Sign In to Follow Application
View All Documents & Correspondence

Melt Delivery Assembly Including Frame Assembly Positioned Outside Of Platen Envelope And Having Multiple Outlet Assembly

Abstract: A melt delivery assembly (200) comprising: a frame assembly (202) being positioned outside of a platen envelope (153) being defined by a platen assembly (150) the frame assembly (202) being configured to receive a melt from a melt preparation assembly (110) and the frame assembly (202) including: a multiple outlet assembly (204) being configured to fluidly deliver the melt to multiple conduits (207) toward the platen envelope (153).

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
22 May 2013
Publication Number
20/2016
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
remfry-sagar@remfry.com
Parent Application

Applicants

HUSKY INJECTION MOLDING SYSTEMS LTD.
500 Queen Street South Bolton Ontario L7E 5S5

Inventors

1. GALT John Robert
68 MacTaggart Drive Nobleton Ontario L0G 1N0

Specification

MELT-DELIVERY ASSEMBLY INCLUDING FRAME ASSEMBLY POSITIONED
OUTSIDE OF PLATEN ENVELOPE, AND HAVING MULTIPLE-OUTLET
ASSEMBLY
5 TECHNICAL FIELD
An aspect generally relates to (but is not limited to) a melt-delivery assembly and/or a molding
system having a melt-delivery assembly.
10 SUMMARY
According to one aspect, there is provided a melt-delivery assembly, comprising: a frame
assembly positioned outside of a platen envelope, the frame assembly configured to receive a
melt from a melt-preparation assembly, and the frame assembly, including (by way of example
15 and is not limited to): a multiple-outlet assembly configured to fluidly deliver the melt to
multiple conduits toward the platen envelope.
Other aspects and features of the non-limiting embodiments will now become apparent to those
skilled in the art upon review of the following detailed description of the non-limiting
20 embodiments with the accompanying drawings.
DETAILED DESCRIPTION OF THE DRAWINGS
The non-limiting embodiments will be more fully appreciated by reference to the following
25 detailed description of the non-limiting embodiments when taken in conjunction with the
accompanying drawings, in which:
FIGS. 1 to 14 (inclusive) depict various schematic representations of a melt-delivery assembly
(200).
30
The drawings are not necessarily to scale and may be illustrated by phantom lines,
diagrammatic representations and fragmentary views. In certain instances, details not necessary
for an understanding of the embodiments (and/or details that render other details difficult to
perceive) may have been omitted.
3 5
DETAILED DESCRIPTION OF THE NON-LIMITING EMBODIMENT(S)
By way of example, and not limited to any specific details provided in the Detailed
Description, FIGS. 1 to 14 (inclusive) depict the schematic representations of the melt-delivery
5 assembly (200). It will be appreciated that the melt-delivery assembly (200) may include (and
is not limited to) components that may be known to persons skilled in the art, and these known
components will not be described here; these known components are described, at least in part,
in the following reference books (for example): (i) "Iniection Molding HandbooP7 authored by
OSSWALDITURNGIGRAMANN (ISBN: 3-446-21669-2), (ii) "Injection Molding Handbook"
10 authored by ROSATO AND ROSATO (ISBN: 0-412-99381-3), (iii) "Injection Molding
Systems" 3'* Edition authored by JOHANNABER (ISBN 3-446-17733-7) andlor (iv) "Runner
and Gating Design Handbook" authored by BEAUMONT (ISBN 1-446-22672-9). It will be
appreciated that for the purposes of this document, the phrase "includes (by way of example
and is not limited to)" is equivalent to the word "comprising." The word "comprising" is a
15 transitional phrase or word that links the preamble of a patent claim to the specific elements set
forth in the claim, which define what the invention itself actually is. The transitional phrase acts
as a limitation on the claim, indicating whether a similar device, method, or composition
infringes the patent if the accused device (etc) contains more or fewer elements than the claim
in the patent. The word "comprising" is to be treated as an open transition, which is the
20 broadest form of transition, as it does not limit the preamble to whatever elements are identified
in the claim.
Referring to FIG. 1, the melt-delivery assembly (200) may include (by way of example and is
not limited to): a frame assembly (202). The frame assembly (202) may be positioned outside of
25 a platen envelope (153). The platen envelope (153) may be defined, for example, as an outer
perimeter or boundary that extends around the outer limits of a platen assembly (150); an
example of the platen assembly (150) is provided further below. The frame assembly (202) may
be configured to receive a melt. The melt may be provided by a melt-preparation assembly (110).
Examples of the melt-preparation assembly (110) may include (by way of example and is not
30 limited to): an extruder assembly having (by way of example and is not limited to) a hopper unit
connected to a barrel unit with a screw assembly received in the barrel unit. The melt-preparation
assembly (110) may be an assembly that is configured to: (i) receive a solidified resin (pellets for
example, etc), and (ii) convert or prepare the resin into the melt, which is a flowable liquid, and
then to provide the melt to the melt-delivery assembly (200). The frame assembly (202) may
