Abstract: [0001] The present disclosure provides a flame retardant optical fiber cable (100). The flame retardant optical fiber cable (100) includes a plurality of bundle binders (102a-102d). In addition, the flame retardant optical fiber cable (100) includes a first layer (106), a second layer (108), a third layer (110), a fourth layer (112), a fifth layer (114), a sixth layer (116), a seventh layer (118) and an eighth layer (120). The first layer (106) surrounds a plurality of bundle binders (102a-102d). The second layer (108) surrounds the first layer (106). The third layer (110) surrounds the second layer (108). The fourth layer (112) surrounds the third layer (110). The fifth layer (114) surrounds the fourth layer (112). The sixth layer (116) surrounds the fifth layer (114). The seventh layer (118) surrounds the sixth layer (116). The eighth layer (120) surrounds the seventh layer (118).
DESC:TECHNICAL FIELD
[0001] The present disclosure relates to the field of optical fiber cable and, in particular, relates to a flame retardant optical fiber cable. The present application is based on and claims priority from Indian Application Number 201721018968 filed on May 30, 2017, the disclosure of which is hereby incorporated by reference herein.
BACKGROUND
[0002] With a growth in the use of advanced communication systems and digital electronic devices, demands for signal transmitting cables utilized for connecting these communication systems and digital electronic devices to each other has increased. These demands must be met in order to ensure substantially error free transmission at high data transmission speeds. As these signal transmitting cables are installed and used inside a facility, they must be fire resistant, and both smoke and flame retardant. One such type of signal transmitting cables are fire resistant cables. In general, a fire resistant cable has an ability to withstand fire aggression without significantly decreasing signal transmission performance. For example, cables used in fire alarm systems and/or local video surveillance must be able to continue to transmit signals in the presence of fire.
[0003] Nowadays, one of the major issues in cable manufacturing industry lies in improving the behavior and the performance of fire resistant cables under extreme temperature conditions, and in particular those that are to be encountered during a fire. The fire resistant cables which require stringent fire performance has to undergo conformance with the comprehensive references to the one or more safety standards. One such safety standard is a British Standard “BS 8434-2:2003+A2:2009”. In order to meet the BS 8434-2:2003+A2:2009 standard, the cable is stressed by the flame at 930°C with mechanical shocks for 60 minutes and further 60 minutes with the addition of water spray. Presently, the fire resistant cables available have certain drawbacks. Most of these fire resistant cables meeting the BS 8434-2:2003+A2:2009 standard are bulkier in size. In addition, these fire resistant cables are unable to maintain circuit integrity under fire conditions in accordance with BS 8434-2:2003 + A2:2009.
[0004] In light of the above-stated discussion, there is a need for a fire resistant cable that overcomes the above-stated disadvantages.
OBJECT OF THE DISCLOSURE
[0005] A primary object of the present disclosure is to provide a flame retardant optical fiber cable to withstand against flame.
[0006] Another object of the present disclosure is to provide the flame retardant optical fiber cable for indoor and outdoor applications.
[0007] Yet another object of the present disclosure is to provide the flame retardant optical fiber cable with an improved performance.
SUMMARY
[0008] In an aspect, the present disclosure provides a flame retardant optical fiber cable. The flame retardant optical fiber cable includes a plurality of bundle binders. The plurality of bundle binders lying substantially along a longitudinal axis of the flame retardant optical fiber cable in a helical manner. Further, the flame retardant optical fiber cable includes a first layer. The first layer surrounds the plurality of bundle binders. Moreover, the flame retardant optical fiber cable includes a second layer. The second layer surrounds the first layer. Furthermore, the flame retardant optical fiber cable includes a third layer. The third layer surrounds the second layer. In addition, the flame retardant optical fiber cable includes a fourth layer. The fourth layer surrounds the third layer. Also, the flame retardant optical fiber cable includes a fifth layer. The fifth layer surrounds the fourth layer. The flame retardant optical fiber cable includes a sixth layer. The sixth layer surrounds the fifth layer. Further, the flame retardant optical fiber cable includes a seventh layer. The seventh layer surrounds the sixth layer. Moreover, the flame retardant optical fiber cable includes an eighth layer. The eighth layer surrounds the seventh layer. The plurality of bundle binders includes a plurality of optical fibers. The first layer is a loose tube. The first layer is substantially made of steel. The second layer is made of a fire resistance mica tape. The third layer is substantially made of water swellable yarns. The fourth layer is a peripheral strength member. The fourth layer is substantially made of glass roving yarns. The fifth layer is a first jacket layer. The first jacket layer is substantially made of low smoke zero halogen material. The sixth layer is substantially made of a mica tape. The seventh layer is substantially an armoring layer. The seventh layer is substantially made of a corrugated ECCS tape. The eighth layer is a second jacket layer. The second jacket layer is substantially made of low smoke zero halogen material. The flame retardant optical fiber cable withstands a temperature of at least 930 degree Celsius.
[0009] In an embodiment of the present disclosure, the flame retardant optical fiber cable includes a plurality of ripcords. In addition, the plurality of ripcords includes a first plurality of ripcords and a second plurality of ripcords. The first plurality of ripcords is positioned at an interface of the fourth layer and the fifth layer. The second plurality of ripcords is positioned at an interface of the sixth layer and the seventh layer. Further, each of the first plurality of ripcords and the second plurality of ripcords is made of polyester based twisted yarns. Furthermore, the first plurality of ripcords facilitates easy stripping of the fifth layer and the second plurality of ripcords facilitates easy stripping of the seventh layer and the eighth layer.
[0010] In an embodiment of the present disclosure, the flame retardant optical fiber cable includes a filling gel inside a core of the flame retardant optical fiber cable. The filling gel is a thixotropic gel. The filling gel prevents ingression of water inside the core of the flame retardant optical fiber cable.
[0011] In an embodiment of the present disclosure, the plurality of bundle binders includes four bundle binders. Each of the four bundle binder is a different colored bundle binder enclosing 12 colored optical fibers.
[0012] In another embodiment of the present disclosure, the plurality of bundle binders may vary according to the number of optical fibers. Each bundle binder of the plurality of bundle binders may have any suitable number of colored optical fibers.
[0013] In an embodiment of the present disclosure, the cable is stressed for a first time period of about 60 minutes with the facilitation of flame at 930 degree Celsius with mechanical shocks. In addition, the cable is further stressed for a second time period of about 60 minutes with the facilitation of water spray on the cable.
[0014] In an embodiment of the present disclosure, the plurality of optical fibers has a maximum attenuation of 0.36dB/km at a wavelength of about 1310 nanometer.
[0015] In an embodiment of the present disclosure, the plurality of optical fibers has a maximum attenuation of 0.22dB/km at a wavelength of about 1550 nanometer.
[0016] In an embodiment of the present disclosure, the flame retardant optical fiber cable withstands temperatures of at least 930 degree Celsius.
[0017] In an embodiment of the present disclosure, the first layer has a first diameter in a range of about 1.8±0.3 millimeters and a second diameter in a range of about 2.0±0.3 millimeters. In addition, the first layer has a thickness in a range of about 0.20 millimeter with a tolerance of about 0.05 millimeter when the flame retardant optical fiber cable includes 12 optical fibers.
[0018] In an embodiment of the present disclosure, the first layer has a first diameter in a range of about 1.8±0.3 millimeters and a second diameter in a range of about 2.0±0.3 millimeters. In addition, the first layer has a thickness in a range of about 0.20 millimeter with a tolerance of about 0.05 millimeter when the flame retardant optical fiber cable includes 24 optical fibers.
[0019] In an embodiment of the present disclosure, the first layer has a first diameter in a range of about 3.8±0.3 millimeters and a second diameter in a range of about 4.0±0.5 millimeters. In addition, the first layer has a thickness in a range of about 0.20±0.05 millimeter when the flame retardant optical fiber cable includes 48 optical fibers.
[0020] In another embodiment of the present disclosure, the first layer may have a suitable value of the first diameter, the second diameter and the thickness corresponding to the suitable number of optical fibers.
[0021] In an embodiment of the present disclosure, the second layer has a thickness in a range of about 0.13±0.02 millimeter when the flame retardant optical fiber cable includes 12 fibers.
[0022] In an embodiment of the present disclosure, the second layer has a thickness in a range of about 0.13±0.02 millimeter when the flame retardant optical fiber cable includes 24 fibers.
[0023] In an embodiment of the present disclosure, the second layer has a thickness in a range of about 0.13±0.02 millimeter when the flame retardant optical fiber cable includes 48 fibers.
[0024] In another embodiment of the present disclosure, the second layer may have a suitable value of thickness corresponding to the suitable number of optical fibers.
[0025] In an embodiment of the present disclosure, the fifth layer has a first diameter in a range of about 7.0±0.3 millimeters and a second diameter in a range of about 10.0±0.3 millimeters. In addition, the fifth layer has a thickness in a range of about 1.5±0.3 millimeters when the flame retardant optical fiber cable includes 12 fibers.
