Abstract: The present invention relates to a method for manufacturing a photovoltaic module (10), comprising at least two electrically connected photovoltaic cells (16A, 16B, 16C), said module comprising an insulating substrate (12) covered with a layer of a first conductive material (19). The method comprises: a) forming a groove (36A, 36B) defining a first (18A) and second (18B) lower electrode; and b) forming, on each lower electrode, a stack (20) comprising an upper electrode (22) and a photo-active layer (24). The method further comprises, between steps a) and b), forming: a first insulating step (42) on the groove; then a conductive strip (46) partially covering said first insulating strip; then a second insulating strip (44) partially covering said conductive strip.
The present invention relates to a method for manufacturing a photovoltaic
module, of the type comprising at least two electrically connected photovoltaic cells, said
module comprising an insulating substrate covered with a layer of a first conducting
material; the method comprising the following steps: a) forming, on the layer of first
material, a groove defining first and second lower electrodes, isolated from one another;
and b) forming, on each of said lower electrodes, a stack comprising at least: an upper
electrode formed by a layer of a second conducting material; and at least one photo-active
layer positioned between the lower and upper electrodes; each of the first and second
lower electrodes respectively forming a first and second photovoltaic cell with the
corresponding stack.
A photovoltaic module is an electronic component which, exposed to light,
produces electricity. Such a photovoltaic module typically comprises several electrically
connected photovoltaic cells. Each cell includes at least one photo-active material, i.e.,
able to produce electricity from light. Such a material is for example an organic
semiconductor.
Photovoltaic modules of the aforementioned type are described in documents US
7,932,124 an EP 2,478,559. Each cell of such a photovoltaic module is formed by a stack
of strips, including a photo-active layer between two electrodes, said stack of strips being
positioned on a substrate.
Such a stack, called active area, is separated into adjacent active areas by a socalled
inactive area. Said inactive area allows electric isolation of the lower electrodes of
two adjacent cells while connecting the upper electrode of each cell to the lower electrode
of an adjacent cell. A photovoltaic module is obtained by forming several cells thus
connected in series.
Generally, in large-scale production methods, the stack layers are made using a
wet method, i.e., by depositing a liquid formulation followed by a passage to the solid
state.
The performance of the photovoltaic module particularly involves producing the
narrowest possible inactive areas, to maximize the size of the active areas. The geometric
fill factor (GFF) of the photovoltaic module is defined as a ratio between the sum of the
areas of the active areas of the photovoltaic cells and a total area of the substrate. The
higher the GFF is, the better the electrical performance of the photovoltaic module is. In
2
particular, obtaining a high GFF requires mastering the geometry of the electrical
connections.
However, the rheological and wettability properties of the formulations, as well as
the physical properties of the substrates, induce edge effects on the strips deposited by
the wet method. In document US 7,932,124, the layers of the stack forming each cell are
in particular made with decreasing widths, so as to arrange a stair-stepped lateral offset.
Such a production method makes it more complex to implement through large-scale
production methods and contributes to decreasing the size of the active areas.
In document EP 2,478,559, the stack is first made uniformly on the entire module,
then different grooves are formed in the layers in order to form the inactive zones. This
method requires selective ablation means, the different grooves having different depths
depending on their role in the inactive zone.
The present invention aims to propose a method for manufacturing a photovoltaic
module in particular making it possible to minimize the size of the inactive areas and to
maximize that of the active areas.
To such an end, the invention relates to a manufacturing method of the
aforementioned type, wherein: step b) is carried out after step a); the method comprises
the following steps: c) formation of a first insulating strip on the layer of first material, so as
to cover a location of the groove; said first strip comprising a first and second adjacent
portion, respectively oriented toward the first and toward the second lower electrodes;
then d) formation of a conductive strip on the layer of first material, said conductive strip
covering the second portion and leaving the first portion of the first insulating strip free;
said conductive strip comprising a first and second adjacent portion, respectively oriented
toward the first and toward the second lower electrode, said first portion forming a relief
relative to the first insulating strip; then e) forming a second insulating strip on the layer of
first material, said second strip covering the second portion and leaving the first portion of
the conductive strip free; at least steps d) and e) being carried out between steps a) and
b). Furthermore, in step b), the upper electrodes of the first and second photovoltaic cells
are respectively formed in contact with, and away from, the first portion of the electrically
conductive strip.
