Abstract: The invention relates to an elementary antenna comprising a planar radiating device (10) comprising a substantially flat radiating element (11) having a centre (C) the plane containing the radiating element (11) being defined by a first straight line (D1) passing through the centre (C) and a second straight line (D2) perpendicular to the first straight line (D1) and passing through the centre (C) said radiating element (11) comprising a plurality of pairs of excitation points arranged in at least one first quadruplet of excitation points located at a distance from the first straight line (D1) and the second straight line (D2) comprising a first pair of excitation points (1+ 1-) arranged substantially symmetrically in relation to said first straight line (D1) and a second pair of excitation points (2+ 2) arranged substantially symmetrically in relation to said second straight line (D2) the elementary antenna comprising a plurality of processing circuits that can supply differential excitation signals for exciting the excitation points and/or shaping signals emitted from the excitation points each pair of excitation points being coupled to a processing circuit such that the processing circuit excites the pair of excitation points in a differential manner and/or processes differential signals emitted from the pair of points.
The present invention relates to the field of array antennas and in particular active antennas. It applies in particular radars, electronic warfare systems (such as radar detectors and radar jammers) as well as communication systems or other multifunction systems.
A said array antenna comprises a plurality of antennas may be of the planar type, ie the printed circuit type often called patch antennas. Technology planar antennas allows for very thick antennas instructions by making the radiating elements by etching metal patterns on a dielectric layer provided with a metallic ground plane on the rear panel. This technology leads to phased array antennas very compact guidelines easier to perform and less expensive than the Vivaldi type antennas.
An active antenna conventionally comprises a set of antenna elements each comprising a substantially planar radiating element coupled to a transmit / receive module (or T / R circuit for "transmit / receive receiving circuit" in English). During transmission, the transmit / receive module adjusts the phase and amplifies an excitation signal received from a centralized signal generation electronics and applies the drive signal to the radiating element. In reception, the transmit / receive module amplifies a reception signal, low-level, received by the radiating element, adjusts the phase and transmits it to a despreading circuit that transmits it to a centralized acquisition circuit .
In radar applications especially, there is a need to work with major powers.
However, the powers available are limited by the properties of the technologies used for the realization of the radiating elements. In particular, the MMIC technology (for "Monolithic Microwave Integrated Circuit" in English or monolithic microwave integrated circuit) conventionally used are characterized by maximum powers limited beyond which it is desirable to work for the applications mentioned above .
An object of the invention is to overcome this problem
To this end, the invention relates to an antenna element comprising a planar radiating device comprising a substantially planar radiating element having a center, the plane containing the radiating element being defined by a first straight line passing through the center and a second straight line perpendicular to the first line and passing through the center, said radiating element comprising a plurality of pairs of the excitation points arranged in at least a first quadruplet excitation points, located at a distance from the first straight line and the second straight line, comprising a first pair composed of excitation points disposed substantially symmetrically with respect to said first straight line and a second pair composed of pointsexcitation disposed substantially symmetrically with respect to said second straight line, the antenna element comprising a plurality of processing circuits capable of delivering differential excitation signals for exciting the excitation points and / or suitable shaping of signals from the excitation points, each pair of excitation points are coupled to a processing circuit so that the processing circuitry is adapted to excite the pair of excitation points differentially and / or processing signals differential from the pair of points.excitation and / or suitable shaping of the signals from the excitation points, each pair of excitation points are coupled to a processing circuit so that the processing circuitry is adapted to excite the pair of the excitation points differentially and / or treating of the difference signals from the pair of points.excitation and / or suitable shaping of the signals from the excitation points, each pair of excitation points are coupled to a processing circuit so that the processing circuitry is adapted to excite the pair of the excitation points differentially and / or treating of the difference signals from the pair of points.
According to particular embodiments, the antenna element according to the invention comprises one or more of the following characteristics, taken in isolation or according to all technically possible combinations:
- the elementary antenna comprises transmitting in phase shifting means for introducing a first phase shift in transmission between a first excitation signal applied to the first pair of points of excitation and a second excitation signal applied to the second pair excitation and / or reception point phase shifting means for introducing a first phase difference in reception between a first reception signal from the first pair of excitation points and a second reception signal from the second pair excitation points
- the excitation points of the first quadruplet of excitation points are arranged so that the impedance of the radiating device measured between the points of each pair of the first quadruplet points excitation points is the same,
- excitation of the points of the first pair of points are located on the same side of a third line in the plane containing the radiating element, the third straight line passing through the center and being a bisector of the first straight line and second straight line,
- the radiating element has a substantially rectangular shape, the first straight line and the second straight line being parallel to the sides of the rectangle,
- the radiating element comprises a second quadruple of excitation points away from the first straight line and the second line comprising:
- a third pair made up of excitation points disposed substantially symmetrically with respect to said first straight line, points of the third pair of points being arranged on the other side of the second straight line with respect to the first pair of points 'excitation,
- a fourth pair consisting of excitation points disposed substantially symmetrically with respect to said second straight line, points of the fourth pair of points being arranged on the other side of the first right with respect to the second pair of points 'excitation,
- the excitation points of the second quadruple of excitation points are arranged so that the impedance of the radiating device measured between the points of each pair of excitation points of the second dot quadruplet is the same,
- the third pair is symmetrical to the first pair relative to the second straight line and wherein the fourth pair is symmetrical to the second pair relative to the first straight line,
- the elementary antenna comprises transmitting in phase shifting means for introducing a first phase shift in transmission between a first excitation signal applied to the first pair of points of excitation and a second excitation signal applied to the second pair points of excitation and a second phase shift transmission which can be different from the first phase shift transmission, between a third excitation signal applied to the third pair of the excitation point and a fourth excitation signal applied to the fourth pair excitation and / or reception point phase shifting means for introducing a first phase difference in reception between a first reception signal from the first pair of pointsexcitation and a second reception signal from the second pair of excitation points and a second phase shift in reception, which can be different from the first phase difference in reception between a third receiving signal applied to the third pair of the excitation point and a fourth receiving signal applied to the fourth pair of excitation points
- each pair of points of excitation is coupled to a transmit path configured to excite the pair of excitation points differentially, the transmission channels coupled to the first quartet of points being able to excite the first quadruplet points by means of a separate frequency of a frequency signal to which the transmission paths coupled to the second quadruplet points are adapted to excite the second quadruple points.
The invention also relates to an antenna comprising a plurality of elementary antennas according to the invention, wherein the radiating elements form an array of radiating elements.
Advantageously, the antenna comprises emission pointing phase shifting means used to introduce the first overall phase shifts in emission between the excitation signals applied to the first quadruplets points of respective antenna elements and second overall phase shifts in emission between the excitation signals applied to the second quadruplets points of respective antenna elements, the first and second phase shifts in overall transmission may be different, and / or comprising means for receiving in phase shift pointing it possible to introduce the first overall phase shifts in reception between the excitation signals applied to the first quadruplets points of the elementary antennas
and respective second overall phase shifts in reception between the excitation signals applied to the second quadruplets points of respective antenna elements, the first and second overall phase shifts in reception to be different.
