Sign In to Follow Application
View All Documents & Correspondence

Method For Installing An Elevator Car Sling

Abstract: Gliding means (100) are attached to a side frame (11C, 11D) of the car sling (11), said gliding means (100) comprising a gliding part (120) supported through elasticity means (130) on a frame part (110). The side frame (11C, 11D) is positioned on a guide rail (12) in an elevator shaft (20) so that the gliding part (120) of the gliding means (100) sets on the guide rail (12). The gliding means (100) is provided with an installation jig (200) comprising a first branch (210) positioned between the gliding part (120) and the guide rail (12), and a second branch (220, 230) positioned in an open space (140) between the frame part (110) and the gliding part (120) for bypassing the elasticity means (130).The installation jig (200) is removed when the installation of the car sling (11) and the car (10) has been completed.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
15 July 2014
Publication Number
12/2015
Publication Type
INA
Invention Field
ELECTRICAL
Status
Email
Parent Application

Applicants

KONE CORPORATION
KARTANONTIE 1 00330 HELSINKI FINLAND

Inventors

1. HAWKINS, GIOVANNI
KYTÖNIITYNTIE 22 H HELSINKI 00670 FINLAND
2. VESTERINEN, MIKKO
HOPEATIE 20 A 37 00440 HELSINKI FINLAND

Specification

METHOD FOR INSTALLING AN ELEVATOR CAR SLING
FIELD OF THE INVENTION
The invention relates to a method for installing an elevator car sling
according to the preamble of claim 1.
The invention also relates to an installation jig intended to be used
in the installation method.
BACKGROUND ART
An elevator comprises an elevator car moving in a first direction
upwards and downwards in an elevatorshaft. The elevator car transports
people and/or goods between the landings in a building. The elevator car is
supported by a car sling comprising a horizontal upper transom, a horizontal
lower transom and vertical side frames connecting the ends of the upper
transom and the lower transom. There are further guide rails being attached to
the wall structure of the elevator shaft and extending vertically along the height
of the elevator shaft. The car sling is guided with gliding means on the guide
rails. The car is thus guided in the lateral direction with the gliding means
gliding on the guide rails when moving up and down in the elevator shaft.
The horizontal cross-section of the guide rails has the form of a
letter T. The horizontal branch of the letter T is attached to support means
being attached to the wall structure of the elevator shaft. The vertical branch of
the letter T forms three gliding surfaces for the gliding means. There are thus
two opposite side gliding surfaces and one front gliding surface in the guide
rail. The gliding means comprises a frame part and a gliding part. The
horizontal cross-section of the gliding part has the form of a letter U so that the
inner surface of the gliding part sets against the three gliding surfaces of the
guide rail. The horizontal cross section of the frame part has also a U-shaped
section surrounding the gliding part on three sides. The frame part comprises
furtheroutwardly extending flanges at the bottom of the letter U for attaching
the gliding means to the vertical side frame of the car sling. There are elasticity
means between the gliding part and the frame part in order to isolate the
gliding part from the frame part.
The guide rails are formed of rail elements of a certain length. The
rail elements are connected in the installation phase end-on-end one after the
other. It is almost impossible to install the guide rails so that they would form a
fully straight line along the whole height of the elevator shaft. The inevitable