According to other advantageous aspects of the invention, the manufacturing
method includes one or more of the following features, considered alone or according to
all technically possible combinations:
- step c) is done between steps a) and b), the first insulating strip further being
formed in the groove;
3
- at least one of the first and second insulating strips is made by depositing a first
liquid formulation comprising electrically insulating materials, followed by a passage to the
solid state of said first formulation;
- the conductive strip is made by depositing a second liquid formulation comprising
electrically conductive materials, followed by a passage to the solid state of said second
formulation;
- the passage to the solid state of the second formulation comprises heating to a
temperature above 120°C;
- the at least one of the first and second insulating strips and the conductive strip is
formed by a coating or printing technique using a continuous wet method, preferably
chosen from among slot-die, photogravure, flexography and rotary serigraphy.
The invention further relates to a photovoltaic module derived from or able to be
derived from a method as described above.
According to other aspects of the invention, the photovoltaic module includes one
or more of the following features, considered alone or according to any technically
possible combination(s):
- the first and second insulating strips and the conductive strip form, with the
groove, an inactive zone separating two adjacent photovoltaic cells, a width of the inactive
zone being between 0.30 mm and 1.60 mm;
- a width of at least one of the first and second insulating strips is between 100 urn
and 800 urn;
- a width of the conductive strip is between 200 urn and 900 urn.
The invention will be better understood upon reading the following description,
provided solely as a non-limiting example and done in reference to the drawings, in which:
- figure 1 is a sectional schematic view of a photovoltaic module according to
one embodiment of the invention;
- figures 2 to 4 schematically show the steps for manufacturing the photovoltaic
module of figure 1, using a method according to one embodiment of the
invention; and
- figure 5 is a detail view of the manufacturing step of figure 4.
Figure 1 is a sectional view of a photovoltaic module 10 according to one
embodiment of the invention.
The photovoltaic module 10 particularly includes a substrate 12, formed by a film
of electrically insulating material that is transparent to visible light, in particular of the
polymer type. The substrate 12 particularly includes a substantially planar surface 14,
delimited by at least one edge 15.
4
An orthogonal base (X, Y, Z) is considered, the surface 14 forming a plane (X, Y).
In figure 1, the photovoltaic module 10 is shown with dimensions along Z stretched
relative to the dimensions along X.
The photovoltaic module 10 includes at least two photovoltaic cells 16A, 16B, 16C,
positioned on the substrate 12. The photovoltaic module 10 further includes at least one
electrical connection 17A, 17B between two photovoltaic cells.
Each of the photovoltaic cells 16A, 16B, 16C is formed by a stack of strips
positioned longitudinally along the direction Y. The length of the strips along Y can reach
up to several hundreds meters.
Preferably, the photovoltaic module 10 includes a plurality of photovoltaic cells
16A, 16B, 16C, for example a number of photovoltaic cells greater than three. The
photovoltaic module 10 preferably includes four, nine or twenty photovoltaic cells in the
form of strips, the number of cells not being restricted to these values.
The photovoltaic cells 16A, 16B, 16C are substantially identical and adjacent along
the direction X. The adjacent cells are connected by an electrical connection 17A, 17B.
A first photovoltaic cell 16A is adjacent along X to an edge 15 of the substrate 12,
said edge 15 extending substantially along Y. A second photovoltaic cell 16B is positioned
between the first 16A and a third 16C photovoltaic cells. Said second cell 16B is
electrically connected to each of said first 16A and third 16C cells, respectively by a first
17A and a second 17B electrical connection.
The first 16A and second 16B photovoltaic cells will be described at the same time
below. The third photovoltaic cell 16C, partially shown in figure 1, is considered to be
identical to the second photovoltaic cell 16B.
Each photovoltaic cell 16A, 16B includes a lower electrode 18A, 18B in contact
with the surface 14 of the substrate 12. The lower electrode 18A, 18B is formed by a layer
of a first electrically conductive material 19, transparent to visible light. For information, the
lower electrode 18A, 18B has a width along X of between 10 mm and 20 mm and a
thickness along Z preferably below 1 urn. More preferably, said thickness is between 50
and 500 nm.
Each photovoltaic cell 16A, 16B further includes a stack 20 of layers of materials,
positioned on the lower electrode 18A, 18B. The stack 20 comprises at least an upper
electrode 22 and a photo-active layer 24.
The upper electrode 22 is formed by a layer of a second electrically conductive
material 26, preferably a metallic material, preferably transparent to visible light. For
example, said second electrically conductive material 26 is an ink with a base of silver
nanoparticles or silver nanowires.