35 include (by way of example and is not limited to): a multiple-outlet assembly (204). The
multiple-outlet assembly (204) may be configured to fluidly deliver the melt to multiple conduits
(207) toward the platen envelope (153). The multiple conduits (207) may include (by way of
example and is not limited to): a first conduit (207A), and a second conduit (207B). By way of
example, the multiple-outlet assembly (204) may include (by way of example and is not limited
5 to): an outlet (204A) and an outlet (204B) that may be spaced apart from the outlet (204A). FIG.
1 also depicts the following schematic representation of the following assemblies, such as: (i) a
molding system (loo), (ii) the melt-preparation assembly (110), (iii) the platen assembly (150),
and (iv) a runner assembly (190). It will be appreciated that the molding system (loo), the meltpreparation
assembly (110), the platen assembly (150), the runner assembly (190) and the melt-
10 delivery assembly (200) may be assembled and sold by one vendor or may be supplied by
various vendors in any permutation and combination as assemblies. The runner assembly (190)
is an assembly that is connected to and is supported and by the platen assembly (150), and the
runner assembly (190) may be used to distribute the melt to the mold assembly (180). By way of
example, it will be appreciated that the melt-preparation assembly (110) may include (by way of
15 example and is not limited to): the melt-delivery assembly (200). In addition, it will also be
appreciated that the platen assembly (150) may include (by way of example and is not limited
to): the melt-delivery assembly (200). Also, it will be appreciated that the mold assembly (180)
may include (by way of example and is not limited to): the melt-delivery assembly (200). And as
well, it will be appreciated that the molding system (100) may include (by way of example and is
20 not limited to): the melt-delivery assembly (200). And in addition, it will be appreciated that the
molding system (100) may include (by way of example and is not limited to): (i) the platen
assembly (150) and the melt-preparation assembly (110) both configured to cooperate with the
melt-delivery assembly (200). The platen assembly (150) may include (by way of example and is
not limited to): (i) a stationary platen (152), (ii) a movable platen (154), (iii) a rod assembly
25 (156), (iv) a clamp unit (158), and (v) a lock assembly (160). The movable platen (154) may be
configured to be movable relative to the stationary platen (152). The rod assembly (156) may be
configured to extend between the stationary platen (152) and the movable platen (154). The
clamp unit (158) may be attached to each end of a respective rod of the rod assembly (156) at the
stationary platen (152). The lock assembly (160) may be attached to each end of a respective rod
30 of the rod assembly (156) at the movable platen (154). The clamp unit (158) may be configured
to selectively apply, in use, a clamping force to the stationary platen (152) and the movable
platen (154). The lock assembly (160) may be configured to lock or prevent movement of the
movable platen (154) relative to the stationary platen (152) while the clamping force is received,
in use, by the stationary platen (152) and the movable platen (154). The stationary platen (152)
35 and the movable platen (154) are configured to support a mold assembly (180). The mold
assembly (180) may include (by way of example and is not limited to): (i) a stationary-mold
portion (182), and (ii) a movable-mold portion (184) that may be configured to be movable
relative to the stationary-mold portion (182). The stationary platen (152) may be configured to
support and connect with the stationary-mold portion (182). The movable platen (154) may be
5 configured to support and connect with the movable-mold portion (184), so that the stationarymold
portion (182) and the movable-mold portion (184) face each other. The mold assembly
(180) may define a plurality of mold cavities that may be used for receiving the melt from the
melt-preparation assembly (110), and the melt then may solidify within the mold cavities so as to
form mold articles, such as PET (polyethylene terephthalate) performs, etc. The frame assembly
10 (202) may be set apart from the melt-preparation assembly (110). The frame assembly (202) may
be positioned between the platen assembly (150) and the melt-preparation assembly (110). The
frame assembly (202) may be positioned between a stationary platen (152) of the platen
assembly (150) and the melt-preparation assembly (110). It will be appreciated that for the
remaining FIGS. 1 to 13, only a limited aspect of the platen assembly (150) may be depicted.
15
Referring to FIG. 2, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that the frame assembly (202) may be configured to support an inlet (206)
configured to: (i) fluidly communicate with the melt-preparation assembly (110), and (ii)
receive, in use, a melt being prepared and provided, in use, by the melt-preparation assembly
20 (110). In addition, the multiple-outlet assembly (204) may be configured to: (i) fluidly
communicate with the inlet (206), and (ii) transmit, in use, the melt toward a mold assembly
(180) being supported by a platen assembly (150). By way of the example depicted in FIG. 2, the
multiple-outlet assembly (204) may include (by way of example and is not limited to): an outlet