small deviations in the straightness of the guide rail will result in lateral forces
acting on the gliding means when the car moves upwards and downwards in
the shaft. These lateral forces will cause vibrations acting on the gliding means
and thereby also acting on the car. The vibrations acting on the car will also
cause noise disturbing the passengers in the car. The elasticity meansbetween
the gliding part and the frame part in the gliding means absorb the vibrations
and prevent the vibrations from progressing to the car.
WO 2011/070237 discloses gliding means of an elevator. The
gliding means comprises a frame part, a gliding part and an elastic insulation
part between the frame part and the gliding part. The elastic insulation part
insulates the elevator car from the guide rail.
US 2010/0065382 discloses gliding means comprising a gliding part
for an elevator. The gliding means comprises further a first bracket connected
to the gliding part and a second bracket connected to the car. There are further
a plurality of elongated elastomeric members arranged generally from a first
end of the gliding means to a second end of the gliding means and connected
between the first bracket and the second bracket. The gliding part and the first
bracket are substantially surrounded on three sides by the second bracket.
Each of the plurality of elongated elastomeric members is configured for
deflection under loads of increasing magnitude.
The flexible support achieved with the elasticity means between the
gliding part and the frame part of the gliding meansis, however, problematic
during the installation of the car sling. The gliding means is attached to the
upper portion and the lower portion of the side frame of the car sling. The side
frames are then positioned against the guide rail so that the gliding part of the
gliding means sets against the guide rail. The side framesof the car sling are
kept in place during the installation of the lower transom, the car and the upper
transom by compression with a G-clamp positioned at the lower end of the side
frames. The compression of the G-clamp will result in that the lower gliding
means is pressed toward the guide rail due to the elasticity means between the
glide part and the frame part. This will result in that the side frame will become
inclined.
There are also prior art flexible gliding means containing screws at
the back of the gliding means for restraining the rubber isolation between the
gliding part and the frame part during installation of the car sling. The screws in
these prior art gliding means need to be adjusted after the installation of the

car sling in order to retain the flexibility of the rubber isolation. The screws help
to keep the vertical side frames of the car sling in a vertical position during
installation of the frame. The screws do not, however, eliminate the need to
adjust the recommended 0.5 to 1 mm gap between the gliding surface of the
gliding means and the guide rail after the car sling and the car has been
installed.
BRIEF DESCRIPTION OF THE INVENTION
An object of the present invention is to solve the problems
associated with prior art methods for installing an elevator car sling.
The method for installing an elevator car sling according to the
invention is characterized by what is stated in the characterizing portion of
claim 1.
The method for installing an elevator car sling comprises the steps
of:
attaching gliding means to a side frame of the car sling, said gliding
means comprising at least a frame part, a gliding part, and elasticity means
through which the gliding part is supported on the frame part,
positioning the side frame on a guide rail in an elevator shaft so that
the gliding part of the gliding means sets on the guide rail.
The method is characterized by the further steps of:
providing the gliding means with an installation jig comprising a first
branch that is positioned against an inner gliding surface of the gliding part
thereby forming a temporary gliding surface towards the guide rail and at least
a second branch that is positioned in an open space between the frame part
and the gliding part in order to temporary bypass the elasticity means and
rigidly fix the gliding part to the frame part,
removing the installation jig when the installation of the car sling and
the car has been completed.
The installation jig intended to be used in the method comprises at
least two branches.
The use of installation jigs makes it possible to install the side frame
of the car sling with the gliding means exactly in a vertical position and exactly
at a desired distance from the guide rail right away.
The installation jigs are pushed into the gliding means and the
gliding means are attached to the vertical side frames of the car sling before

the installation of the car sling and the car in the elevator shaft. These pre-
installations cane be done already at the factory before the material is
transported to the installation site.
The vertical side frames of the car sling comprising the gliding
means with inserted installation jigs are thus positioned against the guide rails
in the elevator shaft at the beginning of the installation. The vertical side
frames are then fastened temporary to the guide rails e.g. with cable ties or G-
clamps. The lower transom is then fastened between the vertical side frames.
The car is then erected on the lower transom and finally the upper transom is
fastened between the vertical side frames. Then finally the installation jigs are
removed from the gliding means. The installation jigs can be removed by
simply pulling by hand.
The installation jigs remove the need to position the gliding means
after the installation of the car sling and the car has been completed. The
installation jig comprises at least a first branch that fits into a bottom of the
gliding part. The first branch of the installation jig will thus be positioned
between the inner surface of the gliding part of the gliding means and the front
surface of the guiding rail. The first branch of the installation jig eliminates the
need to adjust the distance of the inner surface of the gliding part to the front
surface of the guide rail after the installation of the car sling and the car has
been completed. The first branch of the installation jig leaves a gap
corresponding to the thickness of the first branch of the installation jig between
the inner surface of the gliding part and the front surface of the guide rail when
the installation jig is removed. The thickness of the first branch is
advantageously 1.0 mm. The first branch fills the gap between the bottom of
the gliding part and the front surface of the guide rail temporary during the
installation. Concrete dust cannot thus penetrate into the glide surface of the
gliding part of the gliding means during the installation. This will reduce wear of
the gliding surface of the gliding part of the gliding means.
The installation jig comprises further at least a second branch that
fits into an open space between the frame part and the gliding part of the
gliding means. The second branch bypasses the elasticity means temporary
and fixes the gliding part rigidly to the frame part. The temporary elimination of
the elasticity between the gliding part and the frame part of the gliding means
with the installation jig results in that the vertical side frames and the gliding
means are in the right position in relation to the guide rail from the very

