinder, but by radial expansion and then axial compression. This crimping makes it possible to obtain a small column 106 that is perfectly held and difficult to pull away, unlike a solely axial crimping.
The external face 112 of the small column 106 is then at a distance from the face of the conductive plate 102 and makes it possible to come into contact with an electrical
component.
The hole 114 can serve as a fixing hole for a screw holding the electrical component.
Figure 2 shows a conductive plate 202 according to another embodiment, particularly adapted for thin conductive plates, for example less than 1 mm. The conductive plate 202 has a drillhole 204 that is bevelled on the crimping side. The bevel receives the radial expansion of the small column.
Figure 3 shows an electrical connection assembly 300, not assembled, according to a second embodiment. Figure 3b shows the connection assembly 300 assembled but not crimped.
The connection assembly 300 comprises a conductive plate 102 with a drillhole 104 and a first small column 320 coming against one of the faces of the conductive plate 102 of a second small column 306 coming against the other face of the conductive plate 102.
The first small column 320 has a hole 326 passing axially through it, which has here a bevel 328 and comprises a cylinder 322 and a shoulder 324.
The second small column has hole 316 passing axially through it and comprises successively a first cylinder 308, a second coaxial cylinder 310 and a shoulder 312 intended to stop the second small column 306 against the conductive plate 102.
The cylinder 322 of the first small column 320 has a radius adapted to enable it to enter the drillhole 104 (figure 3b).
The stopping of the first small column 320 against the conductive plate 102 is effected by abutment of the shoulder 324. The length of the cylinder 322 is here less than the thickness of the conductive plate 102.
The radius of the first cylinder 308 is adapted to enable it to enter the hole 326 in the first small column 320. The radius of the second cylinder 310 is adapted to enable it to enter the drillhole 104. The lengths of the cylinder 322 of the first small column 320 and of the second cylinder 310 are such that, when the shoulder 324 on the first small column 320 and the shoulder 312 on the second small column 306 are in abutment against the conductive plate 102, the cylinder 322 and the second cylinder 310 are in abutment against each other.
The length of the first cylinder 308 is such that, when the connection assembly 300 is assembled (figure 3b), the free end of the said first cylinder 308 projects beyond the external face of the first small column 320. The second small column 306 is then crimped in the first small column 320 in accordance with the first embodiment, by radial expansion of the free end of the first cylinder 308 and then its axial compression in the bevel 328.
The connection end 300 thus produced makes it possible to obtain a contact on the external face 330, 318, of each small column 320, 306 in order to put an electrical component in contact on each of these faces 318, 330.
Figure 4a shows an electrical connection assembly 400, not assembled, according to a third embodiment. Figure 4b shows
the connection assembly 400 assembled but not crimped.
The connection assembly 400 comprises a conductive plate 102 with a drillhole 104 and a first small column 420 coming against one of the face of the conductive plate 102 and a second small column 406 coming against the other face of the conductive plate 102.
The first small column 420 comprises a cylinder 424 and a shoulder 422 intended to come into abutment against the conductive plate 102. The cylinder 424 has a hole 426 passing axially through it, which here has a bevel 428. The shoulder 422 has a hole 430 passing axially through it.
The second small column 406 has a hole 416 passing axially through it and comprises successively a first cylinder 408, a coaxial second cylinder 410 and a shoulder 412 intended to stop the second small column 406 against the conductive plate 102.
The radius of the second cylinder 410 is adapted to enable it to enter the drillhole 104 (figure 4b). The length of the second cylinder 410 is greater than the thickness of the conductive plate 102.
The radius of the hole 430 in the shoulder 422 is adapted to enable the first small column 420 to be fitted on the second cylinder 410. The radius of the first cylinder 408 is adapted to enable it to enter the hole 426 in the cylinder 424 and its length is such that, when the connection assembly 400 is assembled (figure 4b), its free end projects beyond the external face of the first small column 420.
In the assembled position, the second cylinder 410 is in abutment against the cylinder 424 and the shoulders 422 and 412 are in abutment on either side of the conductive plate 102.
The second small column 406 is then crimped in the first small column 420 in accordance with the first embodiment, by radial expansion of the free end of the first cylinder 408 and then axial compression in the bevel 428.
The connection assembly 400 thus produced makes it possible to obtain a contact on the external face 432, 418 of each small column 420, 406 in order to put an electrical component in contact on each of these faces 432, 418.
Figure 5a shows the first part 501 of a tool and figure 5b shows the second part 502 of the same tool that is intended to effect the crimping of a connection assembly 100, 300, 400 according to the invention.
The first part 501 comprises a cylindrical body 504 that
carries, at one of its ends, a shoe 508 intended to be fixed
in the jaw of a machine and, at the other end, a hollow
recess 512.
The second part 502 comprises a cylindrical body 506 that carries, at one of its ends, a shoe 510 intended to be fixed in the jaw of the machine and, at the other end, a punch 514.
The recess 412 is disposed facing the punch 514 and the
machine is designed to enable the first part 501 and the second part 502 to be brought closer together.
The column to be crimped is fitted on the body 504 of the first part 501, and the conductive plate and possibly the other small column are placed on the face carrying the recess 512. The punch 514 is then brought closer to the recess 512 and through its shape gives rise to a radial expansion of the column and then the axial compression thereof.
The punch 514 is fixed to the body 506 by means of a grooved zone 516 which, by moving closer to the recess 512, obliges the end of the small column to move away radially. The end of the body 506 then compresses the free end thus moved away.
The fitting of one or two columns makes it possible to manage the problems of distance with the electrical components and the specific crimping by radial expansion guarantees good mechanical strength and good electrical contact of each small column on the conductive plate.
The dimensions of the various elements are such that, after crimping, no translation movement is possible between them.