5
The photo-active layer 24, positioned between the lower 18A, 18B and upper 22
electrodes, is made of a photo-active material 28. The photo-active material 28 is of the
semi-conductive type. It is preferably an organic semiconductor. Advantageously, the
photo-active material 28 comprises a mixture of at least one electron donor material,
called p material, and at least one electron acceptor material, called n material. The
photo-active material 28 is for example a close mixture, on the manometric scale, of said
p and n materials. Alternatively, the photo-active layer 24 can be a heterojunction of p
materials and n materials, in the form of a layer or a stack of several layers.
In the embodiment of figure 1, the stack 20 further includes a first 30 and second
32 interface layer, playing an electron transport role or serving as vias between the
electrodes 18A, 18B, 22 and the photo-active layer 24. Each interface layer 30, 32 is
positioned between said photo-active layer 24 and one of the lower 18A, 18B or upper 22
electrodes.
Each of the different layers of the stack 20 preferably has a thickness along Z of
less than 10 urn, more preferably less than 1 urn.
Each photovoltaic cell 16A, 16B, 16C is separated from the or from each adjacent
photovoltaic cell by an inactive zone 34A, 34B. For example, the first 16A and second 16B
photovoltaic cells are separated by the inactive zone 34A; the second photovoltaic cell
16B is delimited along X by the inactive zones 34A and 34B.
In particular, the lower electrodes 18A, 18B are formed by the surfaces of first
electrically conductive material 19 located away from the inactive zones 34A, 34B. Said
surfaces define the so-called active zones of the photovoltaic module 10, corresponding to
the photovoltaic cells 16A, 16B, 16C as such.
As previously indicated, the higher the geometric fill factor, or GFF, is, the better
the electrical performance of the photovoltaic module 10 is. As described hereinafter, the
photovoltaic module according to the present invention makes it possible to minimize the
width of the inactive zones, so as to maximize the size of the active zones for a same
substrate size, and thus to optimize the GFS.
Each inactive zone 34A, 34B comprises a groove 36A, 36B separating two
adjacent lower electrodes. For example, the groove 36A is located between the first 18A
and second 18B lower electrodes of the first 16A and second 16B photovoltaic cells; the
second lower electrode 18B is positioned between the grooves 36A and 36B.
A bottom of the groove 36A, 36B is formed by the electrically insulating substrate
12. Thus, each groove 36A, 36B electrically insulates the lower electrodes situated on
either side of said groove. For information, the groove 36A, 36B has a width along X of
between 20 urn and 50 urn, preferably between 30 and 40 urn.
6
Each inactive zone 34A, 34B further comprises an assembly 40 in contact with the
corresponding groove 36A, 36B. Figure 5 shows a detail view of an inactive zone 34A, the
dimensions along Z being less stretched than in figure 1 relative to the dimensions along
X. The description below of the inactive zone 34A is valid for the other inactive zones of
the photovoltaic module 10.
The assembly 40 comprises a first 42 and second 44 electrically insulating strip, as
well as an electrically conductive strip 46, said strips 42, 44, 46 extending along Y.
The first electrically insulating strip 42 extends in the groove 36A and on either
side of said groove, in the layer of first electrically conductive material 19. Said first
electrically insulating strip 42 includes a first 50 and a second 52 adjacent portion along X.
Said first 50 and second 52 portion are respectively oriented toward the first 16A and
toward the second 16B photovoltaic cells.
The electrically conductive strip 46 extends over the second portion 52 of the first
electrically insulating strip 42, as well as over the first electrically conductive material 19.
On the contrary, the electrically conductive strip 46 is positioned away from the first
portion 50 of the first electrically insulating strip 42.
The electrically conductive strip 46 includes a first 54 and a second 56 portion that
are adjacent along X, respectively oriented toward the first 16A and toward the second
16B photovoltaic cell. Said first portion 54 forms a protrusion along Z relative to the first
electrically insulating strip 42. Said second portion 56 is in contact with the first electrically
conductive material 19.
The second electrically insulating strip 44 extends over the second portion 56 of
the electrically conductive strip 46, as well as over the first electrically conductive material
19. On the contrary, the second electrically insulating strip 44 is positioned away from the
first portion 54 of the first electrically conductive strip 46.
For information, each electrically insulating strip 42, 44 has a thickness along Z of
between 5 pm and 40 pm, preferably between 10 pm and 20 pm; and the electrically
conductive strip 46 has a thickness along Z of between 1 pm and 10 pm, preferably
between 2 pm and 5 pm.