beginning of the installation.
The use of the installation jig will eliminate the need to adjust the
gliding means after the installation of the car sling and the car has been
completed. This will reduce the total installation time of the car sling and the
car. The installation jigs can simply be pulled out by hand from the gliding
means after the installation of the car sling and the car has been completed.
The elasticity between the gliding part and the frame part of the gliding means
is thus restored when the installation jig is removed.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will in the following be described in greater detail by
means of preferred embodiments with reference to the attached drawings, in
which
Fig. 1 shows a vertical cross section of an elevator.
Fig. 2 showsahorizontal cross section of the support of the car sling
at the guide rail.
Fig. 3 shows a vertical cross section of the gliding means.
Fig. 4 shows a horizontal cross section of the gliding means.
Fig. 5 shows the installation of the vertical side frame of the car sling
to the guide rail.
Fig. 6 shows the installation jig used to stiffen the gliding shoe.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Fig. 1 shows a vertical cross section of an elevator. The elevator
comprises acar 10 supported by a car sling 11, an elevatorshaft 20, a machine
room 30, lifting machinery 40, ropes 41, and a counter weight 42. The car sling
11 is a support construction comprising a horizontal upper transom 11A, a
horizontal lower transom 11B, a first vertical side frame 11C and a second
vertical side frame 11D. The vertical side frames 11C, 11D connect the ends of
the upper transom 11A and the lower transom 11B. The lifting machinery 40
moves the car 10 in a first direction S1 upwards and downwards in the
vertically extending elevator shaft 20. The car 10 is carried through the car
sling 11 by the ropes 41, which connect the upper transom 11A of the car sling
11 to the counter weight 42. The car sling 11 is further supported through the
vertical side frames 11C, 11D with gliding means 100at guide rails 12extending
in the vertical direction in the shaft 20. The figure shows only one guide rail 12,
but there are normally two guide rails 12at opposite sides of the car 10. The

gliding means 100can comprise rolls rolling on the guide rails 12or gliding
shoes gliding on the guide rails 12when the car 10 is mowing upwards and
downwards in the elevator shaft 20. The guide rails'!2are supported with
support means 13at the side wall structures 21 of the elevator shaft 20. The
figure shows only two support means 13, but there are several support means
13 along the height of the guide rail 12. The gliding means 100engaging with
the guide rails 12keep the car 10 in position in the horizontal plane when the
car 10 moves upwards and downwards in the elevator shaft 20. The counter
weight 42 is supported in a corresponding way on guide rails supported on the
wall structure 21 of the shaft 20. The car 10 transports people and/or goods
between the landings L1 to L4 in the building.The elevator shaft 20 can be
formed so that the wall structure 21 is formed of solid walls or so that the wall
structure 21 is formed of an open steel structure.
The guide rails 12 extend vertically along the height of the shaft 20.
The guide rails 12 are thus formed of rail elements of a certain length. The rail
elements are connected in the installation phase end-on-end one after the
other. It is almost impossible to install the guide rails 12 so that they would
form a fully straight line along the whole height of the shaft 20. The inevitable
small deviations in the straightness of the guide rail 12 will result in lateral
forces acting on the gliding means 100 when the car 10 moves upwards and
downwards in the shaft 20. These lateral forces will cause vibrations to the
gliding means 100 and thereby also to the car 10. The vibrations acting on the
car 10 will also cause noise disturbing the passengers in the car 10. The
gliding means 100 are therefore provided with elasticity means, which absorb
the vibrations and prevent the vibrations from progressing to the car 10.
Fig. 2 shows a cross section of the support of the car sling at the
guide rail. Each side frame 11C, 11D of the car sling 11 is supported with
gliding means 100 on the guide rail 12. The horizontal cross-section of the
guide rail 12 has the form of a letter T. The horizontal branch 12A of the T-
shaped guide rail 12 is attached with bolts 310, 320 to support means 13 that
are attached to the wall 21 of the shaft 20. Each gliding means 100 comprises
a frame part 110, a gliding part 120 and elasticity means 130 between the
frame part 110 and the gliding part 120.
The frame part 110 has an essentially U-shaped horizontal cross
section with two outwardly extending flanges 111, 112 at the bottom portion of
the letter U. The frame part 110 is advantageously manufactured from a metal