(204A), an outlet (204B), an outlet (204C), an outlet (204D). According to one variation, the
25 stationary platen (152) may be configured to support the runner assembly (190), and the
multiple-outlet assembly (204) may be configured to transmit, in use, the melt from the meltpreparation
assembly (110) to the runner assembly (190). According to another variation, the
stationary platen (152) may be configured to support the runner assembly (190), and the
multiple-outlet assembly (204) may be configured to transmit, in use, the melt from the melt-
30 preparation assembly (110) to the runner assembly (190) along the multiple conduits (207)
extending through the stationary platen (152).
Referring to FIG. 3, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that: (A) the stationary platen (152) may be configured to support a runner
35 assembly (190), and (B) the multiple-outlet assembly (204) may be configured to transmit, in
use, the melt from the melt-preparation assembly (110) to the runner assembly (190) along the
multiple conduits (207) bypassing the stationary platen (152). The following statement may be
applied to any of the FIGS: it will be appreciated that not all of the multiple conduits (207) must
bypass the stationary platen (152), and that some of the multiple conduits (207) may bypass
5 while other multiple conduits (207) may extend through the stationary platen (152).
Referring to FIG. 4, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that: the melt-delivery assembly (200) may include (by way of example and is not
limited to): a melt-flow path (201) being configured to fluidly connect the inlet (206) and the
10 multiple-outlet assembly (204) with: (i) a group of shooting-pot assemblies (400A, 400B, 400C,
400D), and (ii) a grouping of valve assemblies (402A, 402B, 402C, 402D being configured to
interact with the group of shooting-pot assemblies (400A, 400B, 400C, 400D). The valve
assemblies may be used or may be configured to prevent a black flow of the melt toward the
melt-preparation assembly (110). In addition, each outlet of the multiple-outlet assembly (204)
15 may be fluidly connected with a respective valve assembly of the grouping of valve assemblies
(402A, 402B, 402C, 402D). According to the example depicted in FIG. 4, melt-delivery
assembly (200) may include (by way of example and is not limited to): a plurality of shootingpot
assemblies, and the melt-preparation assembly (110) may be configured to feed or provide
the melt to the plurality of shooting-pot assemblies. It will be appreciated that any number of
20 shooting-pot assemblies may be used as may be required. The shooting-pot assemblies may be
actuated or activated by a plate assembly, a screw, hydraulic means, electric means, etc.
According to the example depicted in FIG. 4 , the arrangement being depicted may reduce the
number of splits under pressure from known molding systems. The splits from the meltpreparation
assembly (110) to the shooting-pot assemblies do not count because they are not
25 under relatively high pressures. It will be appreciated that the multiple conduits (207) may be
flexible or inflexible, as may be desired. The multiple conduits (207) may include, by way of
example (and not limited to), a first conduit (207A), a second conduit (207B), a third conduit
(207C), and a fourth conduit (207D).
30 Referring to FIG. 5, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that: the melt-delivery assembly (200) may include (by way of example and is not
limited to): a melt-flow path (201) that may be being configured to fluidly connect the inlet (206)
with: (i) a shooting-pot assembly (400), and (ii) a valve assembly (402) that may be configured
to interact with the shooting-pot assembly (400). Each outlet of the multiple-outlet assembly
35 (204) may be fluidly connected with the valve assembly (402). The example depicted in FIG. 5
is arranged such that a single shooting-pot assembly may be utilized to feed the melt to the platen
envelope (153) via the multiple conduits (207), as opposed to using a plurality of shooting-pot
assemblies (such as the example depicted in FIG. 4). According to one variation, the shootingpot
assembly may be positioned at least in part in the stationary platen (152). It will be
5 appreciated that the multiple conduits (207) may be flexible or inflexible.
Referring to FIG. 6, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that: the melt-delivery assembly (200) may include (by way of example and is not
limited to): a melt-flow path (201) that may be configured to fluidly connecting the inlet (206)
10 with the multiple-outlet assembly (204).
Referring to FIG. 7, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that: the stationary platen (152) may be configured to support a runner assembly
(190), and the multiple-outlet assembly (204) may be configured to transmit, in use, the melt
15 from the melt-preparation assembly (110) to the runner assembly (190). The runner assembly
(190) may include (by way of example and is not limited to): a runner-frame assembly (192) that
may be configured to support: (i) a set of splitter modules (194) each of which are configured for
fluid connection with a respective outlet of the multiple-outlet assembly (204), and (ii) a
collection of manifold modules (196). Each manifold module of the collection of manifold