Other features and advantages of the invention will become apparent from reading the following detailed description, given by way of example and with reference to the accompanying drawings in which:
1 schematically shows an antenna element according to a first embodiment of the invention,
2 shows an antenna element in a side view, FIG 3 shows a table of different polarizations can be obtained by the system of Figure 1, Figure 4 shows schematically an antenna element according to a second embodiment of the invention,
5 schematically represents an antenna element according to a third embodiment of the invention,
6 schematically represents the polarizations can be obtained by the system of Figure 5.
From one figure to another, the same elements are identified by the same references.
In Figure 1, an antenna element is shown 1 according to a first embodiment of the invention.
The antenna element comprises a planar radiating device 10, shown in Figure 1, comprising a radiating element 1 substantially one plane extending substantially in the plane of the sheet, comprising a center C. The planar radiating device is a planar antenna better known under the name patch antenna.
The invention also relates to an antenna comprising a plurality of elementary antennas according to the invention. The antenna may be of the grating type. The radiating elements 1 1 where the planar radiating devices 10 of the antenna elements form a network of radiating elements. The antenna is preferably an active antenna.
The planar radiating device 10 form a stack as shown in Figure 2. It comprises a radiating element 1 1, substantially plane, disposed above a layer forming the ground plane 12, a gap is provided between the element radiating 1 1 and the ground plane 12. This interval includes for example an insulating layer 13 electrically for example made of a dielectric material. Preferably, the radiating element 1 1 is a plate made of conductive material. Alternatively, the radiating member 1 1 has a plurality of stacked metal plates. It conventionally has a square shape. Alternatively, the radiating element has another shape, for example a disc-shaped or other parallelogram such as a rectangle or a rhombus. Whatever the geometry of the
The antenna comprises feed lines 51a, 51b, 52a, 52b, 53a, 53b, 54a and 54b coupled with the radiating element 1 in one of the excitation points 1 + 1 -, 2+, 2 -, 3+, 3-, 4+, 4- and included in the radiating element 1 January. This coupling allows excitation of the radiating element 1 January.
The coupling is for example realized by electromagnetic coupling slot. The planar radiating device 10 then comprises a feed plane 16 visible in Figure 2 carrying the ends of the feed lines 51a, 51b, 52a, 52b, 53a, 53b, 54a and 54b. 6 is plane 1 are advantageously separated from the ground plane 12 by a layer of insulating material 17, for example a dielectric. The planar radiating device 10 also includes a plurality of slots. Each slot is formed in the layer forming the ground plane. One end of each line 51a, 51b, 52a, 52b, 53a, 53b, 54a, 54b is disposed so as to overlap a corresponding slot by below, the radiating member 1 1 is located above the layer forming the ground plane 12. the excitation point 1 + 1 -, 2+, 2-, 3+, 3-, 4+, or 4 is then located to the right of the slot and the corresponding end. In Figure 1, the projections of the slots are shown by dotted lines and each have a rectangular shape. These projections are not represented in the other figures for clarity. Each slot is provided for a pair of excitation points. Alternatively, the device comprises a slot through excitation point. The slots are not necessarily rectangular, other shapes can be considered. Each slot is provided for a pair of excitation points. Alternatively, the device comprises a slot through excitation point. The slots are not necessarily rectangular, other shapes can be considered. Each slot is provided for a pair of excitation points. Alternatively, the device comprises a slot through excitation point. The slots are not necessarily rectangular, other shapes can be considered.
Alternatively, the coupling is achieved by electrically connecting the end of the line to an excitation point of the radiating element. For example, at the end of the power machine, the excitation current flows to the radiating element through the insulating material, for example by means of a metallized via for connecting the end of the line a pin on the back of the radiating element at the point of the right to excite. The coupling can be effected on the same plane of the planar radiating element or "patch" by attacking by a printed microstrip line or "microstrip", connected to the edge of the radiating element. The excitation point is then located at the end of the supply line. The
The coupling may be performed in the same way or differently for the various excitation points.
According to the invention, to optimize power, one duplicates the excitation points. In the example of Figure 1, the radiating element 1 1 thus comprises four pairs of excitation points 1 + 1 -; 2+, 2-; 3+ and 3- and 4+, 4-.
The plane of the radiating member 1 1 is defined by two orthogonal directions. These two directions are the right first D1 and second D2 right. Each of these orthogonal directions through the center C.
According to the invention, the radiating element 1 1 comprises a first quadruple of excitation points are all located remotely of the lines D1 and D2, that is to say which are excluded from these straight lines D1 and D2, said first quadruplet points comprising:
- a first pair of excitation point 1 + 1 - made up of an excitation point + 1 and an excitation point 1 - arranged substantially symmetrically with respect to the first straight line D1,
- a second pair of excitation 2+ points consisting of a 2- 2+ excitation point and 2- excitation point substantially symmetrical to one another relative to the second straight line D2 .
The radiating element 1 1 comprises a second quadruple of excitation points are all located remotely straight D1 and D2, the second quadlet of points comprising:
- a third pair of 3+ excitation points, 3- composed of a 3+ excitation point and a 3- excitation point arranged substantially symmetrically with respect to the first straight line D1, the excitation point 3+ and 3- of the third pair of points being arranged on the other side of the second straight line D2 relative to the first pair of excitation points 1 + 1 -,
- a fourth pair of excitation points 4+, 4- comprising a 4+ excitation point and 4- excitation point arranged substantially symmetrically with respect to the second straight line D2, the excitation point 4+ and 4- the fourth pair of points being arranged on the other side of the straight first D1 relative to the second pair of excitation 2+ points 2.
In other words, the points of each pair occupy substantially symmetrical positions to each other with respect, either D1 or D2. In other words, the points of each pair are substantially symmetrical to one another by orthogonal symmetry axis D1 or D2.
excitation points of the two quadruples of points are distinct. In other words, two quadruplets of points present no common excitation points. The various pairs do not have in common excitation points.
The excitation points of each pair of excitation points are arranged so as to be capable of being excited differentially, that is to say by means of two opposite signals. To this end, the points of a same pair of excitation points are arranged so as to have identical impedances measured with respect to ground.
Thus, in the non-limiting examples of the figures, the lines D1 and D2 are parallel to the respective sides of the square formed by the plane of the radiating element 1 1, the distance separating the points of each pair are identical.
The antenna element 1 also comprises a transmitting module and receiving 20 as shown in Figure 1 in particular. The module transmit / receive 20 of Figure 1 comprises four electronic circuits of transmission / reception 21-24.
The circuits 21 to 24 are arranged between, on the one hand, generating circuits of microwave signal and / or circuits for acquiring and processing, centralized, and secondly the power supply lines.
Each pair of one excitation points + 1 -; 2+, 2-; 3+, and 4+ 3-, 4- coupled to the excitation circuit 21, 22, 23 or respectively 24 by means of a transmission line comprising two supply lines 51a, 51b; 52a, 52b, 53a, 53b or respectively 54a, 54b each having one end coupled to one of the excitation points or 1 + 1 -; 2+ or 2; 3+ and 4+ or 3-or 4-component pair. Each transmission line can convey a differential signal from / to the associated circuit.