piece by bending so that the two branches of the letter U have a double
thickness. The frame part 110 is attached to the vertical side frame 11C of the
car sling 11 with bolts 410, 420 passing through the flanges 111, 112 of the
frame part 110.
The gliding part 120 has an essentially U-shaped horizontal cross
section. The gliding part 120 comprises a U-shaped gliding section 121 made
of plastic positioned within a U-shaped support section 122 made of metal. The
U-shaped gliding section 121 and the U-shaped support section 122 open in
the same direction. The ends of the side portions of the support section 122
are bent 90 degrees inwards in order to form flanges. These flanges extend
partly over the ends of the side portions of the gliding section 121 in order to
keep the gliding section 121 in position within the support section 122. The
inner surface of the gliding section 121 glides on the vertical branch 12B of the
T-shaped guide rail 12. The gliding section 121 is thus gliding on the two
opposite side surfaces SS1, SS2 and on the front surface FS1 of the vertical
branch 12B of the guide rail 12.
The elasticity means 130 is positioned between the frame part 110
and the gliding part 120. The elasticity means 130 surrounds the outer surface
of the support section 122 in the gliding part 120.The elasticity means 130
forms thus a U-shaped loop. The ends of the loop are attached to the outer
end portions of the two branches of the U-shaped frame part 110. The gliding
part 120 is thus attached to the frame part 110 only through the elasticity
means 130. There is a space 140 between the bottom of the U-shaped
elasticity means 130 and the bottom of the U-shaped frame part 110. The
elasticity means 130 can thus be stretched to some degree so that the gliding
part 120 can move a certain distance in a second lateral direction T1 in the
space 140 between the bottom of the U-shaped elasticity means 130 and the
bottom of the U-shaped frame part 110. The gliding part 120 is thus flexibly
supported on the frame part 110 through the elasticity means 130. The second
direction T1 is the direction formed by a longitudinal centre axis X-X of the
vertical branch 12B of the T-shaped guide rail 12. The gliding part 120 is also
flexibly supported in a third direction T2 being perpendicular to the second
direction T1. The flexibility in this third direction T2 is due to the elasticity
means 130, which can be compressed between the gliding part 120 and the
frame part 110 on either side of the gliding part 120 when the gliding part 120
oscillates in the third direction T2. The forces acting on the gliding means 100