20 modules (196) may be configured for fluid connection with a selected splitter module of the set
of splitter modules (104). The collection of manifold modules (196) may be configured for fluid
connection with the stationary-mold portion (182) of the mold assembly (180). According to the
example depicted in FIG. 7, on the other side of the stationary platen (152), there are splitter
modules (194) that are configured to feed the melt to manifolds. It will be appreciated that the
25 splitter modules (194) and the manifold modules (196) may provide as may splits to the flow of
the melt in the runner assembly (190) as may be required. It will be appreciated that there is no
limit to the number of the splitter modules (194) and the manifold modules (196).
Referring to FIG. 8, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
30 adapted such that: the stationary platen (152) may be configured to support a runner assembly
(190). The stationary platen (152) may be configured to housing and support a set of splitter
modules (194) each of which are configured for fluid connection with a respective outlet of the
multiple-outlet assembly (204). The multiple-outlet assembly (204) may be configured to
transmit, in use, the melt from the melt-preparation assembly (110) to the set of splitter modules
35 (194). The runner assembly (190) may include (by way of example and is not limited to): a
runner-frame assembly (192) that may be configured to support a collection of manifold modules
(196). Each manifold module of the collection of manifold modules (196) may be configured for
fluid connection with a selected splitter module of the set of splitter modules (194). The
collection of manifold modules (196) may be configured for fluid connection with the stationary-
5 mold portion (182) of the mold assembly (180).
Referring to FIG. 9, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that: the stationary platen (152) may be configured to housing and to support: (i) a
set of splitter modules (194) each of which are configured for fluid connection with a respective
10 outlet of the multiple-outlet assembly (204), and (ii) a collection of manifold modules (196).
Each manifold module of the collection of manifold modules (196) may be configured for fluid
connection with a selected splitter module of the set of splitter modules (194). The collection of
manifold modules (196) may be configured for fluid connection with the stationary-mold portion
(182) of the mold assembly (180). The multiple-outlet assembly (204) may be configured to
15 transmit, in use, the melt from the melt-preparation assembly (110) to the set of splitter modules
(194).
Referring to FIG. 10, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that: the melt-delivery assembly (200) may be configured to support a set of splitter
20 modules (194) each of which are configured for fluid connection with a respective outlet of the
multiple-outlet assembly (204). The stationary platen (152) may be configured to support a
collection of manifold modules (196). Each manifold module of the collection of manifold
modules (196) may be configured for fluid connection with a selected splitter module of the set
of splitter modules (194). The collection of manifold modules (196) may be configured for fluid
25 connection with the stationary-mold portion (182) of the mold assembly (180). The multipleoutlet
assembly (204) may be configured to transmit, in use, the melt from the melt-preparation
assembly (110) to the set of splitter modules (194).
Referring to FIG. 11, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
30 adapted such that: the multiple conduits (207) may be configured to fluidly connect the multipleoutlet
assembly (204) with the stationary-mold portion (182) of the mold assembly (180). The
multiple conduits (207) may extend through a stationary platen (152).
Referring to FIG. 12, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
35 adapted such that: the multiple conduits (207) may be configured to fluidly connect the multipleoutlet
assembly (204) with the stationary-mold portion (182) of the mold assembly (180). The
multiple conduits (207) may bypass the stationary platen (152).
Referring to FIG. 13, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
5 adapted such that: the melt-delivery assembly (200) may include (by way of example and is not
limited to): (i) an inlet (206), and (i) a melt-flow path (201) configured to fluidly connect the
inlet (206) and the multiple-outlet assembly (204) with a melt-moving assembly (900). The meltmoving
assembly (900) may be configured to move (or push) the melt through the melt-flow
path (201). The melt-moving assembly (900) may include a shooting-pot assembly or other
10 equivalent mechanism or assembly that may be designed and configured to move the melt
through the melt-flow path (201) of the melt-delivery assembly (200). It will be appreciated that
the melt-moving assembly (900) may include sub-assemblies or modules that are configured to
deliver, in use, the melt through respective selected outlets (204), etc.
15 Referring to FIG. 14, the melt-delivery assembly (200) of FIG. 1 may be modified or may be
adapted such that: (A) the stationary platen (152) may be configured to support a runner
assembly (190), the runner assembly (190) may be configured to connect with a movable-mold
portion (182) of a mold assembly (180), and (B) the multiple-outlet assembly (204) may be
