Sign In to Follow Application
View All Documents & Correspondence

Fluid Flow Control Valve With Swiveled & Compensated Stroke

Abstract: A fluid flow control valve with swiveled & compensated stroke (100) comprising a solenoid coil assembly (60), a permanent magnet (181), a bridge mounted solenoid assembly (120), a compensated swivel fulcrum (150), a counterweight arrangement (160), and a base unit arrangement (180), wherein a slender cylindrical rod (70) of the compensated swiveled fulcrum (150) is non-rotatably trapped in a fulcrum receptacle (33) of a bridge (30), a compensating spring (85) continuously presses a pair of the plurality of spherical balls (80) against a conical surface (72) of the lender cylindrical rod (70), the bridge mounted solenoid assembly (120) swivels around an axis (121), an electric supply impressed at the electrical terminals of the solenoid coil assembly (60) generates a magnetic field and the solenoid coil assembly (60) moves in an arc (61), the swiveled valve with the compensated precision stroke (100) is mountable in any orientation. Such a valve is a small pre-stage valve with a sub-millimeter stroke, to a big valve of high energy. Figure 1

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
16 June 2020
Publication Number
51/2021
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
deepak.vice@gmail.com
Parent Application
Patent Number
Legal Status
Grant Date
2023-12-12
Renewal Date

Applicants

ROTEX Manufacturers and Engineers Private Limited
R852/853, TTC Iindustrial Area Rabale, Navi Mumbai 400701

Inventors

1. Amit Shah
2702, Somerset Hiranandani, Powai, Mumbai - 400076

Specification

Claims:WE CLAIM:
01. A swiveled valve with a compensated precision stroke (100), comprising a solenoid coil assembly (60), a permanent magnet (181), characterized in that the swiveled valve (100) comprises:
- a bridge mounted solenoid assembly (120) having a bridge (30) and the solenoid coil assembly (60),
- a compensated swivel fulcrum (150) comprising a first end cap assembly (91) and a second end cap assembly (93), having
o a slender cylindrical rod (70) with a conical end (71) at each end having a conical surface (72),
o a pair of plurality of spherical balls (80), and
o a compensating spring (85),
- a counterweight arrangement (160) having a counterweight part (82) and a support spring (81), and
- a base unit arrangement (180) having a base unit (190).
wherein
the slender cylindrical rod (70) of the compensated swiveled fulcrum (150) is non-rotatably trapped in a fulcrum receptacle of the bridge (30), the compensating spring (85) continuously presses the pair of the plurality of spherical balls (80) against the conical surface (72) of the lender cylindrical rod (70), the bridge mounted solenoid assembly (120) swivels around an axis (121), an electric supply impressed at the electrical terminals of the solenoid coil assembly (60) generates a magnetic field and the solenoid coil assembly (60) moves in an arc (61) around the permanent magnet (181), the counterweight arrangement (160) keeps the solenoid coil assembly (60) in a damped floating situation when unenergized, the swiveled valve with a compensated precision stroke (100) mountable in any orientation.
02. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the bridge (30) has a solenoid end (31), a counterweight end (32), a fulcrum receptacle (33), the solenoid end has a coil seat (34) to receive a solenoid coil assembly (60), and a pair of wiring routes (35), the counterweight end (32) has a spring seat (36) and a counterweight disposing means (37), between the counterweight end (32) and the fulcrum receptacle is situated a valve head base (39).

03. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the base unit (190) has a provision for a flow path (191) having a flow path opening (192), the flow path (191) connecting a pre-stage path to a main stage path, a limiting pillars (196), a first fulcrum resting point (193) and a second fulcrum resting point (194), an anchor point (195).

04. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the base unit (190) has a first end cap assembly (91) enclosing and including the plurality of spherical balls (80) at a first end (92), and a second end cap assembly (93) enclosing and including the plurality of spherical balls (80) at the second end (94).

05. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the counterweight part (82) is disposed at the counterweight end (32) of the bridge (30) , while the support spring (81) is anchored between the counterweight end (32) and an anchor point (195) in the base unit (190).

06. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the bridge mounted solenoid assembly (120) with the compensated swiveled fulcrum (150) is situated in the first fulcrum resting point (193) and the second fulcrum resting point (194) of the base unit (190), such that the first end cap assembly (91) is rigidly disposed while the second end cap assembly (93) is floatingly disposed and constantly under a pre-load force of the compensating spring (85), the permanent magnet (181) is circumferentially engulfed by the solenoid coil assembly (60), the permanent magnet (181) is non-movably secured under the coil-magnet cap (183), held in place by the limiting pillars (196) of the base unit (190).

07. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the compensating spring (85) is any one of a compression spring, a tension spring, a leaf spring or a torsion spring.

08. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the support spring (81) is any one of a compression spring, a tension spring, a leaf spring or a torsion spring.

09. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the permanent magnet (181) is a cylindrical type magnet.

10. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the solenoid coil assembly (60) has a comparable pickup and hold on VA.

11. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the second end cap assembly (93) being floatingly disposed causes a lateral resultant movement (74) of the bridge (30).

12. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the swiveled valve is a pre-stage valve with a compensated sub-millimeter stroke (63).

13. The swiveled valve with the compensated precision stroke (100) as claimed in claim 13, wherein the sub-millimeter stroke (63) is a fraction of an orthogonal movement of the solenoid coil assembly (60).

14. The swiveled valve with the compensated precision stroke (100) as claimed in claim 01, wherein the swiveled valve is a valve with a minimal operational energy per unit size of the valve. , Description:Form 2
The Patent Act 1970
(39 of 1970)
&
The Patent Rules 2003

Complete Specification
(See section 10 and rule 13)

Title of the Invention:
FLUID FLOW CONTROL VALVE
WITH SWIVELED & COMPENSATED STROKE

Applicant: ROTEX Manufacturers and Engineers Private Limited

Nationality: Indian

Address: R852/853, TTC industrial Area
Rabale, Navi Mumbai 400701,
Maharashtra, INDIA

The following specification particularly describes the invention and the manner in which it is to be performed.

FIELD OF THE INVENTION
The present invention relates to flow control valves, particularly precision valves. Such small valves are particularly used in positioners and elsewhere in big valves when a precision functioning of higher order is needed.

BACKGROUND OF THE INVENTION
Fluid flow control valves, simply referred as valves hereinafter, are a well-established electromechanical device, used in almost every process industry. Various types of valves such as ball valve, butterfly valve, diaphragm valve are known.
Control valves are normally fitted with valve actuators and along with positioners.
Size of valves, generally referred to as a flange size, based on size of corresponding pipeline, varies from more than a meter to less than a millimeter.
Patent application Number 3562/DELNP/2014 discloses a method and system for controlling the actuator of a small opening and regulated delivery valve in the context of control of the actuator of an air intake valve.
Such two-stage valve arrangements are also deployed in electro-pneumatic positioners. WO2014/131427A1 discloses a pilot stage valve that is arranged to translate discrete valued electrical signal into binary values pneumatic signal. US5699824 discloses an electrical-pneumatic system with objective of reduced electrical energy consumption.
For such applications involving a pre-stage valve operating a bigger valve, or otherwise, there are disclosed low powered solenoid actuated valves as in US2016/0186882A1. However, there exists a gap in technology with respect to small valves with minimal energy and maximum precision in real-time varying situation of wear and temperature variation, which the present invention fulfills.
Importantly, inventive concepts for small size valves generally do not benefit large size valves, which the present invention also addresses.

OBJECTIVES
The objective is to invent a pre-stage electro-pneumatic valve that is immune to wear of moving mechanical components.
Another objective is to invent a pre-stage electro-pneumatic valve that is suitable for precise sub-millimeter travel of valve stroke consistently.
Yet another objective is to invent a pre-stage electro-pneumatic valve that requires minimum electrical energy.
Yet another objective is to invent a pre-stage electro-pneumatic valve that is operationally immune to temperature variations.
Yet another objective is to invent a valve that requires minimal operational energy per unit size of the valve and the design is scalable from a low energy to a high energy device.