in the third direction T2 are more ample than the forces acting in the second
direction T1. This is due to the mechanical construction of the elevator. This
means that the gliding means 100 has to be more rigid in this third direction T2
compared to the second direction T1. The amount of flexibility is also limited by
the safety gear, which allows a greater flexibility in the second direction T1
compared to the third direction T2. This described arrangement utilizes the
maximum possible flexibility in both directions i.e. in the second direction T1
and in the third direction T2.
Fig. 3 shows a vertical cross section of the gliding means and fig. 4
shows a horizontal cross section of the gliding means. The ends of the bottom
portion of the support section 122 of the gliding part 120 are bent 90 degrees
outwards in order to form flanges 122A, 122B. These flanges 122A, 122B
extend over the elasticity means 130 and the ends of the bottom portion of the
frame part 110. The flanges 122A, 122B can thus glide on the ends of the
bottom portion of the frame part 110 in order to keep the gliding part 120 in
position within the frame part 110 when the bottom of the gliding part 120 is
moving closer to or longer from the bottom of the frame part 110 in the open
space 140. The flanges 122A, 122B close a middle portion of the open space
140 between the bottom of the gliding part 120 and the bottom of the frame
part 110. The end portions 140A, MOB of the open space 140 still remain
open. The second branch 220 and the third branch 230 of the installation jig
200 can penetrate into these open spaces 140A, 140B when the installation jig
200 is inserted into the gliding means 100. The first branch 210 of the
installation jig 200 penetrates into the bottom portion 121A of the gliding
section 121 of the gliding part 120 of the gliding means 100. The first branch
210 of the installation jig 200 sets against the inner surface i.e. the gliding
surface of the bottom portion 121A of the gliding part 120.
Fig. 5 shows the installation of the vertical side frame of the car sling
to the guide rail. A gliding means 100 is attached to each end of the vertical
side frame 11C, 11D of the car sling 11. The package comprising the side
frame 11C, 11D and the gliding means 100 is then positioned on the T-shaped
guide rail 12 so that the gliding part 120 of the gliding means100 sets on the
three surfaces of the vertical branch 12B of the T-shaped guide rail 12. The
flexible support achieved with the elasticity means 130 between the gliding part
120 and the frame part 110 is, however, problematic during the installation of
the side frame 11C, 11D of the car sling 11 The side frames 11C, 11D have to

be kept in place during the installation of the lower transom 11B, the car 10
and the upper transom 11 A. This can be done e.g. by using a G-clamp
positioned at the lower end of the side frames 11C, 11D. The compression of
the G-clamp will result in that the elasticity means 130 in the lower gliding
means 100 becomes tensioned i.e. the frame part 110 moves towards the
gliding part 120. This will result in that the side frame 11C, 11D will be inclined
by an angle a. The gliding surface of the gliding part 120 of the gliding means
100 will seat against the front surface FS1 of the guide rail 12. There will thus
be a need to adjust the position of the gliding means 100 after the sling 11 and
the car 10 has been completed. This is done by shim plates positioned
between the flanges 111, 112 of the frame part 110 and the side frames 11C,
11D of the sling 11. The shim plates can have a thickness in the range of 0.5
mm to 1.0 mm. The gliding means 100 are positioned with the shim plates so
that there remains a 0.5 mm to 1.0 mm gap between the front surface FS1 of
the guide rail 12 and the bottom surface of the gliding section 121 of the gliding
part 120 of the gliding means 100. The positioning of the gliding means 100 is
a time consuming extra step in the installation.
Fig. 6 shows the installation jig used to stiffen the glidingmeans. The
installation jig 200 comprises a first branch 210, a second branch 220, and a
third branch 230attached to a support structure 240. The jig is used during the
installation of the car sling 11 in order to temporary bypass the elasticity means
130. The gliding part 120 becomes rigidly supported on the frame part 110
when the installation jig 200 is inserted between the gliding part 120 and the
frame part 110. Figure 3 shows the position of the branches 210, 220, 230 of
the jig 200 when the installation jig 200 is inserted into the gliding means 100.
The first branch 210 of the installation jig 200 is positioned between the front
surface FS1 of the guide rail 12 and the bottom inner surface of the gliding
section 121 of the gliding part 120 of the glidingmeans 100. The second
branch 220 and the third branch 230 of the installation jig 200 are positioned in
the respective open space 140 between the bottom portion of the elasticity
means 130 and the bottom portion of the frame part 110 of the glidingmeans
100. The second branch 220 and the third branch 230 will thus eliminate the
movement of the gliding part 120 within the frame part 110 in the second
direction T1. The second branch 220 and the third branch 230 of the
installation jig 200 will temporarily fix the gliding part 120 to the frame part 110.
The second branch 220 and the third branch 230 will thus bypass the elasticity