Each circuit 21, 22, 23 or 24 is coupled to a pair of excitation point so as to be adapted to apply a differential excitation signal to one of the pairs of points of excitation and gain of the differential reception signals from of the pair of excitation points through the line. Advantageously, each circuit is configured to apply a differential excitation signal pairs to respective excitation points.
In non-limiting examples of the figures, four transmitting / receiving circuits 21 to 24 are identical.
The transmitting / receiving circuits 21 to 24 are advantageously made in MMIC technology. Preferably, a SiGe (Silicon Germanium) is used, but a GaAs technology (Gallium Arsenide) or GaN (Gallium Nitride) might as well be used. Advantageously, but not limited to, as illustrated in Figure 1, the transmission / reception circuits of a same elementary antenna are formed on the same substrate to constitute a single circuit 20. This variant has a reduced size to facilitate the integration of the circuit 20 to the rear of the planar radiating device 10.
Each transmitting / receiving circuit 21, 22, 23 and 24 respectively comprises, in the example of Figure 1, a transmission channel 1 10 coupled to a pair of points of excitation and being intended to deliver signals excitation for exciting the pair of excitation points and a reception path 120 adapted to shape the reception signal from the pair of excitation points. Each of these chains is coupled to a pair of points by means of one of the pairs of supply lines 51a, 51b; 52a, 52b; 53a, 53b and 54a respectively 54b via a switch 121 a, 121 b,
121 c, and 121 d respectively. The feed lines are formed by conductors that is to say runs.
The tracks are for example slopes granted frequency.
Each circuit may be a transmitting and / or receiving circuit circuit. It may include a transmission channel and / or a reception channel.
Each channel is designed to have optimal performance when it is loaded (the output to the transmission channel or input for the receive path) by a well-defined optimal impedance; it degraded performance when charged by a different impedance to its optimum value. Advantageously, the points are positioned and coupled to the radiating device so that for each circuit 21 to 24, the transmission channel 1 10 and / or the receive path 120 is loaded on its optimal impedance.
The optimum impedance of input or output of a channel is substantially the optimum input of the amplifier input impedance of this path or respectively the optimal output impedance of the output amplifier of this pathway .
Advantageously, the impedance loaded onto a circuit 21, 22, 23 or 24 is the impedance of the chain formed by each supply line connecting the radiating device to the circuit 21, 22, 23 or 24 and the radiating device between these lines. Therefore, the proposed solution optimizes consumption in transmit mode, and / or improve the noise factor, the receive mode. Therefore, it is possible to avoid having to make a compromise at the impedance matching can be costly performance or avoid to provide an impedance transformer at least one way .
Advantageously, but not necessarily, the dots are positioned and coupled to the radiating device so that the impedance of the radiating device 10 measured between two points of a pair of the excitation points, called differential impedance is substantially the conjugate of a impedance of the transmission / reception circuit 21, 22, 23 or 24 on the side of the radiating device, that is to say substantially the conjugate of an output impedance of a transmission channel and / or a receive path input impedance of the transmitting / receiving circuit 21, 22, 23 or 24 coupled to the pair of points. The transmit and receive paths will be described later.
The output impedance of a transmission channel is substantially an output impedance of the channel output amplifier. The output impedance of a receiving channel is substantially an input impedance of a path input amplifier.
The possibility of adjusting the impedance and avoids use of the component to fit, for impedance transformation, the impedance between the transmitting / receiving circuits 21 to 24 and the radiating device 10. This saving of components involved in improving the power efficiency of the transmitting and / or receiving the entire power output of a transmission channel and / or receiving being applied to the radiating means. Furthermore, the radiating device impedance matching that of the drive circuit limits the current and the maximum power to be generated. Alternatively, an impedance transformation device is provided between the radiator 10 and the transmission / reception circuit 20 to adapt the impedance of the radiating device between the two points of the pair of points in the transmission channel output impedance and / or the output impedance of the receive channel. The ability to adjust the impedance of the points still facilitates impedance matching.
Advantageously, the excitation points of the respective pairs 1 + and 1 - or 2- or 2+ and 3+ and 4+ 3- or 4- and are disposed so that impedance of the radiating device 10 presented to a transmitting circuit / reception 21-24 between the excitation points of the pair of the excitation points coupled to the transmitting / receiving circuit is the same for all the pairs of excitation points.
This impedance is, for example, without limitation, 50 ohms. This impedance may be different from 50 ohms, it may depend on the technology and the class of employees amplifiers in the transmit / receive circuitry.
The points of the two quadruplets of points have the same impedance. For this purpose, in the example of the figures, the first and third pair of each set are symmetrical to each other relative to the straight line D2 and the second and fourth pair of each
together are symmetrical to each other relative to the straight line D1. Thus, the excitation points of each pair of points are preferably located at substantially the same distance D from the center C and the points of point pairs are separated by the same distance. Alternatively, the impedances of the radiating device between the respective pairs of points are not all identical. For example, in one embodiment, the points are arranged so that the impedances formed by the radiating device between the pairs of points 1 +; 1 - and 2+, 2 are identical and so that the impedances formed by the radiating device between the pairs of 3+ excitation points and 4+ 3-, 4- are the same but different from those formed among the Points 1 +; 1 - and 2+, 2-. To this end, the points 1 + 1 -; 2+
In the embodiment of Figure 1, in transmission, an excitation signal SE applied by generation electronics an input microwave signal of circuit 20 is divided into four elementary excitation signals input routes of transmission 1 10 respective transmitting / receiving circuits 21 to 24. the four elementary excitation signals are identical to the relative phases and amplitudes near optionally. The module 20 includes a splitter 122 for dividing the excitation signal SE in common two excitation signals, can be asymmetric or symmetric (that is to say, differential or balanced) respectively injected at the input of phase shifters of respective transmission 25, 26. Each phase shifter 25, 26 outputs a differential signal or asymmetric.
transmitting the channels comprise at least one amplifier 1 14 for amplifying the excitation signal SE. The transmission channels include eg a high power amplifier 1 14 in the radar applications and electronic warfare.
Each route of transmission 1 10 supplies a differential signal. These signals are applied to respective pairs of lines 51a and 51b, 52a and 52b, 53a and 53b, 54a and 54b for driving the pairs of respective excitation points. This allows for a differential excitation respective pairs of excitation points. The points of a same pair are then excited by means of opposed signals.
The respective January 10 transmission channels are advantageously coupled to respective excitation points so that the elementary waves excited by the first circuit 21 and the third circuit 23 are polarized in the same direction and so that the elementary waves excited by the second circuit 22 and the fourth circuit 24 are polarized in the same direction. In other words, the electric fields of the excitation signals applied to the first and third pair of excitation points 1 + 1 -, 3+, 3 have the same meaning. Thus these two pairs of points can deliver the same signal at two points from excited asymmetrically. The power to be delivered by the amplifier 1 14 is thus divided by two and the current to be supplied by this amplifier is then divided by square root of two. The ohmic losses are therefore lower and it is easier to make two amplifiers January 14 lower power one amplifier delivering the power. Likewise, the electric fields of the excitation signals applied to the second and fourth pair of 2+ excitation points 2-, 4+, preferably 4-have the same meaning.