SUMMARY OF INVENTION
The present invention is a swiveled valve driven by a non-linear solenoid. The preferred embodiment described is a pre-stage valve wherein a closing to opening stroke travel of orifice of the pre-stage valve is less than half a millimeter. Person skilled in the art can well appreciate that inherent mechanical clearances and operational wear can severely affect performance of such a valve and the present invention effectively addresses such challenge. Managing such small stroke travel is another challenge addressed here.
However, it is to be expressly understood that the present invention is particularly expandable to valves of any and bigger size and energy consumption as shall be clear in following paras.
The swiveled valve driven by the non-linear solenoid comprises a bridge mounted solenoid assembly, a compensated swivel fulcrum, a counterweight arrangement and a base unit arrangement having a base unit. The bridge mounted solenoid assembly swivels around an axis.
The bridge mounted solenoid assembly of the swiveled valve comprises a bridge and a solenoid coil assembly.
The solenoid coil assembly is a cylindrical coil disposed in the coil seat while a pair of wire ends channeled through the corresponding wiring routes and via wiring holes to a terminal disposed on the base unit. Since the wires are coming out as close as possible to the pivot, this arrangement facilitates swivel of the bridge mounted solenoid assembly around the axis without a mechanical strain on the pair of wire ends or causing unrequired load on mechanism.
The compensated swiveled fulcrum comprises a slender cylindrical rod, a pair of plurality of spherical balls and a compensating spring at one end. A first end cap assembly encloses and includes the plurality of spherical balls at a first end while a second end cap assembly encloses and includes the plurality of spherical balls at the second end. The slender cylindrical rod has a conical end on either side. Each conical end has a conical surface resting against the plurality of spherical balls.
The counterweight arrangement comprises a counterweight part and a support spring. The counterweight part is disposed at the counterweight end of the bridge, while the support spring is anchored between the counterweight end and an anchor point in the base unit.
The slender cylindrical rod of the compensated swiveled fulcrum is trapped in the fulcrum receptacle of the bridge such that no relative motion is possible between the fulcrum receptacle and the slender cylindrical rod.
The base unit arrangement has a base unit, a cylindrical type permanent magnet, a coil-magnet cap made of a ferrous material, an electrical connection. The base unit has a provision for a flow path having a flow path opening, the flow path connecting a pre-stage path to a main stage path, a limiting pillar, a first fulcrum resting point and a second fulcrum resting point, the anchor point.
The bridge mounted solenoid assembly with the compensated swiveled fulcrum is situated in the first fulcrum resting point and the second fulcrum resting point of the base unit, such that the first end cap assembly is firmly rested while the second end cap assembly is constantly under a pre-load force of the compensating spring. The cylindrical permanent magnet is circumferentially engulfed by the solenoid coil assembly.
When an electric supply is impressed at the electrical terminals the solenoid coil assembly generates a magnetic field and the solenoid coil assembly moves in an arc around the cylindrical type permanent magnet. The stroke length in the present embodiment is required to be less than half a milli-meter and such sub-millimeter stroke is a fraction of an orthogonal movement of the solenoid coil assembly.
Consequent to the movement in the arc, an airgap around the solenoid coil assembly is non-uniform. The solenoid coil assembly has a determined end point of a minimal airgap in collaboration with the counterweight arrangement. The energy consumption is minimized when the solenoid coil assembly is switched on due to the eliminated static friction consequent to damped floating situation of the solenoid coil assembly.
The counterweight arrangement ensures damped floating situation of the solenoid coil assembly independent and irrespective of whatever orientation the swiveled valve is mounted in a field application. This is of immense benefit as it is difficult to always mount a positioner in a particular orientation and a pre-stage valve provided therein is expected to work in all orientations.
It is known that a relative movement between various moving components necessitates a definite minimum gap of few hundred microns, and such a gap varies due to wear, temperature variation and manufacturing variations. The present embodiment being focused on a sub-millimeter stroke length, such variation particularly is of concern and the present invention addresses this challenge as described hereinbelow.
This arrangement particularly addresses a linear variation in a length of the slender cylindrical rod. Thus, the length may increase or decrease due to ambient temperature; or the length may reduce due to a wear between the spherical balls and the conical surface. In the present invention the first end cap assembly is rigidly disposed while the second end cup assembly is floatingly disposed. A compensating spring applies a continuous pre-load force eliminating any minimal gap between the plurality of spherical balls and the conical surface. Importantly, the wear between the spherical balls and the conical surface which would result in axial shift of the slender cylindrical rod and consequently the stroke length; is eliminated by constantly pushing the spherical balls and the corresponding conical surfaces against each other. It is noteworthy that such an arrangement results in an unwanted but harmless lateral resultant movement of the bridge.
The counterweight arrangement keeps the solenoid coil assembly in a damped floating situation and a pickup VA requirement of the solenoid coil assembly is comparable to a hold on VA requirement, both significantly lesser than when the counterweight arrangement isn’t provided.
The swiveled valve operation facilitates arriving at a minimal required stroke length without significant increase in corresponding VA consumption.