means 130. The second branch 220 and the third branch 230 will also to some
extent compress the elasticity means 130 against the outer surface of the
bottom of the gliding part 120. The thickness of the second branch 220 and the
third branch 230 of the installation jig 200 is adapted to the thickness of the
open space 140 between the bottom portion of the sliding part 120 and the
bottom portion of the frame part 110. The first branch 210 of the installation jig
200 will on the other hand keep the inner surface of the gliding section 121 of
the gliding part 120 at a certain distance from the front surface FS1 of the
guide rail 12. This distance is determined by the thickness of the first branch
210, which thickness is advantageously 1.0 mm.
Theinstallation jigs 200 are pushed into the glidingmeans 100 and
the glidingmeans 100 are attached to the vertical side frames 11C, 11D of the
sling 11 before the installation of the car sling 11 and the car 10 in the elevator
shaft 20. The vertical side frames 11C, 11D of the car sling 11 comprising the
glidingmeans 100 with inserted installation jigs 200 are thus positioned against
the guide rails 12 in the shaft 20 at the beginning of the installation. The
vertical side frames 11C, 11D are then fastened temporary to the guide rails 12
e.g. with cable ties or G-clamps. The lower transom 11B is then fastened
between the vertical side frames 11C, 11D. The car 10 is then erected on the
lower transom 11B and finally the upper transom 11A is fastened between the
vertical side frames 11C, 11D. Then finally the installation jigs 200 are
removed from the glidingmeans 100. The installation jigs 200 can be removed
by simply pulling by hand from the opening 241 in the support part 240. There
is thus no need to position the glidingmeans 100 in relation to the guide rail 12
after the installation of the car sling 11 and the car 10 has been completed.
The second branch 220 and the third branch 230 of the installation jig 200
eliminate the elasticity between the gliding part 120 and the frame part 110 of
the glidingmeans 100 and thereby make sure that the vertical side frames 11C,
11D and the glidingmeans 100 are in the right position in relation to the guide
rail 12 from the very beginning of the installation. The first branch 210 of the
installation jig 200 makes sure that there remains a 1.0 mm gap between the
bottom surface of the gliding section 121 of the gliding part 120 and the front
surface FS1 of the guide rail 12 when the installation jig 200 is removed.
The use of the invention is naturally not limited to the type of
elevator disclosed in figure 1, but the invention can be used in any type of
elevator e.g. also in elevators lacking a machine room and/or a counterweight.

The use of the invention is also not limited to the type of
glidingmeans 100 shown in the figures. The glidingmeans 100 can be of any
kind as long as there is a gap between the gliding part 120 and the frame part
110 of the gliding means 100 into which gap at least one branch of the
installation jig 200 can be pushed in order to temporary eliminate the elasticity
between the gliding part 120 and the frame part 110. The installation jig 200
bypasses the elasticity means 130.
The invention could be used e.g. in connection with the gliding
means disclosed in US 2010/0065382. The elasticity means comprises in this
solution of three different elasticity means. A first elasticity means is positioned
between the bottom portion of the U-shaped frame part and the bottom portion
of the U-shaped gliding part. A second elasticity means is positioned between
a first branch of the U-shaped frame part and the U-shaped gliding part. A third
elasticity means is positioned between a second branch of the U-shaped frame
part and the U-shaped gliding part. The second 220 and the third 230 branch
of the installation jig 200 could thus be positioned in an open space on both
sides of the first elasticity means between the bottom portion of the gliding part
and the bottom portion of the frame part. The second 220 and the third 230
branch of the installation jig 200 would thus be in direct contact with the outer
surface of the bottom portion of the gliding part and the inner surface of the
bottom portion of the frame part. The first branch 210 of the installation jig 200
would be positioned in the same place as in the gliding means shown in figure
3 i.e. against the inner surface of the bottom portion of the gliding part.
The second branch 220 and the third branch 230 of the installation
jig 200 could thus be positioned in the open space between the bottom portion
of the gliding part and the bottom portion of the frame part so that they are in
direct contact with the outer surface of the bottom portion of the gliding part
and the inner surface of the bottom portion of the frame part or so that they are
indirectly through the elasticity means in contact with the bottom portion of the
gliding part and in direct contact with the inner surface of the bottom portion of
the frame part.
The use of the invention is also not limited to the type of guide rail
12 shown in the figures. The guide rail 12 could be of any type as long as a
flexible gliding meanslOO can be used in connection with the guide rail 12.
The invention is also not limited to the kind of installation jig 200
shown in the figures. The installation jog 200 in the figures comprises three