configured to transmit, in use, the melt from the melt-preparation assembly (110) to the runner
20 assembly (190) and to the stationary mold portion (182) of the mold assembly (180) along the
multiple conduits (207). It will be appreciated that the multiple conduits (207) may bypass the
stationary platen (152) and/or extend through the stationary platen (152).
It will be appreciated that the assemblies and modules described above may be connected with
25 each other as may be required to perform desired functions and tasks that are within the scope
of persons of skill in the art to make such combinations and permutations without having to
describe each and every one of them in explicit terms.
It is understood that the scope of the present invention is limited to the scope provided by the
30 independent claim(s), and it is also understood that the scope of the present invention is not
limited to: (i) the dependent claims, (ii) the detailed description of the non-limiting
embodiments, (iii) the summary, (iv) the abstract, and/or (v) description provided outside of
this document (that is, outside of the instant application as filed, as prosecuted, and/or as
granted). It is understood, for the purposes of this document, the phrase "includes (by way of
35 example and is not limited to)" is equivalent to the word "comprising." It is noted that the
foregoing has outlined the non-limiting embodiments (examples). The description is made for
particular non-limiting embodiments (examples). It is understood that the non-limiting
embodiments are merely illustrative as examples.
CLAIMS
WHAT IS CLAIMED IS:
5 1. A melt-delivery assembly (200), comprising:
a frame assembly (202) being positioned outside of a platen envelope (153), the
frame assembly (202) being configured to receive a melt, and the frame assembly (202),
including:
a multiple-outlet assembly (204) being configured to fluidly deliver the
10 melt to multiple conduits (207) toward the platen envelope (153).
2. The melt-delivery assembly (200) of claim 1, wherein:
the frame assembly (202) is set apart from a melt-preparation assembly (110).
15 3. The melt-delivery assembly (200) of claim 1, wherein:
the frame assembly (202) is positioned between a platen assembly (150) and a
melt-preparation assembly (110).
4. The melt-delivery assembly (200) of claim 1, wherein:
20 the frame assembly (202) is positioned between a stationary platen (152) of a
platen assembly (150) and a melt-preparation assembly (110).
5. The melt-delivery assembly (200) of claim 1, wherein:
the frame assembly (202) is configured to support:
25 an inlet (206) being configured to: (i) fluidly communicate with a meltpreparation
assembly (110), and (ii) receive, in use, the melt being prepared and
provided, in use, by the melt-preparation assembly (110); and
the multiple-outlet assembly (204) is configured to: (i) fluidly
communicate with the inlet (206), and (ii) transmit, in use, the melt toward a mold
30 assembly (180) being supported by a platen assembly (150).
6. The melt-delivery assembly (200) of claim 1, wherein:
a stationary platen (152) is configured to support a runner assembly (190), and
the multiple-outlet assembly (204) is configured to transmit, in use, the melt from
35 a melt-preparation assembly (110) to the runner assembly (190).
7. The melt-delivery assembly (200) of claim 1, wherein:
a stationary platen (152) is configured to support a runner assembly (190), and
the multiple-outlet assembly (204) is configured to transmit, in use, the melt from
a melt-preparation assembly (110) to the runner assembly (190) along the multiple
5 conduits (207) extending through the stationary platen (152).
8. The melt-delivery assembly (200) of claim 1, wherein:
a stationary platen (152) is configured to support a runner assembly (190), and
the multiple-outlet assembly (204) is configured to transmit, in use, the melt from
10 a melt-preparation assembly (110) to the runner assembly (190) along the multiple
conduits (207) bypassing the stationary platen (152).
9. The melt-delivery assembly (200) of claim 1, wherein:
the melt-delivery assembly (200) includes:
15 an inlet (206);
a melt-flow path (201) being configured to fluidly connect the inlet (206) and the
multiple-outlet assembly (204) with:
a group of shooting-pot assemblies (400A, 400B, 400C, 400D); and
a grouping of valve assemblies (402A, 402B, 402C, 402D being
configured to interact with the group of shooting-pot assemblies (400A, 400B,
400C, 400D),
each outlet of the multiple-outlet assembly (204) is fluidly connected with a
respective valve assembly of the grouping of valve assemblies (402A, 402B, 402C,
402D).
25
10. The melt-delivery assembly (200) of claim 1, wherein:
the melt-delivery assembly (200) includes:
an inlet (206);
a melt-flow path (201) being configured to fluidly connect the inlet (206) with:
a shooting-pot assembly (400); and
a valve assembly (402) being configured to interact with the shooting-pot
assembly (400),
each outlet of the multiple-outlet assembly (204) is fluidly connected with the
valve assembly (402).
1 1. The melt-delivery assembly (200) of claim 1, wherein:
the melt-delivery assembly (200) includes:
an inlet (206); and
a melt-flow path (201) being configured to fluidly connecting the inlet
5 (206) with the multiple-outlet assembly (204).
12. The melt-delivery assembly (200) of claim 1, wherein:
a stationary platen (152) is configured to support a runner assembly (190), and