BRIEF DESCRIPTION OF DRAWINGS
Figure 1 is a perspective view of a swiveled valve with compensated precision stroke as per present invention.
Figure 2 is another perspective view of the swiveled valve with compensated precision stroke.
Figure 3 is a sectional front view of the swiveled valve showing a valve head of the swiveled valve.
Figure 4A and 4B are sections front views showing a swivel of a bridge.
Figure 5A and 5B are perspective views of the bridge.
Figure 6A-6F are views of a compensated swivel fulcrum and its parts.
Figure 7A and 7B are a perspective view and a part view of a base unit.
Figure 8A, 8B and 8C show an arc movement of a solenoid coil.
Figure 9 is a line diagram of the swivel arrangement of the present invention.
Figure 10 is a line diagram showing swiveling parameters of the present invention.

DETAILED DESCRIPTION OF INVENTION
The present invention shall now be described with the help of accompanying drawings. It is to be expressly understood that the present invention can be worked with several variations and the embodiment described should not be construed to limit the invention in any manner whatsoever.
The present invention is a swiveled valve driven by a non-linear solenoid. The preferred embodiment described is a pre-stage valve, wherein a closing to opening stroke travel of orifice of the pre-stage valve is less than half a millimeter. Person skilled in the art can well appreciate that inherent mechanical clearances and operational wear can severely affect performance of such a valve and the present invention effectively addresses such challenge. Managing such small stroke travel is another challenge addressed here.
However, it is to be expressly understood that the present invention is particularly expandable to valves of any and bigger size and energy consumption as shall be clear in following paras.
Figure 1, 2, the swiveled valve driven by the non-linear solenoid (100) comprises a bridge mounted solenoid assembly (120), a compensated swivel fulcrum (150), a counterweight arrangement (160) and a base unit arrangement (180), having a base unit (190). The bridge mounted solenoid assembly (120) swivels around an axis (121).
Figure 4A, 4B, the bridge mounted solenoid assembly (120) of the swiveled valve (100) comprises a bridge (30) and a solenoid coil assembly (60).
Figure 5A, 5B, the bridge (30) has a solenoid end (31), a counterweight end (32), a fulcrum receptacle (33). The solenoid end has a coil seat (34) to receive a solenoid coil, and a pair of wiring routes (35). The counterweight end (32) has a spring seat (36) and a counterweight disposing means (37). Between the counterweight end (32) and the fulcrum receptacle is situated a valve head base (39).
The solenoid coil assembly (60) is a cylindrical coil disposed in the coil seat (34) while a pair of wire ends channeled through the corresponding wiring routes (35) and via wiring holes (40) to a terminal (182) disposed on the base unit (190). This arrangement facilitates swivel of the bridge mounted solenoid assembly (120) around the axis (121) without a mechanical strain on the pair of wire ends. The mechanical strain is particularly and virtually eliminated since the wiring holes (40) on the bridge (30) are situated near the compensated swiveled fulcrum (150). Consequently, the wire movement is least when the bridge (30) swivels, and this minimizes the stress on wire and also reduces movement of wires which consequently do not resist the movement nor add operational load.
Figure 6A, 6B, the compensated swiveled fulcrum (150) comprises a slender cylindrical rod (70), a pair of plurality of spherical balls (80) and a compensating spring (85) at one end. A first end cap assembly (91) encloses and includes the plurality of spherical balls (80) at a first end (92) while a second end cap assembly (93) encloses and includes the plurality of spherical balls at the second end (94). The slender cylindrical rod (70) and the plurality of spherical balls (80) are of a compatible hardness.
Figure 6F, the slender cylindrical rod (70) has a conical end (71) on either side. Each conical end (71) has a conical surface (72) resting against the plurality of spherical balls (80).
Figure 1, 2 and 9, the counterweight arrangement (160) comprises a counterweight part (82) and a support spring (81). The counterweight part (82) is disposed at the counterweight end (32) of the bridge (30), while the support spring (81) is anchored between the counterweight end (32) and an anchor point (195) in the base unit (190).
The slender cylindrical rod (70) of the compensated swiveled fulcrum (150) is trapped in the fulcrum receptacle (33) of the bridge (30) such that no relative motion is possible between the fulcrum receptacle (33) and the slender cylindrical rod (70).