The transmission / reception module 20 includes phase shifting means in transmission 25, 26 comprising at least one phase shifter for introducing a first phase, said first phase shift in emission between the signal applied to the first pair 1 + 1 - and the signal applied to the second pair 2+, 2- and introduce the same first transmission phase shift between the signal applied to the pair 3+, 3-, and the signal applied to the pair 4+, 4-. Elementary excitation signals injected transmitting path input in 1 10 of first circuit 21 and circuit 23 are in phase. Elementary excitation signals injected transmitting path input in 1 10 of the second circuit 22 and the fourth circuit 24 are in phase.
Advantageously, the first phase shift transmission is adjustable. The array antenna preferably comprises an adjusting device 35 for adjusting the first phase shift in emission so as to introduce a first phase shift by predetermined transmission.
Each pair of points of excitation generates a wavelet.
With the first phase shift transmission, the elementary waves emitted by the pairs 1 + 1 - and 3+, 3 are out of phase with respect to the elementary waves emitted by pairs 2+, 2- and 4+, 4-. Recombinantly in air elementary wave, we obtain a total wave which it is possible to vary the polarization by varying the first phase shift transmission. Examples of relative phases between the transmission signals injected on the lines coupled to the respective coupling points are given in the table of FIG 3 and the obtained polarizations. The vertical polarization is polarization along the z shown in Figure 1 axis. Colon excited in phase opposition, separated by 180 °, have voltages of opposite instantaneous excitation. For exemple, the first line of the table of Figure 3 illustrates the case where the coupled lines in points 1 +, 2+, 3+, 4+ are brought to the same voltage lines and coupled in points 1 -, 2-, 3- , 4 are brought to the same voltage, opposite to the previous one. The voltage differential is then symmetrical relative to the straight line D3. The polarization is oriented along this straight, vertically oriented. Linear polarization at + 45 ° is obtained by exciting only the pair 1 + 1 - and the pair 3+, 3- with differential excitation signals in phase without exciting pairs 2+, 2- and 4+, 4 -. This is for example achieved by adjusting the gain of the power amplifiers 1 14 of the circuits 22 and 24 so that they deliver a zero power. To this end, the amplifiers have a variable gain and the gain adjustment means. In the example of the fifth line, the phase shifts between the points remain the same over time. The evolution of the phases over time produces a right circular polarization.
En réception, des signaux de réception reçus par les paires de points d'excitation respectifs 1 + et 1 -, 2+ et 2-, 3+ et 3- , 4+ et 4- sont respectivement appliqués en entrée des voies d'émission 120 des circuits d'excitation respectifs 21 , 22, 23, 24. La voie de réception 120 de chacun des circuits comporte des moyens de protection, tels qu'un limiteur 1 17, et au moins un amplificateur 1 18, tel qu'un amplificateur faible bruit dans les applications de guerre électronique. La voie de réception 120 comporte également un combineur 1 19 permettant de combiner des signaux de réception élémentaires issus des deux lignes 51 a et 51 b ou 52a et 52b ou 53a et 53b ou 54a et 54b reliées à la voie en appliquant un déphasage de 180° à un des signaux. En variante, la voie de réception transmet un signal différentiel à un déphaseur.
Les signaux de réception élémentaires sortant de la voie de réception 120 du premier circuit 21 et de la voie de réception 120 du troisième circuit 23 sont injectés en entrée d'un premier déphaseur de réception 29 et les signaux sortant de la voie de réception 120 du deuxième circuit 22 et de la voie de réception 120 du quatrième circuit 24 sont injectés en entrée d'un deuxième déphaseur de réception 30. Ces déphaseurs 29, 30 permettent d'introduire un premier déphasage en réception entre les signaux de réception délivrés par les voies de réception 120 des premier et troisième circuits 21 , 23 et ceux délivrés par les voies de réception des deuxième et quatrième circuits 22, 24. Ces déphaseurs de réception 29, 30 comprennent, de façon non limitative, chacun un sommateur effectuant la somme des signaux qui sont injectés en entrée du déphaseur. Les signaux de réception sortant des déphaseurs de réception 29, 30 sont sommés au moyen d'un sommateur 220 du module 20, avant que le signal de réception résultant SS ne soit transmis vers l'électronique d'acquisition déportée.
Ainsi, le module d'émission/réception 20 comprend des moyens de déphasage en réception 29, 30 permettent d'introduire un premier déphasage en réception entre des signaux de réception issus des paires 1 +, 1 - et 2+, 2- et entre les signaux de réception issus des paires 3+, 3- et 4+, 4-. Sur la réalisation non limitative de la figure 1 , ces moyens sont situés en sortie des voies de réception 120.
Avantageusement, le premier déphasage en réception est réglable. Le dispositif comprend avantageusement un dispositif de réglage permettant de régler le déphasage en réception qui est le dispositif 35 sur la réalisation non limitative de la figure 1 .
Avantageusement, les premiers déphasages en réception et en émission sont identiques. Cela permet de réceptionner des ondes élémentaires présentant les mêmes phases que les ondes élémentaires
émises et ainsi de faire des mesures sur une onde de réception totale présentant la même polarisation que l'onde totale émise par l'antenne élémentaire. En variante, ces phases peuvent être différentes. Elles peuvent être avantageusement réglables de façon indépendante. Cela permet d'émettre et de recevoir des signaux présentant des polarisations différentes.
En variante, le nombre de déphaseurs est différent et/ou les déphaseurs sont disposés ailleurs que ce soit en entrée des voies d'émission ou en sortie des voies d'émission.
Avantageusement, l'antenne comprend des moyens de déphasage dits de pointage permettant d'introduire des déphasages globaux réglables entre les signaux d'excitation appliqués sur les points des antennes élémentaires respectives de l'antenne et/ou entre des signaux de réception issus des points des antennes élémentaires respectives de l'antenne.
Dans l'exemple non limitatif de la figure 1 , ces moyens comprennent un dispositif de commande 36 générant un signal de commande à destination des moyens de réglage 35 ainsi que les déphaseurs. Le dispositif de commande 36 génère un signal de commande comprenant un premier signal S1 commandant l'introduction du premier déphasage en émission et en réception (qui est le même dans le cas de la figure 1 ) et un signal global Sg commandant l'introduction déphasage global à appliquer sur les signaux reçus en entrée de chaque déphaseur. Le déphasage global peut commander l'introduction d'un même déphasage global sur les signaux d'excitation élémentaires respectifs et sur les signaux de réception élémentaires respectifs provenant de l'élément rayonnant. Ce déphasage global permet, par recombinaison des ondes totales émises par les antennes élémentaires du réseau, de choisir la direction de pointage de l'onde émise par l'antenne et de l'onde mesurée par l'antenne. En variante, le dispositif de commande 36 reçoit des signaux de commande différentes pour commander l'introduction des déphasages en émission et en réception (premiers déphasages et déphasages globaux). On peut ainsi contrôler de façon indépendante les polarisations et les directions de pointage des ondes émises et mesurées. Le balayage électronique d'une antenne réseau repose sur les déphasages appliqués sur les antennes élémentaires constitutives du réseau, le balayage étant déterminé par une loi de phase.
L'antenne élémentaire comprend avantageusement des moyens de commutation permettant de diriger les signaux de sortie des circuits 21 à 24 vers le dispositif 10 et un signal de réception en entrée la voie de réception de chacun des circuits.