branches 210, 220, 230, which is suitable for the gliding means 100 shown in
the figures. The first branch 210 of the installation jig 200 is needed in order to
adjust the distance between front surface FS1 of the guide rail 12 and the
bottom of the gliding part 12. The second branch 220 and the third branch 230
are adapted to the gliding means 100 shown in the figures i.e. to a gliding
means 100 having two open spaces 140 between the gliding part 120 and the
frame part 110 into which open spaces 140 the second branch 220 and the
third branch 230 can be inserted. The installation jig 200 could, however, in
addition to the first branch 210 comprise only one second branch or more than
two second branches.
It will be obvious to a person skilled in the art that, as the technology
advances, the inventive concept can be implemented in various ways. The
invention and its embodiments are not limited to the examples described
above but may vary within the scope of the claims.

CLAIMS
1. Method for installing an elevator car sling, comprising the steps
of:
attaching gliding means (100) to a side frame (11C, 11D) of the car
sling (11), said gliding means (100) comprising at least a frame part (110), a
gliding part (120), and elasticity means (130) through which the gliding part
(120) is supported onthe frame part (110),
positioning the side frame (11C, 11D) on a guide rail (12) in an
elevator shaft (20) so that the gliding part (120) of the gliding means (100) sets
on the guide rail (12),
characterized by the further steps of:
providing the gliding means (100) with an installation jig
(200)comprising a first branch (210) that is positioned against an inner gliding
surface of the gliding part (120) thereby forming a temporary gliding surface
towards the guide rail (12) and at least a second branch (220, 230) that is
positioned in an open space (140) between the frame part (110) and the
gliding part (120) in order to temporary bypass the elasticity means (130) and
rigidly fix the gliding part (120) to the frame part (110),
removing the installation jig (200) when the installation of the car
sling (11) and the car (10) has been completed.
2. Method according to claim 1, characterized in that a horizontal
cross section of the guide rail (12) has the form of a letter T, whereby the
vertical branch of the letter T forms the gliding surface for the gliding means
(100).
3. Method according to claim 2, characterized in that a horizontal
cross section of the gliding part (120) of the gliding means (100) has the form
of a letter U, whereby the inner surface of the letter U mates with the gliding
surface of the guide rail (12).
4. Method according to claim 3, characterized in that a horizontal
cross section of the frame part (110) of the gliding means (100) has the form of
a letter U, whereby the gliding part (120) is positioned inside the frame part
(110) so that the frame part (110) and the gliding part (120) open in the same
direction.
5. Method according to claim 4, characterized in that the elasticity
means (130) is positioned on an outer surface of the gliding part (120) thereby

forming a U-shaped loop, the ends of the loop being attached to outer end
portions of the two branches of the U-shaped frame part (110), whereby the
gliding part (120) is attached to the frame part (110) only through the elasticity
means (130).
6. Method according to claim 5, characterized in that the
installation jig (200) comprises a first branch (210) and two second branches
(220, 230), whereby the first branch (210) fits into a bottom portion (121 A) of
the gliding part (120) and the two second branches i.e. a second branch (220)
and a third branch (230) fits into a respective open space (140) between a
bottom portion of the frame part (110) and a bottom portion of the gliding part
(120) of the gliding means (100).
7. An installation jig comprising at least two branches,
characterized in that the installation jig (200) is intended to be used in
connection with a method according to any one of claims 1 to 6.