Figure 1, 2, 7A, 7B, the base unit arrangement (180) has a base unit (190), a cylindrical type permanent magnet (181), a coil-magnet cap (183) made of a ferrous material, an electrical connection (182). The base unit (190) has a provision for a flow path (191) having a flow path opening (192), the flow path (191) connecting a pre-stage path to a main stage path, a limiting pillars (196), a first fulcrum resting point (193) and a second fulcrum resting point (194), the anchor point (195).
The bridge mounted solenoid assembly (120) with the compensated swiveled fulcrum (150) is situated in the first fulcrum resting point (193) and the second fulcrum resting point (194) of the base unit (190), such that the first end cap assembly (91) is firmly rested while the second end cap assembly (93) is constantly under a pre-load force of the compensating spring (85). The cylindrical permanent magnet (181) is circumferentially engulfed by the solenoid coil assembly (60). The cylindrical permanent magnet (181) is non-movably secured under the coil-magnet cap (183), held in place by a limiting pillars (196) of the base unit (190).
Figure 8A, 8B, 8C, 10 when an electric supply is impressed at the electrical terminals the solenoid coil assembly (60) generates a magnetic field and the solenoid coil assembly (60) moves in an arc (61) around the cylindrical type permanent magnet (181). The stroke length in the present embodiment is required to be less than half a milli-meter and such sub-millimeter stroke (63) is a fraction of an orthogonal movement (64) of the solenoid coil assembly (60).
Consequent to the movement in the arc (61), an airgap around the solenoid coil assembly is non-uniform. The solenoid coil assembly (60) has a determined end point of a minimal airgap (65) in collaboration with the counterweight arrangement (160). The energy consumption is minimized when the solenoid coil assembly is switched on due to the eliminated static friction consequent to damped floating situation of the solenoid coil assembly (60). This collaborative feature facilitates application of the present invention for valves of bigger size and energy.
The counterweight arrangement (160) ensures damped floating situation of the solenoid coil assembly (60) independent and irrespective of whatever orientation the swiveled valve (100) is mounted in a field application. This is of immense benefit as it is difficult to always mount a positioner in a particular orientation and a pre-stage valve provided therein is expected to work in all orientations.
Figure 3, 10, the valve head (38) also moves in an arc (62) and closes / opens the valve.
It is known that a relative movement between various moving components necessitates a definite minimum gap of few hundred microns, and such a gap varies due to wear, temperature variation and manufacturing variations. The present embodiment being focused on a sub-millimeter stroke length, such variation particularly is of concern and the present invention addresses this challenge as described hereinbelow.
This arrangement particularly addresses a linear variation in a length (73) of the slender cylindrical rod (70), Figure 6F. Thus, the length (73) may increase or decrease due to ambient temperature; or the length (73) may reduce due to a wear between the spherical balls (80) and the conical surface (72). In the present invention the first end cup assembly (91) is rigidly disposed while the second end cup assembly (93) is floatingly disposed, Figure 6C, 6D. A compensating spring (85) applies a continuous pre-load force eliminating any minimal gap between the plurality of spherical balls (80) and the conical surface (72). Importantly, the wear between the spherical balls (80) and the conical surface (72) which would result in axial shift of the slender cylindrical rod (70) and consequently the stroke length; is eliminated by constantly pushing the spherical balls (80) and the corresponding conical surfaces (72) against each other. Such feature facilitates application of the present invention for valves of bigger size and energy, requiring precision in operation.
Figure 6E, it is noteworthy that such an arrangement results in an unwanted but harmless lateral resultant movement (74) of the bridge (30).
The counterweight arrangement (160) keeps the solenoid coil assembly (60) in a damped floating situation and a pickup VA requirement of the solenoid coil assembly (60) is comparable to a hold on VA requirement, both significantly lesser than when the counterweight arrangement (160) isn’t provided. Such feature facilitates application of the present invention for valves of bigger size and minimum energy per unit size valve.
The swiveled valve operation facilitates arriving at a minimal required stroke length without significant increase in corresponding VA consumption. Such feature facilitates application of the present invention for valves of bigger size and reduced energy.
In the preferred embodiment, a compression spring is shown, however, as a variation, a tension spring or a torsion spring or a leaf spring is providable instead of a compression spring.
The permanent magnet in the preferred embodiment is a cylindrical type permanent magnet, however, as a variation the magnet may be of any shape.