Sur la réalisation non limitative de la figure 1 , ces moyens de commutation comprennent un interrupteur commandé 121 a, 121 b, 121 c, 121 d de manière à basculer ledit circuit 21 , 22, 23 et 24 respectivement, soit dans le mode de fonctionnement en émission, en connectant la voie d'émission 1 10 des circuits 21 , 22, 23, 24 aux lignes 51 a, 51 b ; 52a, 52b ; 53a, 53b ; 54a, 54b, soit dans un mode de fonctionnement en réception, en connectant les voie de réception 120 des circuits aux lignes 51 a, 51 b ; 52a, 52b ; 53a, 53b ; 54a, 54b.
En variante, chaque circuit d'excitation comprend un circulateur électronique relié à la paire de points d'excitation correspondante ainsi qu'à la voie d'émission et à la voie de réception du circuit. Les circuits fonctionnent alors simultanément en émission et en réception.
Le dispositif selon l'invention présente de nombreux avantages.
Chaque circuit 21 à 24 est propre, en émission, à appliquer un signal différentiel et, en réception à acquérir un signal différentiel, c'est-à-dire un signal équilibré ou « balanced » en terminologie anglo-saxonne. Le circuit opérant déjà sur les signaux différentiels permet d'éviter d'avoir à interposer un composant, tel qu'un balun (pour « balanced unbalanced transformer ») pour passer d'un signal différentiel à un signal asymétrique. Or, un tel composant intermédiaire dégrade le rendement en puissance. Le rendement en puissance du dispositif est donc amélioré.
Pour fonctionner avec des puissances élevées, l'invention utilise des circuits d'émission/réception couplés à quatre accès de polarisation en quadrature deux à deux, chaque circuit fonctionnant à une puissance nominale compatible avec la puissance maximale acceptable par la technologie mise en œuvre pour le fabriquer.
La puissance des ondes électromagnétiques émises ou reçues par le moyen rayonnant peut donc être supérieure à la puissance nominale de fonctionnement du circuit couplé à cette paire de points d'excitation. Chaque paire de points d'excitation de l'élément rayonnant excités de façon différentielle génère une onde élémentaire. L'antenne travaille en double
différentiel à l'émission et à la réception. La puissance de l'onde élémentaire émise par la paire de points d'excitation est deux fois plus importante que la puissance nominale en émission du circuit d'émission.
Ceci est particulièrement avantageux lorsque la puissance nominale est proche de la puissance maximale autorisée par la technologie mise en œuvre pour la réalisation des circuits d'excitation. Bien qu'au niveau de chaque circuit d'excitation la puissance reste au-dessous de la puissance maximale, l'antenne élémentaire permet d'émettre des ondes à une puissance supérieure.
Le choix de la technologie du dispositif rayonnant fixe la tension à appliquer aux points d'excitation. Plus la tension est élevée et plus le courant est faible à puissance et impédance égale et plus les pertes ohmiques sont faibles. Pour une impédance identique, la division de la puissance de sortie par deux entraîne une division du courant par racine carrée de deux. La solution proposée faisant la somme de la puissance directement sur le patch ou élément rayonnant 1 1 , les pertes ohmiques sont donc grandement diminuées.
Comme précisé précédemment, la sommation d'énergie est réalisée directement au niveau des points d'excitation. Il n'est donc pas nécessaire, pour émettre quatre fois plus de puissance, de prévoir des circuits présentant des amplificateurs quatre fois plus puissants. Il n'est pas non plus nécessaire, de sommer à l'extérieur du moyen rayonnant des signaux issus d'amplificateurs de puissance limitée, par exemple au moyen de sommateurs en anneau ou de Wilkinson. L'invention permet de limiter le nombre de lignes utilisées ainsi que les pertes ohmiques dans les conducteurs et par conséquent la puissance générer pour compenser ces pertes. Il n'est pas non plus nécessaire, pour limiter les pertes, de faire les sommations d'énergie dans les MMIC. Si les sommations sont faites dans les MMICs, les pertes sont à dissiper dans cet endroit déjà critique. L'échauffement de l'antenne et les pertes ohmiques se trouvent ainsi réduits.
Par ailleurs, la recombinaison dans l'espace des quatre ondes élémentaires émises par l'élément rayonnant conduit à une onde totale dont la puissance est quatre fois plus importante que la puissance de chaque onde élémentaire.
En réception, l'onde totale incidente est décomposée en quatre ondes élémentaires transmises vers les circuits d'excitation respectifs. Une onde élémentaire possède une puissance quatre fois plus faible que l'onde totale incidente. Cela permet à l'antenne d'être plus robuste vis-à-vis des agressions extérieures, telles que les illuminations de l'antenne par un dispositif réalisant un brouillage intentionnel ou non. Les risques de détérioration de l'amplificateur faible bruit sont limités. Par exemple, les agressions des champs forts seront réduites, par le fait que les signaux élémentaires ne sont pas reçus dans la polarisation optimale mais à 45° (lorsque les émissions sont soit en polarisation Horizontale ou Verticale mais pas en oblique). L'antenne de la figure 1 permet de faire des mesures en polarisation croisée, une émission en polarisation Horizontale et une réception en polarisation Verticale par exemple en n'appliquant pas les mêmes premiers déphasages en émission et en réception.
Par ailleurs, en excitant les points d'excitation de chaque paire de façon différentielle, c'est-à-dire équilibrée, chaque paire de points émet une onde élémentaire en polarisation linéaire. En appliquant un déphasage entre le signal d'excitation de la première paire de points 1 +, 1 - et de la troisième paire de points 3- , 3+ et les signaux d'excitation de la deuxième paire de points 2+, 2- et de la quatrième paire de points 4+, 4- orthogonales à la première et à la troisièmes paire de points, l'élément rayonnant 1 1 est apte à générer à lui seul une onde polarisée par recombinaison dans l'espace des quatre ondes élémentaires.
Cela permet d'éviter l'utilisation de commutateurs de sélection de polarisation interposés entre le circuit d'émission/réception et l'élément rayonnant pour choisir une direction dans laquelle l'élément rayonnant doit être excité. Cela permet également de connecter directement le circuit d'émission/réception aux points d'excitation et ainsi d'augmenter le rendement de puissance, c'est-à-dire de limiter les pertes. L'échauffement de l'antenne élémentaire est ainsi réduit.
Sur la figure 4, on a représenté un deuxième exemple d'antenne élémentaire 200 selon l'invention.
Le dispositif rayonnant planaire 10 est identique à celui de la figure 1 . L'antenne comprend les mêmes circuits d'émission/réception 21 à 24
couplés de la même manière que sur la figure 1 aux paires de points d'excitation respectives 1 +, 1 - ; 2+, 2- ; 3+, 3- et 4+, 4-.
En revanche, le module d'émission/réception 222 se distingue de celui de la figure 1 . Il comprend des moyens de déphasage en émission comprenant au moins un déphaseur permettant d'introduire un premier déphasage en émission Θ1 entre les signaux d'excitation appliqués sur les paires de points d'excitation 1 +, 1 - et 2+, 2- et un deuxième déphasage en émission Θ2 entre les signaux d'excitation appliqués sur les paires de points 3+, 3- et 4+, 4-, ces deux déphasages en émission pouvant être différents. Cela permet d'émettre des ondes présentant des polarisations différentes au moyen des deux quadruplets de points.