[0026] In an embodiment of the present disclosure, the fifth layer has a first diameter in a range of about 7.0±0.3 millimeters and a second diameter in a range of about 10.0±0.3 millimeters. In addition, the fifth layer has a thickness in a range of about 1.50±0.03 millimeters when the flame retardant optical fiber cable includes 24 fibers.
[0027] In an embodiment of the present disclosure, the fifth layer has a first diameter in a range of about 7.7±0.3 millimeters and a second diameter in a range of about 10.7±0.3 millimeters. In addition, the fifth layer has a thickness in a range of about 1.50±0.03 millimeters when the flame retardant optical fiber cable includes 48 fibers.
[0028] In an embodiment of the present disclosure, the sixth layer has a thickness in a range of about 0.13±0.02 millimeter when the flame retardant optical fiber cable includes 12 fibers.
[0029] In an embodiment of the present disclosure, the sixth layer has a thickness in a range of about 0.13±0.02 millimeter when the flame retardant optical fiber cable includes 24 fibers.
[0030] In an embodiment of the present disclosure, the sixth layer has a thickness in a range of about 0.13±0.02 millimeter when the flame retardant optical fiber cable includes 48 fibers.
[0031] In another embodiment of the present disclosure, the sixth layer has a suitable value of thickness corresponding to the suitable number of optical fibers. .
[0032] In an embodiment of the present disclosure, the seventh layer has a thickness in a range of about 0.145±0.025 millimeter when the flame retardant optical fiber cable includes 12 fibers.
[0033] In an embodiment of the present disclosure, the seventh layer has a thickness in a range of about 0.145±0.025 millimeter when the flame retardant optical fiber cable includes 24 fibers.
[0034] In an embodiment of the present disclosure, the seventh layer has a thickness in a range of about 0.145±0.025 millimeter when the flame retardant optical fiber cable includes 48 fibers.
[0035] In another embodiment of the present disclosure, the seventh layer has a suitable value of thickness corresponding to the suitable number of optical fibers.
[0036] In an embodiment of the present disclosure, the eighth layer has a first diameter in a range of about 12.0±1.0 millimeter and a second diameter in a range of about 16.0±1.0 millimeter. In addition, the eighth layer has a thickness in a range of about 2.0±0.3 millimeters when the flame retardant optical fiber cable includes 12 fibers.
[0037] In an embodiment of the present disclosure, the eighth layer has a first diameter in a range of about 12.0±1.0 millimeters and a second diameter in a range of about 16.0+1.0 millimeters. In addition, the eighth layer has a thickness in a range of about 2.0±0.3 millimeters when the flame retardant optical fiber cable includes 24 fibers.
[0038] In an embodiment of the present disclosure, the eighth layer has a first diameter in a range of about 13±1 millimeters and a second diameter in a range of about 17±1 millimeter. In addition, the eighth layer has a thickness in a range of about 2.0±0.3 millimeters when the flame retardant optical fiber cable includes 48 fibers.
[0039] In another embodiment of the present disclosure, the eighth layer may have any suitable value of the first diameter, the second diameter and the thickness corresponding to the suitable number of optical fibers. In addition, the second diameter of the eighth layer is the diameter of the flame retardant optical fiber cable.
[0040] In an embodiment of the present disclosure, the flame retardant optical fiber cable has a diameter in a range of about 16±1 millimeter. In addition, the flame retardant optical fiber cable has a weight of about 300±10% when the flame retardant optical fiber cable includes 12 optical fibers.
[0041] In an embodiment of the present disclosure, the flame retardant optical fiber cable has a diameter in a range of about 16±1 millimeter. In addition, the flame retardant optical fiber cable has a weight of about 300±10% when the flame retardant optical fiber cable includes 24 optical fibers.
[0042] In an embodiment of the present disclosure, the flame retardant optical fiber cable has a diameter in a range of about 17±1 millimeter. In addition, the flame retardant optical fiber cable has a weight of about 345±10% when the flame retardant optical fiber cable includes 48 optical fibers.
[0043] In another embodiment of the present disclosure, the flame retardant optical fiber cable has a suitable value of diameter and a suitable value of weight corresponding to the suitable number of optical fibers.
[0044] In an embodiment of the present disclosure, the flame retardant optical fiber cable has impact strength of about 25 Newton meter.
[0045] In an embodiment of the present disclosure, the flame retardant optical fiber cable has a crush resistance of about 4000 Newton per 10 centimeter.
[0046] In an embodiment of the present disclosure, the flame retardant optical fiber cable has a maximum tensile strength of about 3000 Newton.
BRIEF DESCRIPTION OF FIGURES
[0047] Having thus described the disclosure in general terms, reference will now be made to the accompanying figures, wherein:
[0048] FIG. 1 illustrates a cross sectional view of a flame retardant optical fiber cable, in accordance with an embodiment of the present disclosure;
[0049] It should be noted that the accompanying figures are intended to present illustrations of exemplary embodiments of the present disclosure. These figures are not intended to limit the scope of the present disclosure. It should also be noted that accompanying figures are not necessarily drawn to scale.
DETAILED DESCRIPTION
[0050] Reference will now be made in detail to selected embodiments of the present disclosure in conjunction with accompanying figures. The embodiments described herein are not intended to limit the scope of the disclosure, and the present disclosure should not be construed as limited to the embodiments described. This disclosure may be embodied in different forms without departing from the scope and spirit of the disclosure. It should be understood that the accompanying figures are intended and provided to illustrate embodiments of the disclosure described below and are not necessarily drawn to scale. In the drawings, like numbers refer to like elements throughout, and thicknesses and dimensions of some components may be exaggerated for providing better clarity and ease of understanding.
[0051] It should be noted that the terms "first", "second", and the like, herein do not denote any order, ranking, quantity, or importance, but rather are used to distinguish one element from another. Further, the terms "a" and "an" herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
[0052] FIG. 1 illustrates a cross sectional view of an optical fiber cable, in accordance with various embodiments of the present disclosure. The optical fiber cable is a flame retardant optical fiber cable 100. The flame retardant optical fiber cable 100 is used for the high temperature resistance purpose.
[0053] The flame retardant optical fiber cable 100 includes a plurality of bundle binders 102a-102d, a plurality of optical fibers 104a-104d, a first layer 106, a second layer 108, a third layer 110, a fourth layer 112. In addition, the flame retardant optical fiber cable 100 includes a fifth layer 114, a sixth layer 116, a seventh layer 118, and an eighth layer 120. Furthermore, the flame retardant optical fiber cable 100 includes a plurality of ripcords. The flame retardant optical fiber cable 100 is used for carrying light over long distances. Moreover, the flame retardant optical fiber cable 100 may simply be used to transmit optical signals (which may carry sensor data or communication data).
[0054] The flame retardant optical fiber cable 100 includes the plurality of bundle binders 102a-102d. In general, the bundle binder is a cover of the bunch of the plurality of optical fibers. Further, each of the plurality of bundle binders 102a-102d facilitates in distinguishes the bunch of the plurality of optical fibers 104a-104d inside the loose tube during installation. In addition, each of the plurality of bundle binders 102a-102d placed around the plurality of optical fibers 104a-104d to form an optical fiber bundle. In an embodiment of the present disclosure, each of the plurality of bundle binders 102a-102d is made of a polyester based material. In another embodiment of the present disclosure, the material of the plurality of bundle binders 102a-102d includes but may not be limited to poly-amide, polyethylene terephthalate and the like. Moreover, each of the plurality of bundle binders 102a-102d is used for encapsulating the plurality of optical fibers 104a-104d. Also, each of the plurality of bundle binders 102a-102d is used inside the loose tube for the identification of fibers.
[0055] In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 includes four different colored bundle binders. Each of the plurality of bundle binders 102a-102d may be of any other color. In an example, the color of each of the plurality of bundle binders 102a-102d is selected from the group. The group includes blue, orange, green, brown and red color. In an example, the color of each of the plurality of bundle binders 102a-102d is selected from any other respective color as per requirement. In another embodiment of the present disclosure, the flame retardant optical fiber cable 100 may include any number of bundle binders. The plurality of bundle binders 102a-102d encloses the plurality of optical fibers 104a-104d. In an embodiment of the present disclosure, the bundle binder 102a encloses the plurality of optical fibers 104a. In addition, the bundle binder 102b encloses the plurality of optical fibers 104b. Further, the bundle binder 102c encloses the plurality of optical fibers 104c. Furthermore, the bundle binder 102d encloses the plurality of optical fibers 104d. Each of the plurality of bundle binders 102a-102d is used for encapsulating the plurality of optical fibers. The plurality of bundle binders 102a-102d facilitates in distinguishes the bunch of the plurality of optical fibers 104a-104d during installation. In another embodiment of the present disclosure, the flame retardant optical fiber cable 100 may include any number of bundle binders. In yet another embodiment of the present disclosure, the flame retardant optical fiber cable 100 does not include any bundle binder.In an embodiment of the present disclosure, each of the plurality of bundle binders 102a-102d encloses 12 colored optical fibers. The total number of optical fibers present in the flame retardant optical fiber cable is 48 (4*12 = 48), when the number of bundle binders is four. In another embodiment of the present disclosure, each of the plurality of bundle binders 102a-102d may include any number of optical fibers.