Documents

Application Documents

# Name Date
1 202021025292-IntimationOfGrant12-12-2023.pdf 2023-12-12
1 202021025292-POWER OF AUTHORITY [16-06-2020(online)].pdf 2020-06-16
2 202021025292-FORM FOR SMALL ENTITY(FORM-28) [16-06-2020(online)].pdf 2020-06-16
2 202021025292-PatentCertificate12-12-2023.pdf 2023-12-12
3 202021025292-FORM FOR SMALL ENTITY [16-06-2020(online)].pdf 2020-06-16
3 202021025292-FORM 3 [21-10-2022(online)].pdf 2022-10-21
4 202021025292-FORM 3 [29-01-2022(online)].pdf 2022-01-29
4 202021025292-FORM 1 [16-06-2020(online)].pdf 2020-06-16
5 202021025292-FIGURE OF ABSTRACT [16-06-2020(online)].jpg 2020-06-16
5 202021025292-ABSTRACT [25-01-2022(online)].pdf 2022-01-25
6 202021025292-FER_SER_REPLY [25-01-2022(online)].pdf 2022-01-25
6 202021025292-EVIDENCE FOR REGISTRATION UNDER SSI(FORM-28) [16-06-2020(online)].pdf 2020-06-16
7 202021025292-FORM 3 [14-01-2022(online)].pdf 2022-01-14
7 202021025292-EVIDENCE FOR REGISTRATION UNDER SSI [16-06-2020(online)].pdf 2020-06-16
8 202021025292-FER.pdf 2021-12-29
8 202021025292-DRAWINGS [16-06-2020(online)].pdf 2020-06-16
9 202021025292-COMPLETE SPECIFICATION [16-06-2020(online)].pdf 2020-06-16
9 202021025292-CORRESPONDENCE(IPO)-(CERTIFIED COPY)-(21-7-2020).pdf 2021-10-19
10 202021025292-FORM FOR SMALL ENTITY [17-06-2020(online)].pdf 2020-06-17
10 Abstract1.jpg 2021-10-19
11 202021025292-FORM 18 [17-06-2020(online)].pdf 2020-06-17
11 202021025292-ORIGINAL UR 6(1A) FORM 1,5 & 26-130820.pdf 2020-08-20
12 202021025292-EVIDENCE FOR REGISTRATION UNDER SSI [17-06-2020(online)].pdf 2020-06-17
12 202021025292-FORM 3 [12-08-2020(online)].pdf 2020-08-12
13 202021025292-CERTIFIED COPIES-CERTIFICATE U-S 72 147 & UR 133-2 [17-06-2020(online)].pdf 2020-06-17
13 202021025292-Form 1 (Submitted on date of filing) [22-07-2020(online)].pdf 2020-07-22
14 202021025292-FORM28 [22-07-2020(online)].pdf 2020-07-22
14 202021025292-Request Letter-Correspondence [22-07-2020(online)].pdf 2020-07-22
15 202021025292-Power of Attorney [22-07-2020(online)].pdf 2020-07-22
16 202021025292-FORM28 [22-07-2020(online)].pdf 2020-07-22
16 202021025292-Request Letter-Correspondence [22-07-2020(online)].pdf 2020-07-22