Dans l'exemple non limitatif représenté sur la figure 4, ces moyens de déphasage en émission comprennent un premier déphaseur d'émission 125a et un deuxième déphaseur d'émission 125b recevant un même signal, éventuellement à une amplitude près, et introduisant chacun un déphasage sur le signal reçu de sorte à introduire le premier déphasage en émission entre les signaux d'excitation appliqués à la paire 1 +, 1 - et à la paire 2+, 2-. Les moyens de déphasage comprennent un troisième 126a et un quatrième 126b déphaseurs d'émission recevant un même signal, éventuellement, à une amplitude près, et appliquant chacun un déphasage sur le signal de sorte à introduire le deuxième déphasage entre les signaux d'excitation appliqués sur la paire 3+, 3- et sur la paire 4+, 4-. Le premier et le deuxième déphasage en émission peuvent être différents. Les signaux d'excitation issus des déphaseurs 125a et 125b sont injectés respectivement en entrée des circuits 21 et 22. Les signaux d'excitation issus des déphaseurs 126a et 126b sont injectés respectivement en entrée des circuits 23 et 24. On peut ainsi émettre simultanément deux faisceaux présentant des polarisations différentes au moyen des deux quadruplets de points.
Le module d'émission/réception 222 comprend des moyens de déphasage en réception 129a, 129b, 130a, 130b permettant d'introduire un premier déphasage en réception entre les signaux d'excitation appliqués sur les paires de points d'excitation 1 +, 1 - et 2+, 2- et un deuxième déphasage en réception Θ2 entre les signaux d'excitation appliqués sur les paires de points 3+, 3- et 4+, 4-, ces deux déphasages pouvant être différents. Les signaux de réception sortant des voies de réception des circuits respectifs 21 à 24 sont injectés dans des déphaseurs de réception respectifs 129a, 129b, 130a, 130b permettant chacun d'introduire un déphasage sur le signal qu'il reçoit. Chaque signal de réception est injecté dans un des déphaseurs.
Advantageously, the phase shifts introduced between the excitation or receive signals of points 1 pair + 1 - and 2+, 2- and between pairs 3+, and 4+ 3-, 4- are identical. Alternatively, these phase shifts may be different. This allows transmit and receive two waves whose polarizations may be different.
Advantageously, the phase shifts are adjustable.
Advantageously, the phase shifts introduced between the transmission signals or reception from pairs of points 1 + 1 - and 2+, 2- and between pairs 3+, and 4+ 3-, 4-, may advantageously be adjusted so independent. independently then one can adjust the polarizations of elementary waves transmitted or measured by the first quadruplet points 1 + 1 -, 2+, 2- and by the second quadruplet 3+ points 3-, 4+, 4- .
The array antenna preferably comprises an adjusting device 135 for adjusting the phase shifts in transmission and in reception.
2- respective elementary antennas and second phase shifts in overall reception between the receiving signals from the second quadruplets 3+ points 3-, 4+, 4- respective elementary antennas of the array, the first and second overall phase shifts in reception may be different. It is then possible to simultaneously emit two beams in two different directions.
Advantageously, the overall phase shifts in transmission and / or reception are adjustable.
Advantageously, the overall phase shifts in transmission and / or reception are adjustable independently. pointing directions are adjustable independently.
The device of figure 4 offers the possibility of measuring a beam in one direction and emit a beam in another direction simultaneously or to make two measurements in two directions simultaneously, the control device then receiving various signals for controlling the overall introduction of phase shifts in transmission and in reception. It is possible to transmit and receive a signal in one direction and transmitting a transmit and receive communication in another direction. It is possible to make programs / cross receptions. It is possible to form a receive radiation pattern in transmission or covering the side lobes and diffuse to allow the functions of opposition of secondary lobes (OLS) for protecting the radar of intentional or unintentional interference signals. It is possible to transmit at different frequencies, thereby complicating the task of the radar detectors (ESM "Electronic Support Measures" in English terminology ie Electronic Support Measures).
In the nonlimiting example of Figure 4, these means comprise a control device 136 for generating a control signal to the adjustment device and the phase shifters. The signal generator 136 generates a control signal comprising a first signal S1 controls the introduction of the first phase shift transmission and reception (when identical) and a first global signal S1 g controlling the introduction of a first phase shift overall to be applied to the input signals received from each phase shifter coupled to a pair of the first quadruplet points 1 + 1 -, 2+, 2-. The controller 136 also generates a second signal S2 controlling the introduction of the second phase shift transmission and reception (when they are identical) and a second global signal S2g controlling the introduction of a global phase shift applied to the signals input to each phase shifter coupled to a pair of the second quadruple of 3+ points 3-, 4+, 4- . Alternatively, the controller 136 receives various control signals for controlling the introduction of phase shifts
transmission and reception. independently is thus possible to control the polarization and pointing directions of the waves emitted and each of the measured points quadruplets.
. In the embodiment of Figure 4, transmission of the channels of two quadruplets of points 1 + 1 -, 2+, 3+ and 2-, 3-, 4+, 4- are fed by two sources of different power SO1, SO2. This allows to transmit two waves having different frequencies, one by the first quadruplet points 1 + 1 -, 2+, 2- and the other by the second quadruplet 3+ points 3, 4+, 4-, when the sources deliver E1 and E2 drive signals of different frequencies.
This allows to transmit two waves having different frequencies, one by the first quadruplet points 1 a +, a- 1, 2a + 2a and the other by the second quadruplet points + 3a, 3a, 4a + , 4a, when the sources deliver E1 and E2 drive signals of different frequencies. The antenna of Figure 4 can thus simultaneously transmitting two beams directed along two adjustable pointing directions independently at different frequencies. This possibility of two beams pointing in two directions simultaneously allows a dual beam equivalent: a fast scanning beam and a slow scan beam. For example a slow beam at 10 revolutions per minute, can be used in monitoring and rapid beam mode, at 1 revolution per second, can be used in tracking mode. This scanning mode is not interlaced as in the single beam antennas but can be simultaneous. The possibility of transmitting at different frequencies complicates the task of the radar detectors (ESM: Electronic Support Measures). This also allows a data link in one direction and a radar function in another direction. This embodiment also allows to emit two beams of different shapes. Can emit a narrow beam or a wide beam depending on the number of elementary antennas of the array are excited. Electronic Support Measures). This also allows a data link in one direction and a radar function in another direction. This embodiment also allows to emit two beams of different shapes. Can emit a narrow beam or a wide beam depending on the number of elementary antennas of the array are excited. Electronic Support Measures). This also allows a data link in one direction and a radar function in another direction. This embodiment also allows to emit two beams of different shapes. Can emit a narrow beam or a wide beam depending on the number of elementary antennas of the array are excited.