the multiple-outlet assembly (204) is configured to transmit, in use, the melt from
10 a melt-preparation assembly (110) to the runner assembly (190),
the runner assembly (190) including:
a runner-frame assembly (192) being configured to support:
a set of splitter modules (194) each of which are configured for
fluid connection with a respective outlet of the multiple-outlet assembly
(204); and
a collection of manifold modules (196), each manifold module of
the collection of manifold modules (196) being configured for fluid
connection with a selected splitter module of the set of splitter modules
(104), the collection of manifold modules (196) being configured for fluid
20 connection with a stationary-mold portion (182) of a mold assembly (180).
13. The melt-delivery assembly (200) of claim 1, wherein:
a stationary platen (152) is configured to support a runner assembly (190),
the stationary platen (152) is configured to housing and support a set of splitter
25 modules (194) each of which are configured for fluid connection with a respective outlet
of the multiple-outlet assembly (204); and
the multiple-outlet assembly (204) is configured to transmit, in use, the melt from
the a melt-preparation assembly (110) to the set of splitter modules (194),
the runner assembly (190) including:
a runner-frame assembly (192) being configured to support:
a collection of manifold modules (196), each manifold module of
the collection of manifold modules (196) being configured for fluid
connection with a selected splitter module of the set of splitter modules
(194), the collection of manifold modules (196) being configured for fluid
connection with a stationary-mold portion (182) of a mold assembly (180).
14. The melt-delivery assembly (200) of claim 1, wherein:
a stationary platen (152) is configured to housing and to support:
(i) a set of splitter modules (194) each of which are configured for fluid
connection with a respective outlet of the multiple-outlet assembly (204), and
(ii) a collection of manifold modules (196), each manifold module of the
collection of manifold modules (196) being configured for fluid connection with a
selected splitter module of the set of splitter modules (194), the collection of
manifold modules (196) being configured for fluid connection with a stationarymold
portion (182) of a mold assembly (180); and
the multiple-outlet assembly (204) is configured to transmit, in use, the melt from
a melt-preparation assembly (110) to the set of splitter modules (194).
15. The melt-delivery assembly (200) of claim 1, wherein:
15 the melt-delivery assembly (200) is configured to support a set of splitter modules
(194) each of which are configured for fluid connection with a respective outlet of the
multiple-outlet assembly (204);
a stationary platen (152) is configured to support a collection of manifold
modules (196), each manifold module of the collection of manifold modules (196) being
20 configured for fluid connection with a selected splitter module of the set of splitter
modules (194), the collection of manifold modules (196) being configured for fluid
connection with a stationary-mold portion (182) of a mold assembly (180); and
the multiple-outlet assembly (204) is configured to transmit, in use, the melt from
a melt-preparation assembly (110) to the set of splitter modules (194).
25
16. The melt-delivery assembly (200) of claim 1, wherein:
the multiple conduits (207) are configured to fluidly connect the multiple-outlet
assembly (204) with a stationary-mold portion (182) of a mold assembly (180), the
multiple conduits (207) extending through a stationary platen (152).
3 0
17. The melt-delivery assembly (200) of claim 1, wherein:
the multiple conduits (207) being configured to fluidly connect the multiple-outlet
assembly (204) with a stationary-mold portion (182) of a mold assembly (180), the
multiple conduits (207) bypassing a stationary platen (152).
18. The melt-delivery assembly (200) of claim 1, wherein:
the melt-delivery assembly (200) includes:
an inlet (206);
a melt-flow path (201) being configured to fluidly connect the inlet (206) and the
5 multiple-outlet assembly (204) with:
a melt-moving assembly (900) being configured to move the melt through
the melt-flow path (201).
19. The melt-delivery assembly (200) of claim 1, wherein:
10 a stationary platen (152) is configured to support a runner assembly (190), the
runner assembly (190)being configured to connect with a movable-mold portion (182) of
a mold assembly (180), and
the multiple-outlet assembly (204) is configured to transmit, in use, the melt from
the melt-preparation assembly (110) to the runner assembly (190) and to the stationary
15 mold portion (182) of the mold assembly (180) along the multiple conduits (207).
20. A molding system (loo), comprising:
the melt-delivery assembly (200) of any one of claims 1 to 19.
20 21. A molding system (loo), comprising:
a platen assembly (150) and a melt-preparation assembly (110) both being
configured to cooperate with the melt-delivery assembly (200) of any one of claims 1 to
19.
25 22. A melt-preparation assembly (110), comprising:
the melt-delivery assembly (200) of any one of claims 1 to 19.
23. A platen assembly (150), comprising:
the melt-delivery assembly (200) of any one of claims 1 to 19.
30
24. A mold assembly (180), comprising:
the melt-delivery assembly (200) of any one of claims 1 to 19.