ABSTRACT

Gliding means (100) are attached to a side frame (11C,
11D) of the car sling (11), said gliding means (100)
comprising a gliding part (120) supported through
elasticity means (130) on a frame part (110). The side
frame (11C, 11D) is positioned on a guide rail (12) in
an elevator shaft (20) so that the gliding part (120) of
the gliding means (100) sets on the guide rail (12). The
gliding means (100) is provided with an installation jig
(200) comprising a first branch (210) positioned
between the gliding part (120) and the guide rail (12),
and a second branch (220, 230) positioned in an open
space (140) between the frame part (110) and the
gliding part (120) for bypassing the elasticity means
(130).The installation jig (200) is removed when the
installation of the car sling (11) and the car (10) has
been completed.

Documents

Application Documents

# Name Date
1 761-KOL-2014-(15-07-2014)SPECIFICATION.pdf 2014-07-15
1 761-KOL-2014-AbandonedLetter.pdf 2024-06-18
2 761-KOL-2014-(15-07-2014)GPA.pdf 2014-07-15
2 761-KOL-2014-FER.pdf 2020-01-29
3 761-KOL-2014-FORM 18 [10-08-2017(online)].pdf 2017-08-10
3 761-KOL-2014-(15-07-2014)FORM-5.pdf 2014-07-15
4 761-KOL-2014-(31-12-2014)-ASSIGNMENT.pdf 2014-12-31
4 761-KOL-2014-(15-07-2014)FORM-3.pdf 2014-07-15
5 761-KOL-2014-(31-12-2014)-CORRESPONDENCE.pdf 2014-12-31
5 761-KOL-2014-(15-07-2014)FORM-2.pdf 2014-07-15
6 761-KOL-2014-(31-12-2014)-PRIORITY DOCUMENT.pdf 2014-12-31
6 761-KOL-2014-(15-07-2014)FORM-1.pdf 2014-07-15
7 761-KOL-2014-(15-07-2014)DRAWINGS.pdf 2014-07-15
7 761-KOL-2014-(15-07-2014)ABSTRACT.pdf 2014-07-15
8 761-KOL-2014-(15-07-2014)CLAIMS.pdf 2014-07-15
8 761-KOL-2014-(15-07-2014)DESCRIPTION (COMPLETE).pdf 2014-07-15
9 761-KOL-2014-(15-07-2014)CORRESPONDENCE.pdf 2014-07-15
10 761-KOL-2014-(15-07-2014)DESCRIPTION (COMPLETE).pdf 2014-07-15
10 761-KOL-2014-(15-07-2014)CLAIMS.pdf 2014-07-15
11 761-KOL-2014-(15-07-2014)DRAWINGS.pdf 2014-07-15
11 761-KOL-2014-(15-07-2014)ABSTRACT.pdf 2014-07-15
12 761-KOL-2014-(31-12-2014)-PRIORITY DOCUMENT.pdf 2014-12-31
12 761-KOL-2014-(15-07-2014)FORM-1.pdf 2014-07-15
13 761-KOL-2014-(31-12-2014)-CORRESPONDENCE.pdf 2014-12-31
13 761-KOL-2014-(15-07-2014)FORM-2.pdf 2014-07-15
14 761-KOL-2014-(31-12-2014)-ASSIGNMENT.pdf 2014-12-31
14 761-KOL-2014-(15-07-2014)FORM-3.pdf 2014-07-15
15 761-KOL-2014-FORM 18 [10-08-2017(online)].pdf 2017-08-10
15 761-KOL-2014-(15-07-2014)FORM-5.pdf 2014-07-15
16 761-KOL-2014-FER.pdf 2020-01-29
16 761-KOL-2014-(15-07-2014)GPA.pdf 2014-07-15
17 761-KOL-2014-AbandonedLetter.pdf 2024-06-18
17 761-KOL-2014-(15-07-2014)SPECIFICATION.pdf 2014-07-15

Search Strategy

1 2020-01-2316-09-30_23-01-2020.pdf