The transmission / reception module 20 includes a first distributor 21 1a for dividing the excitation signal E1 from the first source SO1 into two identical signals injected at the input of two respective first transmission phase shifters 125a, 125b. The circuit 120
comprises a second distributor 21 1b for dividing the excitation signal E2 from the second source into two identical signals injected at the input of two respective other transmission phase shifters 126a, 126b.
Post reception signals of the reception phase shifters are summed in pairs by means of respective adders 230a, 230b of the module 20. The signals from the respective adders are separately transmitted to the electronic offset acquisition. On the nonlimiting example of FIG 4, the two signals from the first phase shifter 129a receiving input receiving a reception signal from the first pair of lines 51a, 51b and the second phase shifter receiving at its input 129b receiving a reception signal from the second pair of lines 52a, 52b are summed by a first adder 230a for generating a first output signal SS1. The two signals from the third receiving phase shifter 130a receives as input a reception signal from the third pair of Iignes53a, 53b and the fourth phase shifter 130b receiving input receiving a reception signal from the fourth pair of lines 54a, 54b are summed by a second adder 230b to generate a second output signal SS2. The signals from the respective adders are separately transmitted to the electronic offset acquisition. This allows to differentiate between received signals having different frequencies. The signals from the two quadruplets of points being summed separately, it is possible to form a receiving antenna covering the side lobes and diffuse to allow opposition functions of secondary lobes (OLS) for protecting the radar jamming signal intentional or unintentional. a second adder 230b to generate a second output signal SS2. The signals from the respective adders are separately transmitted to the electronic offset acquisition. This allows to differentiate between received signals having different frequencies. The signals from the two quadruplets of points being summed separately, it is possible to form a receiving antenna covering the side lobes and diffuse to allow opposition functions of secondary lobes (OLS) for protecting the radar jamming signal intentional or unintentional. a second adder 230b to generate a second output signal SS2. The signals from the respective adders are separately transmitted to the electronic offset acquisition. This allows to differentiate between received signals having different frequencies. The signals from the two quadruplets of points being summed separately, it is possible to form a receiving antenna covering the side lobes and diffuse to allow opposition functions of secondary lobes (OLS) for protecting the radar jamming signal intentional or unintentional. This allows to differentiate between received signals having different frequencies. The signals from the two quadruplets of points being summed separately, it is possible to form a receiving antenna covering the side lobes and diffuse to allow opposition functions of secondary lobes (OLS) for protecting the radar jamming signal intentional or unintentional. This allows to differentiate between received signals having different frequencies. The signals from the two quadruplets of points being summed separately, it is possible to form a receiving antenna covering the side lobes and diffuse to allow opposition functions of secondary lobes (OLS) for protecting the radar jamming signal intentional or unintentional.
Alternatively, transmission channels and / or receiving associated with the two points may be different quadruplets that is to say have different powers and / or passbands of different widths. We can thus provide high power transmission channels and bandwidth to one of the points quadruplets, to issue such a radar signal, and the transmission channels of lower power and bandwidth for transmitting, for example, interference signals.
Alternatively, both E1 and E2 drive signals have the same frequency. One can thus obtain a more powerful total wave as in the embodiment of Figure 1. It can also emit two beams at the same frequency in two different directions and / or having different polarizations.
In Figure 5, an antenna element 300 is shown according to a third embodiment of the invention.
The antenna element differs from that of Figure 4 in that its radiating element 31 1 comprises only the first quadlet of points 1 + 1 -, 2+, 2-. The transmitting / receiving device 320 associated differs from Figure 4 in that it comprises only part of the transmitting / receiving device coupled to the quadruplet of points 1 + 1 -, 2+, 2-. It comprises only the first circuit 21 and second circuit 22.
The fact to excite the radiating element by two drive signals applied to pairs of excitation points in quadrature to each other makes it possible to symmetrize the transmission pattern / reception antenna element.
This antenna element is adapted to emit a wave whose polarization is adjustable and receiving a wave according to an adjustable polarization direction. Examples of phases of the injected signals on lines coupled to respective coupling points are given in the table of Figure 6 and the resulting polarizations. for example the first line title is considered. Points 1 + and 2+ have the same excitation (same phases) and points 1 - and 2 have the same excitation opposite to that of the other points. The polarization is vertical, that is to say along the z axis shown in Figure 5. The overall phase shift means are also conceivable
This antenna element also allows for array antennas for transmitting a total wave the pointing direction is adjustable.
The power of the wave emitted by the device of Figure 5, however, is twice lower than that emitted by means of the device of Figure 1. Reducing power in reception is two times lower than that of the device of Figure 1.
Advantageously, the excitation points of the elementary antenna of Figure 5 are located on the same side of a straight third D3 located in the plane defined by the radiating member 1 1 passing through the center C and being a bisector of two lines D1 and D2. This frees up a half of the radiating element to realize other types of excitation for example.
When the radiating element is substantially square, as in the figures, the right D3 joined the two vertices of the square.
Advantageously, the first quadlet of items 1 - 1 +, 2+ and 2- antenna of Figures 1 and 4 are also located on the same side of the straight line D3 and the other side of the line D3 from the second quadruplet 3+ points 3-, 4+, 4-.
Of the embodiments of Figures 1, 4 and 5, the transmit / receive circuitry coupled to each pair of bridges are identical. Alternatively, these circuits may be different.
CLAIMS
1. Elementary antenna comprising a planar radiating device (10) comprising a radiating element (1 1) plane having substantially a center (C), the plane containing the radiating element (1 1) being defined by a first straight line (D1) passing through the center (C) and a second right (D2) perpendicular to the first straight line (D1) and passing through the center (C), said radiating element (1 1) comprising a plurality of pairs of the excitation points arranged in at least one first quadruplet excitation points, located at a distance from the first right (D1) and the second right (D2), comprising a first pair composed of excitation points (1 + 1 -) disposed substantially symmetrically with relative to said first straight line (D1) and a second pair composed of the excitation points (2+
2. Elementary antenna according to claim 1, comprising transmitting in phase shifting means for introducing a first phase shift in transmission between a first excitation signal applied to the first pair of excitation points (1 + 1 -) and a second excitation signal applied to the second pair of points of excitation (2+, 2-) and / or reception phase shift means for introducing a first phase difference in reception between a first reception signal from the first pair of excitation points (1 + 1 -) and a second reception signal from the second pair of points of excitation (2+, 2 -) -
3. Elementary antenna according to any preceding claim, wherein the excitation points of the first quadruplet of excitation points are arranged so that the impedance of the radiating device measured between the points of each pair of points excitation of the first quadruplet of points is the same.
4. Elementary antenna according to any preceding claim, wherein the excitation points of the first pair of points are located on the same side of a third straight line (D3) of the plane containing the radiating element, the third straight line (D3) passes through the center (C) and being a bisector of the first straight line (D1) and the second right (D2).
5. Elementary antenna according to any preceding claim, wherein the radiating element has a substantially rectangular shape, the first straight line (D1) and the second right (D2) being parallel to the sides of the rectangle.