Preferably, a width 58 along X of the assembly 40, therefore of the inactive zone
34A, is between 0.30 mm and 1.60 mm. This small width makes it possible to maximize
the size of the cells 16A, 16B.
More specifically, a width 60, 62 along X of each electrically insulating strip 42, 44
is preferably between 100 pm and 800 pm. Furthermore, a width 64 along X of the
electrically conductive strip 46 is preferably between 200 pm and 900 pm.
7
As shown in figure 1, the different layers of the stack 20 formed on the first lower
electrode 18A come, along X, into contact with the first portion 50 of the first electrically
insulating strip 42 of the inactive zone 34A. Preferably, at least some layers of the stack
20 formed on the second lower electrode 18B come, along X, into contact with the second
electrically insulating strip 44 of said inactive zone 34A.
The electrical connection 17A connecting the first 16A and the second 16A
photovoltaic cells includes a junction 65 between the upper electrode 22 of said first cells
16A and the first portion 50 of the electrically conductive strip 46 of the inactive zone 34A.
The upper electrode 22 of said first cell 16A is thus electrically connected to the second
lower electrode 18B, by means of said electrically conductive strip 46.
On the contrary, a space 66 along X (figure 1) is arranged between the electrically
conductive strip 46 of the inactive zone 34A and the upper electrode 22 of the second
photovoltaic cell 16B.
Furthermore, the first photovoltaic cell 16A, adjacent to the edge 15 of the
substrate 12, is separated from said edge 15 by an inactive end zone 68, formed by an
electrically insulating strip extending along Y along said edge. For information, the inactive
end zone 68 has a thickness along Z of between 10 urn and 20 urn and a width along X of
between 400 urn and 800 urn. Preferably, at least some layers of the stack 20 formed on
the first lower electrode 18A come, along X, into contact with the inactive end zone 68.
A method for manufacturing the photovoltaic module 10 above will now be
described, based on figures 2 to 5:
First (figure 2), the substrate 12 is provided, covered with a layer of the first
electrically conductive material 19. Said material 19 is for example deposited on the
surface 14 of the substrate 12 by coating of the solid surface type.
The grooves 36A, 36B are formed on said layer of material 19, in particular by
mechanical or laser etching. A first electrically insulating strip 42 is formed in each groove
36A, 36B and on either side of said groove, on the material 19 (figure 3). Likewise, the
inactive end zone 68 is formed on the material 19, along the edge 15.
According to the illustrated embodiment, the grooves 36A, 36B are formed first;
then each first electrically insulating strip 42 is made in the corresponding groove 36A,
36B and on either side of said groove.
Each of the first electrically insulating strips 42 makes it possible to complete the
electrical insulation between the adjacent photovoltaic cells. Indeed, the formation of an
electrically insulating strip 42 in a groove 36A, 36B makes it possible to minimize any
short-circuits between the adjacent lower electrodes 18A, 18B. Such short-circuits are in
particular caused by debris generated during the formation of the groove by etching.
8
According to one alternative embodiment that is not shown, each first electrically
insulating strip 42 is made on the location provided for the corresponding groove 36A,
36B, then each groove is formed by laser etching, through said first electrically insulating
strip 42.
Indeed, laser etching does not produce debris capable of generating short-circuits.
Additionally, the laser etching system makes it possible to etch the material 19 through the
insulating strip 42. Indeed, the material of the insulating strip 42 being transparent at the
wavelength of the laser, this strip 42 remains intact; while the energy from the laser ray
being absorbed by the material 19, it makes it possible to etch this material.
It is thus possible to etch a groove 36A, 36B below an insulating band 42
previously formed.
After the formation of a groove 36A, 36B and a corresponding first electrically
insulating strip 42, the electrically conductive strip 46 and the second electrically insulating
strip 44 are made, to form the assembly 40 corresponding to each inactive zone 34A, 34B
(figures 4 and 5).
Preferably, the first electrically insulating strip 42 and/or the inactive end zone 68
are made by depositing a first liquid formulation comprising electrically insulating
materials, followed by a passage to the solid state of said first formulation.
Preferably, the electrically conductive strip 46 and the second electrically insulating
strip 44 are made by depositing, respectively, a second and a third liquid formulation,
followed by a passage to the solid state of said second/third formulation.
The first and/or third liquid formulations for example comprises polymers prepared
from materials such as amines, acrylates, epoxides, urethanes, phenoxys or combinations
thereof. These insulating materials are deposited in solution, or without solvent when they
are in liquid state at ambient temperature. According to one embodiment, the first and
third formulations are substantially identical.