[0056] The flame retardant optical fiber cable 100 includes the plurality of optical fibers 104a-104d enclosed inside the plurality of bundle binders 102a-102d. Each of the plurality of optical fibers 104a-104d is a fiber used for transmitting information as light pulses from one end to another. In addition, each of the plurality of optical fibers 104a-104d is a thin strand of glass capable of transmitting optical signals. Also, each of the plurality of optical fibers 104a-104d is configured to transmit large amounts of information over long distances with relatively low attenuation. Further, each of the plurality of optical fibers 104a-104d includes a core region and a cladding region. The core region is an inner part of an optical fiber and the cladding section is an outer part of the optical fiber.
[0057] In an embodiment of the present disclosure, each of the plurality of optical fibers 104a-104d is a colored optical fiber. The color of each of the plurality of optical fibers 104a-104d is selected from the group. The group includes blue, orange, green, brown, slate, white, red, black, yellow, violet, pink and aqua. In another embodiment of the present disclosure, the optical fiber may be of any different color. The coloring is done for identification of each of the plurality of optical fibers 104a-104d. In an embodiment of the present disclosure, ring marking or different colors bundle binder grouping is used for the identification of optical fibers when the number of optical fiber is more than 12 fibers.
[0058] Each of the plurality of optical fibers 104a-104d is a single mode optical fiber. In an embodiment of the present disclosure, each of the plurality of optical fibers 104a-104d has a maximum attenuation of about 0.36 dB per kilometer at a wavelength of 1310 nanometers. In another embodiment of the present disclosure, each of the plurality of optical fibers 104a-104d has a maximum attenuation of about 0.22 dB per kilometer at a wavelength of 1550 nanometer. The attenuation of each of the plurality of optical fibers 104a-104d corresponds to a loss in optical power as the light travels through the plurality of fibers 104a-104d.
[0059] In an embodiment of the present disclosure, each of the plurality of optical fibers 104a-104d has a polarization mode dispersion of less than or equal to 0.2 ps vkm. The polarization mode dispersion corresponds to spreading of optical signals when the two different polarizations of light in a waveguide travel at different speeds.
[0060] The flame retardant optical fiber cable 100 includes the first layer 106. The first layer 106 encloses the plurality of bundle binders 102a-102d and the plurality of optical fibers 104a-104d. In an embodiment of the present disclosure, the first layer 106 is a loose tube. In general, the loose tube is circular in shape and hollow from inside. Further, the loose tube is a tube that encloses optical fibers in a loose tube sheath. The loose tube sheath protects the optical fibers from physical damage. In an embodiment of the present disclosure, the loose tube is a metallic loose tube. In addition, the loose tube is substantially made of steel. The steel tube has excellent mechanical performance with high tensile properties. In another embodiment of the present disclosure, the first layer 106 is made of any other material. The first layer 106 provides protection to the plurality of bundle binders 102a-102d and the plurality of optical fibers 104a-104d. In addition, the first layer 106 has very good mechanical properties without diminished safety and reliability.
[0061] The flame retardant optical fiber cable 100 includes the second layer 108. The second layer 108 surrounds the first layer 106. The second layer 108 is made of a fire resistance tape. In an embodiment of the present disclosure, the fire resistance tape is substantially a mica tape. In an embodiment of the present disclosure, the two layers of the mica tape with at least 15 percent overlap is helically wounded on the loose tube. The mica is a poor conductor of heat and includes high temperature resistant properties. The fire resistance tape is used to increase the fire resistance of the flame retardant optical fiber cable 100. In addition, the fire resistance tape is used to protect the flame retardant optical fiber cable 100 with respect to the flame. Furthermore, the fire resistance mica tape enhances the insulation effect.
[0062] The flame retardant optical fiber cable 100 includes the third layer 110. The third layer 110 surrounds the second layer 108. The third layer 110 is substantially made of water blocking elements. In an embodiment of the present disclosure, the water blocking elements are water swellable yarns. The water swellable yarns prevent the ingression of water in the core of the flame retardant optical fiber cable 100.
[0063] The flame retardant optical fiber cable 100 includes the fourth layer 112. The fourth layer 112 surrounds the third layer 110. The fourth layer 112 is a peripheral strength member. In an embodiment of the present disclosure, the peripheral strength member is substantially a glass roving yarn. The one full coverage layer of glass roving yarn is placed helically in clockwise direction on the third layer 110. Another full coverage layer of glass roving yarn is placed in anti-clockwise direction on the third layer 110. In addition, the fourth layer 112 protects the core of the flame retardant optical fiber cable 100 against the crush resistance. Furthermore, the fourth layer 112 provides tensile strength along the length of the flame retardant optical fiber cable 100.
[0064] The flame retardant optical fiber cable 100 includes the fifth layer 114. The fifth layer 114 surrounds the fourth layer 112. In an embodiment of the present disclosure, the fifth layer 114 is a first jacket. The first jacket represents the inner jacket of the flame retardant optical fiber cable 100. The first jacket is substantially made of UV proof LSZH (low smoke zero halogen) material. In addition, the first jacket is black in color. In an embodiment of the present disclosure, the Low smoke zero halogen or low smoke free of halogen is a material classification composed of thermoplastic or thermoset compounds. The low smoke zero halogen materials emit limited smoke and no halogen when exposed to high sources of heat. Further, the jacketing of the low smoke zero halogen material reduces the amount and density of the smoke and increases the safety during fire. The fifth layer 114 provides the protection to the flame retardant optical fiber cable 100. Further, the fifth layer 114 provides good barrier and flame retardant characteristic to the flame retardant optical fiber cable 100. Moreover, the fifth layer 114 helps in the mechanical performance of the flame retardant optical fiber cable 100.
[0065] The flame retardant optical fiber cable 100 includes the sixth layer 116. The sixth layer 116 surrounds the fifth layer 114. The sixth layer 116 is substantially made of the fire resistance tape. In an embodiment of the present disclosure, the fire resistance tape is the mica tape (as described above). In an embodiment of the present disclosure, the two layers of the mica tape with at least 15 percent overlap is helically wounded on the fifth layer 114. In another embodiment of the present disclosure, the fire resistance tape may be any type of tape.
[0066] The flame retardant optical fiber cable 100 includes the seventh layer 118. The seventh layer 118 encloses the sixth layer 116. In an embodiment of the present disclosure, the seventh layer 118 is an armored layer. The armored layer is substantially made of corrugated ECCS tape. The corrugated ECCS tape is used to limit the signal attenuation during fire. In an embodiment of the present disclosure, the corrugated steel tape having thickness of about 0.145±0.025 millimeter and is coated with co-polymer having thickness of about 0.04±0.01 millimeter to improve the performance of the armoring layer. The standard for corrugation of tape is ~2.5 mm pitch and ~ 0.6 mm height in optical fiber cable industry. Further, the seventh layer 118 provides crush resistance and tensile resistance to the flame retardant optical fiber cable 100.
[0067] The flame retardant optical fiber cable 100 includes the eighth layer 120. The eighth layer 120 surrounds the seventh layer 118. In an embodiment of the present disclosure, the eighth layer 120 is a second jacket. The second jacket is substantially made of UV Proof LSZH (low smoke zero halogen) material. The second jacket is black in color. The eighth layer 120 provides the protection to the flame retardant optical fiber cable 100. In addition, the eighth layer 120 improves the mechanical performance of the flame retardant optical fiber cable 100.
[0068] The flame retardant optical fiber cable 100 includes the plurality of ripcords lying substantially along the longitudinal axis 101 of the flame retardant optical fiber cable 100. In addition, the longitudinal axis 101 of the flame retardant optical fiber cable 100 is an axis along the length of the cable. In an embodiment of the present disclosure, the number of ripcords present in the flame retardant optical fiber cable 100 is four. The plurality of ripcords includes a first plurality of ripcords 122a-122b and a second plurality of ripcords 122c-122d. In an embodiment of the present disclosure, the first plurality of ripcords 112a-122b includes 2 diagonally opposite ripcords. The first plurality of ripcords 122a-122b is positioned at an interface of the fourth layer 112 and the fifth layer 114. In an embodiment of the present disclosure, the second plurality of ripcords 122a-122b includes 2 diagonally opposite ripcords. The second plurality of ripcords 122c-122d is positioned at an interface of the sixth layer 116 and the seventh layer 118. In addition, each of the first plurality of ripcords 122a-122b and the second plurality of ripcords 122c-1122d is made of polyester based twisted yarns. Further, the first plurality of ripcords 122a-122b facilitates easy stripping of the fifth layer 114 and the second plurality of ripcords 122c-122d facilitates easy stripping of the seventh layer 118 and the eighth layer 120. In another embodiment of the present disclosure, the number of ripcords present in the flame retardant optical fiber cable 100 may vary.