17 202021025292-Form 1 (Submitted on date of filing) [22-07-2020(online)].pdf 2020-07-22
17 202021025292-CERTIFIED COPIES-CERTIFICATE U-S 72 147 & UR 133-2 [17-06-2020(online)].pdf 2020-06-17
18 202021025292-FORM 3 [12-08-2020(online)].pdf 2020-08-12
18 202021025292-EVIDENCE FOR REGISTRATION UNDER SSI [17-06-2020(online)].pdf 2020-06-17
19 202021025292-FORM 18 [17-06-2020(online)].pdf 2020-06-17
19 202021025292-ORIGINAL UR 6(1A) FORM 1,5 & 26-130820.pdf 2020-08-20
20 202021025292-FORM FOR SMALL ENTITY [17-06-2020(online)].pdf 2020-06-17
20 Abstract1.jpg 2021-10-19
21 202021025292-COMPLETE SPECIFICATION [16-06-2020(online)].pdf 2020-06-16
21 202021025292-CORRESPONDENCE(IPO)-(CERTIFIED COPY)-(21-7-2020).pdf 2021-10-19
22 202021025292-DRAWINGS [16-06-2020(online)].pdf 2020-06-16
22 202021025292-FER.pdf 2021-12-29
23 202021025292-EVIDENCE FOR REGISTRATION UNDER SSI [16-06-2020(online)].pdf 2020-06-16
23 202021025292-FORM 3 [14-01-2022(online)].pdf 2022-01-14
24 202021025292-EVIDENCE FOR REGISTRATION UNDER SSI(FORM-28) [16-06-2020(online)].pdf 2020-06-16
24 202021025292-FER_SER_REPLY [25-01-2022(online)].pdf 2022-01-25
25 202021025292-FIGURE OF ABSTRACT [16-06-2020(online)].jpg 2020-06-16
25 202021025292-ABSTRACT [25-01-2022(online)].pdf 2022-01-25
26 202021025292-FORM 3 [29-01-2022(online)].pdf 2022-01-29
26 202021025292-FORM 1 [16-06-2020(online)].pdf 2020-06-16
27 202021025292-FORM FOR SMALL ENTITY [16-06-2020(online)].pdf 2020-06-16
27 202021025292-FORM 3 [21-10-2022(online)].pdf 2022-10-21
28 202021025292-PatentCertificate12-12-2023.pdf 2023-12-12
28 202021025292-FORM FOR SMALL ENTITY(FORM-28) [16-06-2020(online)].pdf 2020-06-16
29 202021025292-POWER OF AUTHORITY [16-06-2020(online)].pdf 2020-06-16
29 202021025292-IntimationOfGrant12-12-2023.pdf 2023-12-12

Search Strategy

1 202021025292E_28-12-2021.pdf

ERegister / Renewals

3rd: 08 Jan 2024

From 16/06/2022 - To 16/06/2023

4th: 08 Jan 2024

From 16/06/2023 - To 16/06/2024

5th: 08 Jan 2024

From 16/06/2024 - To 16/06/2025

6th: 08 Jan 2024

From 16/06/2025 - To 16/06/2026

7th: 08 Jan 2024

From 16/06/2026 - To 16/06/2027

8th: 08 Jan 2024

From 16/06/2027 - To 16/06/2028