CLAIMS
1. Electrical connection assembly (300, 400) comprising:
— a conductive plate (102) with a drillhole (104) in it,
— a first small column (320, 420) with a hole (326, 426) passing axially through it and comprising a shoulder
(324, 422) intended to come into abutment against one of the faces of the conductive plate (102), and
— a second small column (306, 406) with a hole (316, 416)
passing axially through it and comprising a shoulder
(312, 412) intended to come into abutment against the other face of the conductive plate (102), a first cylinder (308, 408) the radius of which is adapted to enable it to enter the hole (326, 426) in the first small column (320, 420) and the length of which is such that, when the shoulder (312, 412) is in abutment, the free end of the first cylinder (308, 408) projects beyond the conductive plate (102), and a second cylinder (310, 410) the radius of which is adapted to enable it to enter the drillhole (104), and
the connection assembly (300, 400) being characterised in that the free end of the first cylinder (308, 408) is crimped by radial expansion and then by axial compression in the hole (326, 426) in the first small column (320, 420).
2. Electrical connection assembly (300, 400) according to
claim 1, characterised in that the hole (324, 426) in the first small column (320, 420) is bevelled on the crimping side .
3. Electrical connection assembly (300) according to one of claims 1 or 2, characterised in that the first small column (320) comprises a hollow cylinder (322) the radius of which is adapted to enable it to enter the drillhole (104).
4. Electrical connection assembly (300) according to claim 3, characterised in that the lengths of the hollow cylinder
(322) and of the second cylinder (310) are such that, when the shoulder (324) on the first small column (320) and the shoulder (312) on the second column (306) are in abutment against the conductive plate (102), the hollow cylinder
(322) and the second cylinder (310) are in abutment against each other.
5. Electrical connection assembly (400) according to one of claims 1 or 2, characterised in that the length of the second cylinder (410) is greater than the thickness of the conductive plate (102) and in that the shoulder (422) on the first small column (420) has a hole (430) passing axially through it, the radius of which is adapted to enable it to be fitted on the second cylinder (410).
6. Tool provided for producing a connection assembly (100, 300, 400) according to one of claims 1 to 5, comprising a first part (501) comprising a body (504) in which a hollow recess (512) is hollowed out and a second part (502) comprising a body (506) on which a punch (514) is produced, designed to enter the hollow recess (512), the tool being

characterised in that the punch (514) is fixed to the body (506) by means of a grooved zone (516).
7. Electrical connection assembly substantially as herein described with reference to the foregoing description and the accompanying drawings.