[0069] The flame retardant optical fiber cable 100 includes a filling gel (not shown in figure). The filling gel is filled inside a core of the flame retardant optical fiber cable 100 and around the plurality of optical fibers 104a-104d. In addition, the core is a central region of the flame retardant optical fiber cable 100. In an example, the central region is the region below the first layer 106 and towards the center of the flame retardant optical fiber cable 100. In an embodiment of the present disclosure, the filling gel is a thixotropic gel. The thixotropic gel is a viscous fluid or gel under static conditions and flow when shaken or agitated. The thixotropic gel prevents the ingression of water inside the core of the flame retardant optical fiber cable 100.
[0070] In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 with the loose tube and multilayer improves the waterproof, fireproof, rodent and other functions. Further, each layer of the multilayer flame retardant optical fiber cable 100 includes specific materials or material properties that prevents the cable from burning at high temperatures and reduces economic losses. In addition, the flame retardant optical fiber cable 100 improves the safety and life of the cable. Furthermore, the flame retardant optical fiber cable 100 withstands temperature of at least 930 degree Celsius. As, each layer of the multilayer flame retardant optical fiber cable 100 include specific materials that prevents cable to withstand temperature of at least 930 degree Celsius. In an example, the mica is a poor conductor of heat and includes high temperature resistant properties. Also, the fire resistance tape is used to increase the fire resistance of the flame retardant optical fiber cable 100. Moreover, the flame retardant optical fiber cable 100 has good flame retardant properties. Also, the flame retardant optical fiber cable 100 is suitable for indoor and outdoor environments. The flame retardant optical fiber cable 100 is stressed for a first time period of about 60 minutes with the facilitation of flame at 930 degree Celsius with the mechanical shocks. In addition, the flame retardant optical fiber cable 100 is further stressed for a second time period of about 60 minutes with the facilitation of water spray on the cable. Moreover, the thickness of each layer facilitates the flame retardant optical fiber cable 100 to withstand with fire and water spray test.
[0071] In an embodiment of the present disclosure, flame retardant optical fiber cable 100 is flexible and easy to handle and install. In addition, the flame retardant optical fiber cable 100 is UV protected. In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 is handled using one or more elements. The one or more elements include a plurality of tools. In an embodiment of the present disclosure, the plurality of tools include a fiber stripping tool, wire stripping tool, scissors, sheath knife, snips, sheath removal tool, round cutter, linesmen pliers, needle nose pliers.
[0072] In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 includes 12 optical fibers. In an embodiment, the first layer 106 has a first diameter in a range of about 1.6±0.3 mm and a second diameter in range of about 2.0 ± 0.3 mm for 12 optical fibers. The first diameter represents the inner diameter and the second diameter represents the outer diameter. In an embodiment, the first layer 106 has a thickness in a range of about 0.20 ± 0.05 mm for 12 optical fibers. The second layer 108 includes two layers of tape with minimum 15% overlap. In an embodiment, the second layer 108 has a thickness in a range of 0.13 ± 0.02 mm for 12 optical fibers. In an embodiment, the fourth layer 112 has one full coverage layer helically clockwise and other full coverage layer anti-clockwise. In an embodiment, the fifth layer 114 has a first diameter in a range of about 7.0±0.3 mm and a second diameter in a range of about 10.0±0.3 mm for 12 optical fibers. In addition, the fifth layer 114 has a thickness in a range of about 1.5 ± 0.3 mm for 12 optical fibers. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has density of about 1.48 ± 0.04 g/cm3. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has limiting oxygen index of 38%. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has halogen content of 0 %. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has melt flow index of 5g/10. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has tensile strength of 15 MPa minimum. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has elongation of about 150 ± 10%. In an embodiment, the sixth layer 116 includes two layers of tape with minimum 15% overlap. In an embodiment, the sixth layer 116 has a thickness in a range of about 0.13 ± 0.02 mm for 12 optical fibers. In an embodiment, the seventh layer 118 has a thickness in a range of about 0.145 ± 0.025 mm with co-polymer coating of 0.04 ± 0.01 mm on either side of steel tape. In an embodiment, the eighth layer 120 has a first diameter in a range of about 12.0±1.0 mm and a second diameter in a range of about16.0±1.0 mm for 12 optical fibers. In addition, the eighth layer 120 has a thickness in a range of about 2.0 ± 0.3 mm for 12 optical fibers. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has density of about 1.48 ± 0.04 g/cm3. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has limiting oxygen index of 38%. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has halogen content of 0 %. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has melt flow index of 5g/10. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has tensile strength of about 15 MPa minimum. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has elongation of about 150 ± 10%. In an embodiment, the flame retardant optical fiber cable 100 has a diameter in a range of about 16.0 ± 1.0 mm for 12 optical fibers. In an embodiment, the flame retardant optical fiber cable 100 has a weight of about 300 ± 10 % for 12 optical fibers. In an embodiment, the flame retardant optical fiber cable 100 is compliant with IEC 60332-1, IEC 60332-2, IEC 60332-3, EN 50267 (Replaced by IEC 60754-1ed 2.0), EN 50268 (Replaced By EN 61034-1:2005), Sheath Integrity Test IEC 60331-25 (750°C @ 90min.), EN 50265 2.1 (Equivalent to 60332-1), BS EN50200 PH120, FT4/IEEE1202 (cable char height, total smoke),UL1685 (peak smoke release) and BS 8434-2 2003 + A2:2009.
[0073] In an embodiment of the present disclosure, the optical fiber cable 100 includes 24 optical fibers. In an embodiment, the first layer 106 has a first diameter in a range of about 1.6 ± 0.3 mm and a second diameter in range of about 2.0 ± 0.3 mm for 24 optical fibers. In an embodiment, the first layer 106 has a thickness in a range of about 0.20 ± 0.05 mm for 24 optical fibers. The second layer 108 includes two layers of tape with minimum 15% overlap. In an embodiment, the second layer 108 has a thickness in a range of about 0.13 ± 0.02 mm for 24 optical fibers. In an embodiment, the fourth layer 112 has one full coverage layer helically clockwise and other full coverage layer anti-clockwise. In an embodiment, the fifth layer 114 has a first diameter in a range of about7.0±0.3 mm and a second diameter in a range of about 10.0±0.3 mm for 24 optical fibers. In addition, the fifth layer 114 has a thickness in a range of about 1.5 ± 0.3 mm for 24 optical fibers. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has density of about 1.48 ± 0.04 g/cm3. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has limiting oxygen index of 38%. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has halogen content of 0 %. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has melt flow index of 5g/10. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has tensile strength of about 15 MPa minimum. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has elongation of 150 ± 10%. In an embodiment, the sixth layer 116 includes two layers of tape with minimum 15% overlap. In an embodiment, the sixth layer 116 has a thickness in a range of about 0.13 ± 0.02 mm for 24 optical fibers. In an embodiment, the seventh layer 118 has a thickness in a range of about 0.145 ± 0.025 mm with co-polymer coating of about 0.04 ± 0.01 mm on either side of steel tape. In an embodiment, the eighth layer 120 has a first diameter in a range of about 12.0±1.0 mm and a second diameter in a range of about 16.0±1.0 mm for 24 optical fibers. In addition, the eighth layer 120 has a thickness in a range of about 2.0 ± 0.3 mm for 24 optical fibers. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has density of about 1.48 ± 0.04 g/cm3. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has limiting oxygen index of 38%. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has halogen content of 0 %. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has melt flow index of 5g/10. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has tensile strength of about 15 MPa minimum. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has elongation of 150 ± 10%. In an embodiment, the flame retardant optical fiber cable 100 has a diameter in a range of about16.0 ± 1.0 mm for 24 optical fibers. In an embodiment, the flame retardant optical fiber cable 100 has a weight of about 300 ± 10 % for 24 optical fibers. In an embodiment, the flame retardant optical fiber cable 100 is compliant with IEC 60332-1, IEC 60332-2, IEC 60332-3, EN 50267 (Replaced by IEC 60754-1ed 2.0), EN 50268 (Replaced By EN 61034-1:2005), Sheath Integrity Test IEC 60331-25 (750°C @ 90min.), EN 50265 2.1 (Equivalent to 60332-1), BS EN50200 PH120, FT4/IEEE1202 (cable char height, total smoke),UL1685 (peak smoke release) and BS 8434-2 2003 + A2:2009.