Documents

Application Documents

# Name Date
1 4522-DELNP-2013-AbandonedLetter.pdf 2019-10-05
1 4522-delnp-2013-GPA-(30-05-2013).pdf 2013-05-30
2 4522-DELNP-2013-FER.pdf 2018-07-09
2 4522-delnp-2013-Correspondence-Others-(30-05-2013).pdf 2013-05-30
3 4522-delnp-2013-Claims.pdf 2014-01-03
3 4522-delnp-2013-Assignment-(30-05-2013).pdf 2013-05-30
4 4522-delnp-2013-Form-5.pdf 2014-01-03
4 4522-delnp-2013-Correspondence-others.pdf 2014-01-03
5 4522-delnp-2013-Form-1.pdf 2014-01-03
5 4522-delnp-2013-Form-3.pdf 2014-01-03
6 4522-delnp-2013-Form-18.pdf 2014-01-03
6 4522-delnp-2013-Form-2.pdf 2014-01-03
7 4522-delnp-2013-Form-18.pdf 2014-01-03
7 4522-delnp-2013-Form-2.pdf 2014-01-03
8 4522-delnp-2013-Form-1.pdf 2014-01-03
8 4522-delnp-2013-Form-3.pdf 2014-01-03
9 4522-delnp-2013-Correspondence-others.pdf 2014-01-03
9 4522-delnp-2013-Form-5.pdf 2014-01-03
10 4522-delnp-2013-Claims.pdf 2014-01-03
10 4522-delnp-2013-Assignment-(30-05-2013).pdf 2013-05-30
11 4522-DELNP-2013-FER.pdf 2018-07-09
11 4522-delnp-2013-Correspondence-Others-(30-05-2013).pdf 2013-05-30
12 4522-delnp-2013-GPA-(30-05-2013).pdf 2013-05-30
12 4522-DELNP-2013-AbandonedLetter.pdf 2019-10-05

Search Strategy

1 Current_Searches4522DELNP_15-11-2017.pdf