6. Elementary antenna according to any one of claims 1 to 5, wherein said radiating element (1 1) comprises a second quadruple of excitation points away from the first right (D1) and the second right (D2 ) comprising:
- a third pair consisting of the excitation points (3+, 3-) arranged substantially symmetrically with respect to said first straight line (D1), the points of the third pair of points (3+, 3-) being arranged the other side of the second right (D2) with respect to the first pair of excitation points (1 + 1 -),
- a fourth pair consisting of the excitation points (4+, 4-) arranged substantially symmetrically with respect to said second straight line (D2), the points of the fourth pair of points (4+, 4-) being arranged the other side of the first right (D1) relative to the second pair of points of excitation (2+, 2-).
7. Elementary antenna according to claim 1, wherein the excitation points of the second quadruple of excitation points are arranged so that the impedance of the radiating device measured between the points of each pair of excitation points of the second quadruplet points is the same.
8. Elementary antenna according to any one of claims 6 to 7, wherein the third pair is symmetrical to the first pair relative to the second straight line and wherein the fourth pair is symmetrical to the second pair relative to the first straight .
9. Elementary antenna according to any one of claims 6 to 8, comprising transmitting in phase shifting means for introducing a first phase shift in transmission between a first excitation signal applied to the first pair of excitation points (1 + 1 -) and a second excitation signal applied to the second pair of points of excitation (2+, 2-) and a second phase shift transmission which can be different from the first phase shift transmission, between a third signal excitation applied to the third pair of the excitation points (3+, 3-) and a fourth excitation signal applied to the fourth pair of the excitation points (4+, 4-) and / or phase shift means allowing reception ofintroducing a first phase difference in reception between a first reception signal from the first pair of excitation points (1 + 1 -) and a second reception signal from the second pair of points of excitation (2+ 2 -) and a second phase shift in reception, which can be different from the first phase difference in reception between a third receiving signal applied to the third pair of the excitation points (3+, 3-) and a fourth reception signal applied to the fourth pair of points of excitation (4+, 4-).between a third receive signal applied to the third pair of the excitation points (3+, 3-) and a fourth receiving signal applied to the fourth pair of the excitation points (4+, 4-).between a third receive signal applied to the third pair of the excitation points (3+, 3-) and a fourth receiving signal applied to the fourth pair of the excitation points (4+, 4-).
10. Elementary antenna according to the preceding claim, wherein each pair of points of excitation is coupled to a transmit path configured to excite the pair of differentially excitation points, the transmission channels coupled to the first quadruplet points being adapted to drive the first quadruplet of points by means of a separate frequency signals of a frequency at which the transmission paths coupled to the second quadruplet points are adapted to excite the second quadruple points.
January 1. Antenna comprising a plurality of elementary antennas according to any preceding claim, wherein the radiating elements form an array of radiating elements.
12. Antenna according to the preceding claim in that it depends on claim 6, including transmitting in pointing phase shifting means used to introduce the first overall phase shifts in emission between the excitation signals applied to the first points of quadruplets and the respective second global phase shifts elementary antennas in transmission between the excitation signals applied to the second quadruplets points of respective antenna elements, the first and second phase shifts in overall transmission may be different, and / or comprising phase shift means receiving by pointing it possible to introduce the first overall phase shifts in reception between signalsexcitation applied to the first quadruplets points of respective antenna elements and second overall phase shifts in reception between the excitation signals applied to the second quadruplets points of respective antenna elements, the first and second overall phase shifts in reception to be different.
| # | Name | Date |
|---|---|---|
| 1 | 201917030095.pdf | 2019-07-25 |
| 2 | 201917030095-TRANSLATIOIN OF PRIOIRTY DOCUMENTS ETC. [25-07-2019(online)].pdf | 2019-07-25 |
| 3 | 201917030095-STATEMENT OF UNDERTAKING (FORM 3) [25-07-2019(online)].pdf | 2019-07-25 |
| 4 | 201917030095-PRIORITY DOCUMENTS [25-07-2019(online)].pdf | 2019-07-25 |
| 5 | 201917030095-POWER OF AUTHORITY [25-07-2019(online)].pdf | 2019-07-25 |
| 6 | 201917030095-FORM 1 [25-07-2019(online)].pdf | 2019-07-25 |
| 7 | 201917030095-DRAWINGS [25-07-2019(online)].pdf | 2019-07-25 |
| 8 | 201917030095-DECLARATION OF INVENTORSHIP (FORM 5) [25-07-2019(online)].pdf | 2019-07-25 |
| 9 | 201917030095-COMPLETE SPECIFICATION [25-07-2019(online)].pdf | 2019-07-25 |
| 10 | abstract.jpg | 2019-08-31 |
| 11 | 201917030095-FORM-26 [14-11-2019(online)].pdf | 2019-11-14 |
| 12 | 201917030095-FORM 3 [14-11-2019(online)].pdf | 2019-11-14 |
| 13 | 201917030095-Power of Attorney-191119.pdf | 2019-11-22 |
| 14 | 201917030095-Correspondence-191119.pdf | 2019-11-22 |
| 15 | 201917030095-Proof of Right (MANDATORY) [14-01-2020(online)].pdf | 2020-01-14 |
| 16 | 201917030095-Information under section 8(2) (MANDATORY) [16-01-2020(online)].pdf | 2020-01-16 |
| 17 | 201917030095-OTHERS-170120.pdf | 2020-01-21 |
| 18 | 201917030095-Correspondence-170120.pdf | 2020-01-21 |
| 19 | 201917030095-FORM 3 [29-07-2020(online)].pdf | 2020-07-29 |
| 20 | 201917030095-FORM 18 [20-01-2021(online)].pdf | 2021-01-20 |
| 21 | 201917030095-Retyped Pages under Rule 14(1) [07-10-2021(online)].pdf | 2021-10-07 |
| 22 | 201917030095-OTHERS [07-10-2021(online)].pdf | 2021-10-07 |
| 23 | 201917030095-Information under section 8(2) [07-10-2021(online)].pdf | 2021-10-07 |
| 24 | 201917030095-FER_SER_REPLY [07-10-2021(online)].pdf | 2021-10-07 |
| 25 | 201917030095-DRAWING [07-10-2021(online)].pdf | 2021-10-07 |
| 26 | 201917030095-COMPLETE SPECIFICATION [07-10-2021(online)].pdf | 2021-10-07 |
| 27 | 201917030095-ABSTRACT [07-10-2021(online)].pdf | 2021-10-07 |
| 28 | 201917030095-2. Marked Copy under Rule 14(2) [07-10-2021(online)].pdf | 2021-10-07 |
| 29 | 201917030095-FER.pdf | 2021-10-18 |
| 30 | 201917030095-PETITION UNDER RULE 137 [07-02-2022(online)].pdf | 2022-02-07 |
| 31 | 201917030095-FORM 3 [07-02-2022(online)].pdf | 2022-02-07 |
| 32 | 201917030095-FORM 3 [27-10-2022(online)].pdf | 2022-10-27 |
| 33 | 201917030095-FORM 3 [26-07-2023(online)].pdf | 2023-07-26 |
| 34 | 201917030095-FORM 3 [26-07-2023(online)]-1.pdf | 2023-07-26 |
| 35 | 201917030095-PatentCertificate16-01-2024.pdf | 2024-01-16 |
| 36 | 201917030095-IntimationOfGrant16-01-2024.pdf | 2024-01-16 |
| 1 | 201917030095E_12-08-2021.pdf |