[0074] In yet another embodiment of the present disclosure, the flame retardant optical fiber cable 100 includes 48 optical fibers. In an embodiment, the first layer 106 has a first diameter in a range of about 3.6 ± 0.5 mm and a second diameter in a range of about 4.0 ± 0.5 mm for 48 optical fibers. The first diameter is the inner diameter and the second diameter is the outer diameter of the flame retardant optical fiber cable 100. In an embodiment, the first layer 106 has a thickness in a range of about 0.20 ± 0.05 mm for 48 optical fibers. The second layer 108 includes two layers of tape with minimum 15% overlap. In an embodiment, the second layer 108 has a thickness in a range of about 0.13 ± 0.02 mm for 48 optical fibers. In an embodiment, the fourth layer 112 has one full coverage layer helically clockwise and other full coverage layer anti-clockwise. In an embodiment, the fifth layer 114 has a first diameter in a range of about 7.7 ± 0.3 mm and a second diameter in a range of about 10.7 ± 0.3 mm for 48 optical fibers. In addition, the fifth layer 114 has a thickness in a range of about 1.5 ± 0.3 mm for 48 optical fibers. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has density of about 1.48 ± 0.04 g/cm3. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has limiting oxygen index of 38%. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has halogen content of 0 %. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has melt flow index of 5g/10. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has tensile strength of 15 MPa minimum. In an embodiment, the low smoke zero halogen material of the fifth layer 114 has elongation of about 150 ± 10%. In an embodiment, the sixth layer 116 includes two layers of tape with minimum 15% overlap. In an embodiment, the sixth layer 116 has a thickness in a range of about 0.13 ± 0.02 mm for 48 optical fibers. In an embodiment, the seventh layer 118 has a thickness in a range of about 0.145 ± 0.025 mm with co-polymer coating of 0.04 ± 0.01 mm on either side of steel tape. In an embodiment, the eighth layer 120 has a first diameter in a range of about13.0 ± 0.3 mm and a second diameter in a range of about 17.0 ± 1.0 mm for 48 optical fibers. In addition, the eighth layer 120 has a thickness in a range of about 2.0 ± 0.3 mm for 48 optical fibers. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has density of about 1.48 ± 0.04 g/cm3. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has limiting oxygen index of 38%. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has halogen content of 0 %. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has melt flow index of 5g/10. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has tensile strength of 15 MPa minimum. In an embodiment, the low smoke zero halogen material of the eighth layer 120 has elongation of about 150 ± 10%. In an embodiment, the optical fiber cable 100 has a diameter in a range of about 17.0 ± 1.0 millimeters for 48 optical fibers. In an embodiment, the flame retardant optical fiber cable 100 has a weight of about 345 ± 10 % for 48 optical fibers. In an embodiment, the flame retardant optical fiber cable 100 is compliant with IEC 60332-1, IEC 60332-2, IEC 60332-3, EN 50267 (Replaced by IEC 60754-1ed 2.0), EN 50268 (Replaced By EN 61034-1:2005), Sheath Integrity Test IEC 60331-25 (750°C @ 90min.), EN 50265 2.1 (Equivalent to 60332-1), BS EN50200 PH120, FT4/IEEE1202 (cable char height, total smoke),UL1685 (peak smoke release) and BS 8434-2 2003 + A2:2009.
[0075] In yet another embodiment of the present disclosure, the flame retardant optical fiber cable 100 may include any number of optical fibers. The first layer, second layer, third layer, fourth layer, fifth layer, sixth layer, seventh layer and eighth layer may have different dimensions for multiple fiber counts. In an embodiment, ring marking or different color bundle binder grouping may be used for identification in case of more than 12 optical fibers.
[0076] In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 has a crush resistance of about 4000 Newton/10 centimeters. Crush resistance determines the ability of the flame retardant optical-fiber cable 100 to withstand and/or recover from the effects of compressive forces. In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 has a maximum tensile strength of about 3000 Newton. In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 has impact strength of about 25 Newton meter. The impact strength is the ability of the flame retardant optical fiber cable 100 to absorb shock and impact energy without breaking. In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 has repeated bend radius of about 20D when it is tested for about20 cycles. In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 has torsion of ± 180 degree. In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 has a kink radius of about 10 D, where D is the cable diameter of the flame retardant optical fiber cable 100. The kink radius corresponds to the minimum radius of the flame retardant optical fiber cable 100 to bend without kinking or damaging the flame retardant optical fiber cable 100. In addition, the kink radius is the minimum radius at which the flame retardant optical fiber cable 100 bends without affecting the life of the cable. Further, the minimum kink radius provides more flexibility to the flame retardant optical fiber cable 100. Moreover, the kink radius is the minimum loop radius at the onset of kinking of the flame retardant optical fiber cable 100. Furthermore, the kink radius is the minimum radius which allows looping or bending of each of the plurality of optical fibers 104a-104d in each bundle binder of the plurality of bundle binders 102a-102d without sustaining any damage.
[0077] The flame retardant optical fiber cable has numerous advantages over the prior art. The flame retardant optical fiber cable 100 has a long service life. In addition, the temperature resistance of the flame retardant optical fiber cable 100 lies in between -40 degree Celsius and 70 degree Celsius. Moreover, the optimized dimensions of sub parts of the flame retardant optical fiber cable 100 reduce the size of cable. Furthermore, the flame retardant optical fiber cable 100 has very good mechanical properties without diminished safety and reliability. Also, the flame retardant optical fiber cable 100 maintains circuit integrity under fire conditions and provides security for the transmission of data over long distances.
[0078] The present disclosure includes a multiple steps for the preparation and handling of the flame retardant optical fiber cable 100.
[0079] The first step includes of consulting the work instructions to determine the position of end preparation of the flame retardant optical fiber cable 100.
[0080] The second step includes of cutting of at least one meter cable from the end of each of the flame retardant optical fiber cable 100 after placement to avoid any problem that may have occurred during cable placement.
[0081] The third step includes to determine how much of the cable jacket needs to be removed from the cable to make the end preparation for splice. When no length is recommended, the one meter of cable jacket is removed from the cable end to make splice. In addition, the third step includes of placing a tape marker or pen mark on the cable jacket at the recommended distance for end of cable sheath removal.
[0082] The fourth step includes of placing a wrap of tape around the cable sheath at the specified distance from the end of the cable corresponding to the sheath length to be removed. This is done to fit the splice closure being used which is recommended by the closure manufacturer. Furthermore, one meter length is used when no length is specified or recommended.
[0083] The fifth step includes of cutting the end portion of the cable jacket and corrugated steel tape with the help of rotating sheath cutter or hooked knife. In an embodiment of the present disclosure, the ring cut for removing jacket and steel tape is approximately from 10 to 15 cm from its end.
[0084] The sixth step includes of grasping the cable jacket on either side of the cut and flexes the jacket of the cable. The cable jacket will open along the ring cut. In addition, the sixth step includes of pulling off the end 10 to 15 cm of cable jacket from the cable core. Moreover, the sixth step includes of exposing the ripcords that are located under the cable jacket.
[0085] The seventh step includes of removing each mating cable jacket to the marking tape using the rip-cords that is accessed from the 10 to 15 cm portion of the jacket. In addition, the seventh step includes of placing a notch in the plastic cable jacket for the rip-cord to follow as it is pulled back along the cable jacket. Further, the seventh step includes of pulling the rip-cord until the end marker is reached for the end sheath removal. Moreover, if a second rip-cord is present, used it to tear a second slit in the jacket 180 degree opposite to the first.
[0086] The eighth step includes of removing last 15 cm of cable sheath from the cable-core with a pulling action. In addition, the eighth step includes of cutting the binding yarns over the mica tape using splicer shears or knife. Moreover, the eighth step includes of removing the mica tape from first LSZH jacket. Furthermore, the eighth step includes of cutting the end portion of the cable LSZH jacket. After ring cutting the LSZH jacket, grasp the cable jacket on either side of the cut and flex the jacket of the cable. This will allow the cable jacket to open along the ring cut.
[0087] The ninth step includes removing the inner cable jacket up to the marking (approximately 1 meter into the cable) using the rip-cords accessed from the 10 to 15 cm portion of the jacket. In addition, the ninth step includes of placing a notch in the plastic cable jacket for the rip-cord to follow as it is pulled back along the cable jacket. As the rip-cord is pulled, it tears its way through the inner jacket. Continue pulling of the rip-cord until the end marker is reached, result in end sheath removal. Moreover, if the second rip-cord is present, use it to tear a second slit in the jacket 180 degree opposite the first.
[0088] The tenth step includes of removing the peripheral strength yarns from the core and get access to the binder yarns. In addition, the tenth step further includes of cutting the binding yarns over the mica tape using splicer shears or knife. It also includes removal of the mica tape from steel tube to access the steel tube for end preparation.
[0089] The eleventh step includes cutting the steel tube for accessing optical fibers. In addition, it also includes a step to check the tool’s performance on a small section of the buffer tube. A properly adjusted tool will score the buffer tube without completely cutting through the tube. When the tube is gently flexed it will break along the score.
[0090] The twelfth step includes of cutting the bundle binders over the fiber to access the plurality of fibers in end access splices in most applications. In addition, the color coding of bundle binder helps to determine the tubes containing the fibers to be spliced and those to be dropped off.