Documents

Application Documents

# Name Date
1 2433-DELNP-2010-AbandonedLetter.pdf 2017-11-09
1 2433-DELNP-2010-Form-5-(09-04-2010).pdf 2010-04-09
2 2433-DELNP-2010-FER.pdf 2017-03-24
2 2433-DELNP-2010-Form-3-(09-04-2010).pdf 2010-04-09
3 2433-DELNP-2010-Form-2-(09-04-2010).pdf 2010-04-09
3 2433-delnp-2010-Correspondence-Others-(04-10-2011).pdf 2011-10-04
4 2433-delnp-2010-Form-18-(04-10-2011).pdf 2011-10-04
4 2433-DELNP-2010-Form-1-(09-04-2010).pdf 2010-04-09
5 2433-delnp-2010-GPA-(04-10-2011).pdf 2011-10-04
5 2433-DELNP-2010-Drawings-(09-04-2010).pdf 2010-04-09
6 2433-DELNP-2010-Description (Complete)-(09-04-2010).pdf 2010-04-09
6 2433-delnp-2010-abstract.pdf 2011-08-21
7 2433-DELNP-2010-Correspondence-Others-(09-04-2010).pdf 2010-04-09
7 2433-delnp-2010-claims.pdf 2011-08-21
8 2433-delnp-2010-description (complete).pdf 2011-08-21
8 2433-DELNP-2010-Claims-(09-04-2010).pdf 2010-04-09
9 2433-DELNP-2010-Abstract-(09-04-2010).pdf 2010-04-09
9 2433-delnp-2010-form-2.pdf 2011-08-21
10 2433-DELNP-2010-Correspondence-Others-(29-04-2010).pdf 2010-04-29
10 abstract.jpg 2011-08-21
11 2433-DELNP-2010-Assignment-(29-04-2010).pdf 2010-04-29
11 Drawings.pdf 2011-08-21
12 Form-1.pdf 2011-08-21
12 Form-5.pdf 2011-08-21
13 Form-3.pdf 2011-08-21
14 Form-1.pdf 2011-08-21
14 Form-5.pdf 2011-08-21
15 2433-DELNP-2010-Assignment-(29-04-2010).pdf 2010-04-29
15 Drawings.pdf 2011-08-21
16 2433-DELNP-2010-Correspondence-Others-(29-04-2010).pdf 2010-04-29
16 abstract.jpg 2011-08-21
17 2433-delnp-2010-form-2.pdf 2011-08-21
17 2433-DELNP-2010-Abstract-(09-04-2010).pdf 2010-04-09
18 2433-DELNP-2010-Claims-(09-04-2010).pdf 2010-04-09
18 2433-delnp-2010-description (complete).pdf 2011-08-21
19 2433-DELNP-2010-Correspondence-Others-(09-04-2010).pdf 2010-04-09
19 2433-delnp-2010-claims.pdf 2011-08-21
20 2433-DELNP-2010-Description (Complete)-(09-04-2010).pdf 2010-04-09
20 2433-delnp-2010-abstract.pdf 2011-08-21
21 2433-delnp-2010-GPA-(04-10-2011).pdf 2011-10-04
21 2433-DELNP-2010-Drawings-(09-04-2010).pdf 2010-04-09
22 2433-delnp-2010-Form-18-(04-10-2011).pdf 2011-10-04
22 2433-DELNP-2010-Form-1-(09-04-2010).pdf 2010-04-09
23 2433-DELNP-2010-Form-2-(09-04-2010).pdf 2010-04-09
23 2433-delnp-2010-Correspondence-Others-(04-10-2011).pdf 2011-10-04
24 2433-DELNP-2010-Form-3-(09-04-2010).pdf 2010-04-09
24 2433-DELNP-2010-FER.pdf 2017-03-24
25 2433-DELNP-2010-AbandonedLetter.pdf 2017-11-09
25 2433-DELNP-2010-Form-5-(09-04-2010).pdf 2010-04-09

Search Strategy

1 searchstrategy_24-01-2017.pdf