[0091] The thirteenth step includes of locating any spacer buffer tubes filled with non-optical quality fiber or filler elements. In addition, the spacer buffer tube or fillers is being cut using a cable cutter or splicer’s shears.
[0092] The fourteenth step includes of cleaning the gel or water blocking material from the steel tube using lint-free, wipers and an approved gel cleaning agent until the cable core us free of gel or water blocking material.
[0093] The flame retardant optical fiber cable 100 is aimed to not only protect against, flame propagation, drip and toxicity to protect people trapped, but also to protect internally the fibers. The protection of fibers is necessary to maintain the signal integrity and to keep signs, fire doors, cctv operational for as long as possible to ensure routes are visible and accessible in the event of fire.
[0094] In an embodiment of the present disclosure, the flame retardant optical fiber cable 100 includes one or more fire rating requirements.
[0095] The first fire rating requirement includes BS EN 50200 corresponds to a method of test for resistance to fire of unprotected small cables for use in emergency circuits. This is a test for small cables (it defines up to and including 20mm diameter) with a flame temperature of 850 °C and a physical impact. This impact is a steel bar striking the predefined backboard the cable is mounted on at intervals for the duration of the test. The test durations are 15, 30, 60, 90or 120 minutes with cable integrity for defined classifications of PH15, PH30, PH60, PH90 or PH120.
[0096] In addition, when the 2006 BS EN was reviewed it was revised to include BS 8434-1 test which was significant. The 2000 version had testing elements of flame and indirect shock only and this was insufficient to meet the requirements of BS 5839-1: 2002 ‘standard’ fire resisting cables because there was no water test. This meant that the most commonly needed fire resistant cable had to meet the requirements of two tests in two British Standards. The 2006 review was revised to incorporate the water spray element of BS 8434-1 into it is Annex ‘E’. This has meant that ‘standard’ fire resisting cables required by BS 5839-1 must achieve PH30 AND Annex ‘E’ of BS EN 50200:2006. So, two tests now within the same standard. For emergency escape lighting systems described by BS 5266-1‘standard’ fire resisting cables are required to achieve PH60 classification and Annex E. This is still a regular discussion point: ‘standard’ fire resisting cables must pass two fire tests ‘Annex E’ and PH30/PH60.
[0097] The second fire rating requirement includes BS 8434-2:2003+A2:2009 corresponds to a method of test for assessment of the fire integrity of electric cables. This is a test for unprotected small cables for use in emergency circuits. It includes BS EN 50200 with a 930°C flame and with water spray. This test method is used to assess a cable for ‘enhanced’ fire resistance required for applications in fire detection, fire alarm, emergency escape lighting and some life safety and firefighting control circuits. In addition, it is for small cables but at a higher nominal flame temperature, 930 °C as opposed to 850 °C. BS 8434-2 is a two hour test which includes direct flame, indirect impact and a water spray test. Cables that are required for ‘enhanced’ fire resisting circuits must meet BS EN 50200 PH120 classification and they must also meet BS 8434-2. The cable is stressed by the flame at 930°C with mechanical shocks for 60 minutes and further 60 minutes with the addition of water spray. This fire test is for the additional performance required by ‘enhanced’ fire resisting cables and is the procedure used by the fire test engineer. Furthermore, the second test includes passing criteria of maximum circuit continuity 2 hours under one or more conditions. The one or more conditions include a worst case of fire load at 930 degree Celsius, water and shock and the like.
[0098] The third fire rating requirement includes BS EN 50582:2016 corresponds to a procedure to assess the circuit integrity of optical fibers in a cable under resistance to fire testing. It further includes two different methods of performing the continuity of optical signal supply. The first method includes the monitoring of individual fibers for attenuation change. The second method includes loop-back measurements. Moreover, the third fire rating requirements describes the cable test procedure referring EN 50200 or in EN 50577. It also includes test equipment, sample preparation, test procedure, optical measurements during fire and duration of survival and the test report requirements for flame retardant optical fiber cables 100.
[0099] Design and installation of flame retardant optical fiber cables 100 for critical circuits will result in a long term commercial viability of the network, future proof benefits for the network, its investors and its consumers. It is essential to protect equipment and minimize the risk of loss of circuit integrity that could potentially harm personnel, property or equipment and will be a truly nation building project.
[00100] The flame retardant optical fiber cable 100 is used for indoor and outdoor purposes. In an example, the flame retardant optical fiber cable 100 may be used in traffic areas, wind farm developments, pipelines, oil and gas fields, heavy industrial sites.
[00101] Further, it may be noted that in FIG. 1, the flame retardant optical fiber cable 100 includes four bundle binder ; however, those skilled in the art would appreciate that more or less number of bundle binder are included in the flame retardant optical fiber cable 100.
[00102] The foregoing descriptions of pre-defined embodiments of the present technology have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the present technology to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, to thereby enable others skilled in the art to best utilize the present technology and various embodiments with various modifications as are suited to the particular use contemplated. It is understood that various omissions and substitutions of equivalents are contemplated as circumstance may suggest or render expedient, but such are intended to cover the application or implementation without departing from the spirit or scope of the claims of the present technology.
,CLAIMS:1. An optical fiber cable (100) comprising:
a plurality of bundle binders (102a-102d) lying substantially along a longitudinal axis (101) of the optical fiber cable (100), wherein the plurality of bundle binders (102a-102d) comprising a plurality of optical fibers (104a-104d);
a first layer (106) surrounding the plurality of bundle binders (102a-102d), wherein the first layer (106) is a loose tube, wherein the first layer (106) is substantially made of steel;
a second layer (108)surrounding the first layer (106), wherein the second layer (108) is substantially made of a mica tape;
a third layer (110) surrounding the second layer (108), wherein the third layer (110) is substantially made of water swellable yarns;
a fourth layer (112) surrounding the third layer (110), wherein the fourth layer (112) is a peripheral strength member, wherein the fourth layer (112) is substantially made of glass roving yarns;
a fifth layer (114) surrounding the fourth layer (112), wherein the fifth layer (114) is a first jacket layer and wherein the first jacket layer is substantially made of low smoke zero halogen material;
a sixth layer (116) surrounding the fifth layer (114), wherein the sixth layer (116) is substantially made of a mica tape;
a seventh layer (118) surrounding the sixth layer (116), wherein the seventh layer (118) is an armoring layer and wherein the seventh layer (118) is substantially made of a corrugated ECCS tape; and
an eighth layer (120) surrounding the seventh layer (118), wherein the eighth layer (120) is a second jacket layer, wherein the second jacket layer is substantially made of low smoke zero halogen material, and
wherein the flame retardant optical fiber cable (100) withstands a temperature of at least 930 degree Celsius.
2. The flame retardant optical fiber cable (100) as claimed in claim 1 further comprising a plurality of ripcords, wherein the plurality of ripcords comprises a first plurality of ripcords (122a-122b) and a second plurality of ripcords (122c-122d), wherein the first plurality of ripcords (122a-122b) is positioned at an interface of the fourth layer (112) and the fifth layer (114), wherein the second plurality of ripcords (122c-122d) is positioned at an interface of the sixth layer (116) and the seventh layer (118).
3. The flame retardant optical fiber cable (100) as claimed in claim 1 further comprising a plurality of ripcords, wherein the plurality of ripcords comprises a first plurality of ripcords (122a-122b) and a second plurality of ripcords (122c-122d), wherein each of the first plurality of ripcords (122a-122b) and the second plurality of ripcords (122c-1122d) is made of a polyester based twisted yarns.
4. The flame retardant optical fiber cable (100) as claimed in claim 1 further comprising a plurality of ripcords, wherein the plurality of ripcords comprises a first plurality of ripcords (122a-122b) and a second plurality of ripcords (122c-122d), wherein the first plurality of ripcords (122a-122b) facilitates easy stripping of the fifth layer (114) and the second plurality of ripcords (122c-122d) facilitates easy stripping of the seventh layer (118) and the eighth layer (120).
5. The flame retardant optical fiber cable (100) as claimed in claim 1 further comprising a filling gel inside a core of the flame retardant optical fiber cable (100), wherein the core being a central region of the flame retardant optical fiber cable (100), wherein the filling gel is a thixotropic gel. .
6. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the plurality of bundle binders (102a-102d) comprises four bundle binders, wherein each of the four bundle binder is a different colored bundle binder, wherein each of the four bundle binder comprises 12 colored optical fibers.
7. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the cable being stressed for a first time period of about 60 minutes with the facilitation of flame at 930 degree Celsius with mechanical shocks, wherein the cable being further stressed for a second time period of about 60 minutes with the facilitation of water spray on the cable.
8. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the first layer (106) has a first diameter in a range of about 1.6±0.3 millimeters, a second diameter in a range of about 2.0±0.3 millimeters, a thickness in a range of about 2.00±0.05 millimeters when the flame retardant optical fiber cable comprises a number of the optical fibers selected from a group, wherein the group comprise 12 optical fibers, 24 optical fiber and 48 optical fibers.
9. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the second layer (108) has a thickness in a range of about 0.13±0.02 millimeter when the flame retardant optical fiber cable comprises a number of optical fibers selected from a group, wherein the group comprises 12 optical fibers, 24 optical fibers and 48 optical fibers.
10. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the fifth layer (114) has a first diameter in a range of about 7.0±0.3 millimeters, a second diameter in a range of about 10.0±0.3 millimeters and a thickness in a range of about 1.5±0.3 millimeters when the flame retardant optical fiber cable (100) comprises a number of optical fibers selected from a group, wherein the group comprises 12 optical fibers, 24 optical fibers and 48 optical fibers.
11. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the sixth layer (116) has a thickness in a range of about 0.13±0.02 millimeter when the flame retardant optical fiber cable comprises a number of optical fibers selected from a group, wherein the group comprises 12 optical fibers, 24 optical fibers and 48 optical fibers.
12. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the seventh layer (118) has a thickness in a range of about 0.145±0.025 millimeter when the flame retardant optical fiber cable comprises a number of optical fibers selected from a group, wherein the group comprises 12 optical fibers, 24 optical fibers and 48 optical fibers.
13. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the eighth layer (120) has a first diameter in a range of about 12.0±1.0 millimeters, a second diameter in a range of about 16.0±1.0 millimeters and a thickness in a range of about 2.0±0.3 millimeters when the flame retardant optical fiber cable (100) comprises a number of optical fibers selected from a group, wherein the group comprises 12 optical fibers and 24 optical fibers.
14. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the eighth layer (120) has a first diameter in a range of about 13.0±1.0 millimeters, a second diameter in a range of about 17.0±1.0 millimeters and a thickness in a range of about 2.0±0.3 millimeters when the flame retardant optical fiber cable (100) comprises 48 fibers.
15. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the flame retardant optical fiber cable (100) has a diameter in a range of about 16.0±1.0 millimeters and a weight of about 300±10% when the flame retardant optical fiber cable (100) comprises a number of optical fibers selected from a group, wherein the group comprises 12 optical fibers and 24 optical fibers.
16. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the flame retardant optical fiber cable (100) has a diameter in a range of about 17.0±1.0 millimeter and a weight of about 345±10% when the flame retardant optical fiber cable (100) comprises 48 optical fibers.
17. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the flame retardant optical fiber cable (100) has impact strength of about 25 Newton meter.
18. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the flame retardant optical fiber cable (100) has a crush resistance of about 400 Newton per 10 centimeter.
19. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the flame retardant optical fiber cable (100) has a maximum tensile strength of about 3000 Newton.
20. The flame retardant optical fiber cable (100) as claimed in claim 1, wherein the flame retardant optical fiber cable (100) has a kink radius of about 10 D, wherein D is the cable diameter of the flame retardant optical fiber cable (100).
| Section | Controller | Decision Date |
|---|---|---|
| # | Name | Date |
|---|---|---|
| 1 | 201721018968-FORM 3 [13-11-2024(online)].pdf | 2024-11-13 |
| 1 | 201721018968-IntimationOfGrant27-12-2024.pdf | 2024-12-27 |
| 1 | Drawing [30-05-2017(online)].pdf | 2017-05-30 |
| 2 | 201721018968-FORM-26 [13-11-2024(online)].pdf | 2024-11-13 |
| 2 | 201721018968-PatentCertificate27-12-2024.pdf | 2024-12-27 |
| 2 | Description(Provisional) [30-05-2017(online)].pdf | 2017-05-30 |
| 3 | 201721018968-FORM 3 [13-11-2024(online)].pdf | 2024-11-13 |
| 3 | 201721018968-FORM 3 [17-11-2017(online)].pdf | 2017-11-17 |
| 3 | 201721018968-PETITION UNDER RULE 137 [13-11-2024(online)].pdf | 2024-11-13 |
| 4 | 201721018968-Proof of Right [13-11-2024(online)].pdf | 2024-11-13 |
| 4 | 201721018968-FORM-26 [16-01-2018(online)].pdf | 2018-01-16 |
| 4 | 201721018968-FORM-26 [13-11-2024(online)].pdf | 2024-11-13 |
| 5 | 201721018968-RELEVANT DOCUMENTS [13-11-2024(online)].pdf | 2024-11-13 |
| 5 | 201721018968-PETITION UNDER RULE 137 [13-11-2024(online)].pdf | 2024-11-13 |
| 5 | 201721018968-DRAWING [16-01-2018(online)].pdf | 2018-01-16 |
| 6 | 201721018968-Written submissions and relevant documents [13-11-2024(online)].pdf | 2024-11-13 |
| 6 | 201721018968-Proof of Right [13-11-2024(online)].pdf | 2024-11-13 |
| 6 | 201721018968-COMPLETE SPECIFICATION [16-01-2018(online)].pdf | 2018-01-16 |
| 7 | 201721018968-RELEVANT DOCUMENTS [13-11-2024(online)].pdf | 2024-11-13 |
| 7 | 201721018968-FORM 3 [24-01-2018(online)].pdf | 2018-01-24 |
| 7 | 201721018968-Correspondence to notify the Controller [30-10-2024(online)].pdf | 2024-10-30 |
| 8 | 201721018968-ENDORSEMENT BY INVENTORS [24-01-2018(online)].pdf | 2018-01-24 |
| 8 | 201721018968-FORM-26 [30-10-2024(online)].pdf | 2024-10-30 |
| 8 | 201721018968-Written submissions and relevant documents [13-11-2024(online)].pdf | 2024-11-13 |
| 9 | 201721018968-Correspondence to notify the Controller [30-10-2024(online)].pdf | 2024-10-30 |
| 9 | 201721018968-Proof of Right (MANDATORY) [08-02-2018(online)].pdf | 2018-02-08 |
| 9 | 201721018968-US(14)-HearingNotice-(HearingDate-11-11-2024).pdf | 2024-10-10 |
| 10 | 201721018968-FORM 13 [14-06-2023(online)].pdf | 2023-06-14 |
| 10 | 201721018968-FORM-26 [10-04-2018(online)].pdf | 2018-04-10 |
| 10 | 201721018968-FORM-26 [30-10-2024(online)].pdf | 2024-10-30 |
| 11 | 201721018968-FORM 3 [14-06-2023(online)].pdf | 2023-06-14 |
| 11 | 201721018968-ORIGINAL UR 6( 1A) FORM 26-160418.pdf | 2018-08-11 |
| 11 | 201721018968-US(14)-HearingNotice-(HearingDate-11-11-2024).pdf | 2024-10-10 |
| 12 | 201721018968-FORM 13 [14-06-2023(online)].pdf | 2023-06-14 |
| 12 | 201721018968-FORM-26 [14-06-2023(online)].pdf | 2023-06-14 |
| 12 | 201721018968-ORIGINAL UNDER RULE 6 (1A)-FORM 5,26-120218.pdf | 2018-08-11 |
| 13 | 201721018968-PETITION UNDER RULE 137 [14-06-2023(online)].pdf | 2023-06-14 |
| 13 | 201721018968-ORIGINAL UNDER RULE 6 (1A)-140218.pdf | 2018-08-11 |
| 13 | 201721018968-FORM 3 [14-06-2023(online)].pdf | 2023-06-14 |
| 14 | 201721018968-CERTIFIED COPIES-CERTIFICATE U-S 72 147 & UR 133-2 [10-09-2018(online)].pdf | 2018-09-10 |
| 14 | 201721018968-FORM-26 [14-06-2023(online)].pdf | 2023-06-14 |
| 14 | 201721018968-Proof of Right [14-06-2023(online)].pdf | 2023-06-14 |
| 15 | 201721018968-CLAIMS [09-06-2023(online)].pdf | 2023-06-09 |
| 15 | 201721018968-FORM-26 [11-09-2018(online)].pdf | 2018-09-11 |
| 15 | 201721018968-PETITION UNDER RULE 137 [14-06-2023(online)].pdf | 2023-06-14 |
| 16 | 201721018968-CORRESPONDENCE(IPO)-(CERTIFIED COPY)-(11-9-2018).pdf | 2018-09-12 |
| 16 | 201721018968-FER_SER_REPLY [09-06-2023(online)].pdf | 2023-06-09 |
| 16 | 201721018968-Proof of Right [14-06-2023(online)].pdf | 2023-06-14 |
| 17 | 201721018968-CLAIMS [09-06-2023(online)].pdf | 2023-06-09 |
| 17 | 201721018968-FER.pdf | 2022-12-09 |
| 17 | Abstract1.jpg | 2019-08-20 |
| 18 | 201721018968-FER_SER_REPLY [09-06-2023(online)].pdf | 2023-06-09 |
| 18 | 201721018968-FORM 18 [27-05-2021(online)].pdf | 2021-05-27 |
| 18 | 201721018968-Proof of Right [10-02-2020(online)].pdf | 2020-02-10 |
| 19 | 201721018968-FER.pdf | 2022-12-09 |
| 19 | 201721018968-FORM 13 [10-02-2020(online)].pdf | 2020-02-10 |
| 19 | 201721018968-FORM 3 [27-03-2020(online)].pdf | 2020-03-27 |
| 20 | 201721018968-AMENDED DOCUMENTS [10-02-2020(online)].pdf | 2020-02-10 |
| 20 | 201721018968-FORM 18 [27-05-2021(online)].pdf | 2021-05-27 |
| 20 | 201721018968-ORIGINAL UR 6(1A) FORM 1 & 26-190220.pdf | 2020-02-20 |
| 21 | 201721018968-Proof of Right [17-02-2020(online)].pdf | 2020-02-17 |
| 21 | 201721018968-FORM-26 [11-02-2020(online)].pdf | 2020-02-11 |
| 21 | 201721018968-FORM 3 [27-03-2020(online)].pdf | 2020-03-27 |
| 22 | 201721018968-FORM-26 [11-02-2020(online)].pdf | 2020-02-11 |
| 22 | 201721018968-ORIGINAL UR 6(1A) FORM 1 & 26-190220.pdf | 2020-02-20 |
| 22 | 201721018968-Proof of Right [17-02-2020(online)].pdf | 2020-02-17 |
| 23 | 201721018968-AMENDED DOCUMENTS [10-02-2020(online)].pdf | 2020-02-10 |
| 23 | 201721018968-ORIGINAL UR 6(1A) FORM 1 & 26-190220.pdf | 2020-02-20 |
| 23 | 201721018968-Proof of Right [17-02-2020(online)].pdf | 2020-02-17 |
| 24 | 201721018968-FORM-26 [11-02-2020(online)].pdf | 2020-02-11 |
| 24 | 201721018968-FORM 3 [27-03-2020(online)].pdf | 2020-03-27 |
| 24 | 201721018968-FORM 13 [10-02-2020(online)].pdf | 2020-02-10 |
| 25 | 201721018968-AMENDED DOCUMENTS [10-02-2020(online)].pdf | 2020-02-10 |
| 25 | 201721018968-FORM 18 [27-05-2021(online)].pdf | 2021-05-27 |
| 25 | 201721018968-Proof of Right [10-02-2020(online)].pdf | 2020-02-10 |
| 26 | 201721018968-FER.pdf | 2022-12-09 |
| 26 | 201721018968-FORM 13 [10-02-2020(online)].pdf | 2020-02-10 |
| 26 | Abstract1.jpg | 2019-08-20 |
| 27 | 201721018968-CORRESPONDENCE(IPO)-(CERTIFIED COPY)-(11-9-2018).pdf | 2018-09-12 |
| 27 | 201721018968-FER_SER_REPLY [09-06-2023(online)].pdf | 2023-06-09 |
| 27 | 201721018968-Proof of Right [10-02-2020(online)].pdf | 2020-02-10 |
| 28 | Abstract1.jpg | 2019-08-20 |
| 28 | 201721018968-FORM-26 [11-09-2018(online)].pdf | 2018-09-11 |
| 28 | 201721018968-CLAIMS [09-06-2023(online)].pdf | 2023-06-09 |
| 29 | 201721018968-CERTIFIED COPIES-CERTIFICATE U-S 72 147 & UR 133-2 [10-09-2018(online)].pdf | 2018-09-10 |
| 29 | 201721018968-COMPLETE SPECIFICATION [16-01-2018(online)].pdf | 2018-01-16 |
| 29 | 201721018968-CORRESPONDENCE(IPO)-(CERTIFIED COPY)-(11-9-2018).pdf | 2018-09-12 |
| 29 | 201721018968-Proof of Right [14-06-2023(online)].pdf | 2023-06-14 |
| 30 | 201721018968-DRAWING [16-01-2018(online)].pdf | 2018-01-16 |
| 30 | 201721018968-FORM-26 [11-09-2018(online)].pdf | 2018-09-11 |
| 30 | 201721018968-ORIGINAL UNDER RULE 6 (1A)-140218.pdf | 2018-08-11 |
| 30 | 201721018968-PETITION UNDER RULE 137 [14-06-2023(online)].pdf | 2023-06-14 |
| 31 | 201721018968-CERTIFIED COPIES-CERTIFICATE U-S 72 147 & UR 133-2 [10-09-2018(online)].pdf | 2018-09-10 |
| 31 | 201721018968-FORM-26 [14-06-2023(online)].pdf | 2023-06-14 |
| 31 | 201721018968-ORIGINAL UNDER RULE 6 (1A)-FORM 5,26-120218.pdf | 2018-08-11 |
| 32 | 201721018968-FORM 3 [14-06-2023(online)].pdf | 2023-06-14 |
| 32 | 201721018968-ORIGINAL UNDER RULE 6 (1A)-140218.pdf | 2018-08-11 |
| 32 | 201721018968-ORIGINAL UR 6( 1A) FORM 26-160418.pdf | 2018-08-11 |
| 33 | 201721018968-ORIGINAL UNDER RULE 6 (1A)-FORM 5,26-120218.pdf | 2018-08-11 |
| 33 | 201721018968-FORM-26 [10-04-2018(online)].pdf | 2018-04-10 |
| 33 | 201721018968-FORM 13 [14-06-2023(online)].pdf | 2023-06-14 |
| 34 | 201721018968-ORIGINAL UR 6( 1A) FORM 26-160418.pdf | 2018-08-11 |
| 34 | 201721018968-Proof of Right (MANDATORY) [08-02-2018(online)].pdf | 2018-02-08 |
| 34 | 201721018968-US(14)-HearingNotice-(HearingDate-11-11-2024).pdf | 2024-10-10 |
| 35 | 201721018968-FORM-26 [30-10-2024(online)].pdf | 2024-10-30 |
| 35 | 201721018968-FORM-26 [10-04-2018(online)].pdf | 2018-04-10 |
| 35 | 201721018968-ENDORSEMENT BY INVENTORS [24-01-2018(online)].pdf | 2018-01-24 |
| 36 | 201721018968-FORM 3 [24-01-2018(online)].pdf | 2018-01-24 |
| 36 | 201721018968-Proof of Right (MANDATORY) [08-02-2018(online)].pdf | 2018-02-08 |
| 36 | 201721018968-Correspondence to notify the Controller [30-10-2024(online)].pdf | 2024-10-30 |
| 37 | 201721018968-COMPLETE SPECIFICATION [16-01-2018(online)].pdf | 2018-01-16 |
| 37 | 201721018968-ENDORSEMENT BY INVENTORS [24-01-2018(online)].pdf | 2018-01-24 |
| 37 | 201721018968-Written submissions and relevant documents [13-11-2024(online)].pdf | 2024-11-13 |
| 38 | 201721018968-DRAWING [16-01-2018(online)].pdf | 2018-01-16 |
| 38 | 201721018968-FORM 3 [24-01-2018(online)].pdf | 2018-01-24 |
| 38 | 201721018968-RELEVANT DOCUMENTS [13-11-2024(online)].pdf | 2024-11-13 |
| 39 | 201721018968-COMPLETE SPECIFICATION [16-01-2018(online)].pdf | 2018-01-16 |
| 39 | 201721018968-FORM-26 [16-01-2018(online)].pdf | 2018-01-16 |
| 39 | 201721018968-Proof of Right [13-11-2024(online)].pdf | 2024-11-13 |
| 40 | 201721018968-DRAWING [16-01-2018(online)].pdf | 2018-01-16 |
| 40 | 201721018968-FORM 3 [17-11-2017(online)].pdf | 2017-11-17 |
| 40 | 201721018968-PETITION UNDER RULE 137 [13-11-2024(online)].pdf | 2024-11-13 |
| 41 | Description(Provisional) [30-05-2017(online)].pdf | 2017-05-30 |
| 41 | 201721018968-FORM-26 [16-01-2018(online)].pdf | 2018-01-16 |
| 41 | 201721018968-FORM-26 [13-11-2024(online)].pdf | 2024-11-13 |
| 42 | Drawing [30-05-2017(online)].pdf | 2017-05-30 |
| 42 | 201721018968-FORM 3 [17-11-2017(online)].pdf | 2017-11-17 |
| 42 | 201721018968-FORM 3 [13-11-2024(online)].pdf | 2024-11-13 |
| 43 | Description(Provisional) [30-05-2017(online)].pdf | 2017-05-30 |
| 43 | 201721018968-PatentCertificate27-12-2024.pdf | 2024-12-27 |
| 44 | Drawing [30-05-2017(online)].pdf | 2017-05-30 |
| 44 | 201721018968-IntimationOfGrant27-12-2024.pdf | 2024-12-27 |
| 1 | 201721018968SearchstratgyE_10-03-2022.pdf |