The second liquid formulation includes at least one electrically conductive material,
which may be chosen from among: electrically conducting metals and alloys, in particular
gold, silver, copper, aluminum, nickel, palladium, platinum and titanium; conducting
polymers such as polythiophenes, polyanilines, polypyrroles; and metal oxides such as
indium and tin oxide, fluorinated tin oxide, tin oxide, zinc oxide and titanium dioxide. The
second liquid formulation optionally includes a solvent.
It should be noted that, the assembly 40 being made before the stack 20, any
solvent entering the composition of the first, second and third liquid formulations can be
chosen from among the solvents not orthogonal to said stack 20. Indeed, the method
9
according to the invention eliminates the risk of etching or dissolving the stack 20 during
the formation of the assembly 40.
At least one of the first 42 or second 44 electrically insulating strips or electrically
conductive strip 46 is made using a coating technique or wet scrolling printing techniques,
preferably chosen from among slot-die, photogravure, flexography and rotary screen
printing. The precision of these techniques particularly makes it possible to form the
electrically conductive strip 46 so as to define the desired geometry for the first 50 and
second 52 portions of the first electrically insulating strip 42, as well as to form the second
electrically insulating strip 44 so as to define the desired geometry for the first 54 and
second 56 portions of the electrically conductive strip 46.
Optionally, the second and third liquid formulations are deposited successively,
then simultaneously brought to the solid state, to form the electrically conductive strip 46
and the second electrically insulating strip 44.
The passage to the solid state of the second liquid formulation is preferably done
by heating, in particular to temperatures above 120°C, or by exposure to infrared or
ultraviolet rays. The same techniques can be used for the passage to the solid state of the
first and third liquid formulations. Alternatively, said first and third liquid formulations are
dried at ambient temperature or by heating below 120°C.
Next, the stack 20 of layers 30, 24, 32, 22 of materials is made on each lower
electrode 18A, 18B. Each layer of the stack 20 can be formed owing to a wide range of
techniques. The manufacturing methods compatible with large-scale production are
preferably continuous methods, such as the scrolling or roll-to-roll methods.
Each of the different layers 30, 24, 32, 22 of the stacks 20 is preferably formed by
a wet scrolling coating or printing technique, in particular chosen from among slot-die,
curtain coating, knife coating, photogravure, heliography, rotary screen printing and
flexography, then by drying of the layer. It should be noted that after the deposition of the
photo-active layer 24, it is desirable not to expose the layer to temperatures above 120°,
failing which it may suffer damage. Thus, it is advantageous to make the inactive zones
34A, 34B before the stack 20; indeed, a high drying temperature of the electrically
conductive strip 46 makes it possible to improve the conductivity of said strip, therefore to
decrease the resistance in series between the two adjacent photovoltaic cells.
Furthermore, certain techniques for forming the stack 20, such as flexography,
heliography, screen printing and slot-die, implement machines including drive rollers. In
this case, the inactive zones 34A, 34B form a physical protection along the axis Z of the
coated surface. Such a protection makes it possible to limit the formation of defects on the
10
various coated layers, by the contact between the driving rollers and the substrate to be
coated.
In particular, the precision of the techniques indicated above, for the formation of
the stack 20, makes it possible to arrange the space 66 along X between the electrically
conductive strip 46 of the inactive zone 34A and the upper electrode 22 of the second
photovoltaic cell 16B. Short-circuits between the first 16A and the second 16B
photovoltaic cells are thus prevented.
Furthermore, the layer forming the upper electrode 22 of the first photovoltaic cell
16A is deposited so as to form the junction 65 along X with the first portion 54 of the
electrically conductive strip 46 of the inactive zone 34A, forming the first electrical
connection 17A. The second electrical connection 17B is formed similarly, between the
second photovoltaic cell 16B and the inactive zone 34B.
The photovoltaic module 10 of figure 1 is thus obtained.
CLAIMS
1.- A method for manufacturing a photovoltaic module (10), comprising at least two
electrically connected photovoltaic cells (16A, 16B, 16C), said module comprising an
insulating substrate (12) covered with a layer of a first conductive material (19); the
method comprising the following steps:
- a) forming, on the layer of first material, a groove (36A, 36B) defining a first (18A)
and a second (18B) lower electrodes, electrically isolated from one another; and
- b) forming, on each of said lower electrodes, a stack (20) comprising at least: an
upper electrode (22) formed by a layer of a second electrically conductive material; and a
photo-active layer (24) positioned between the lower and upper electrodes; each of the
first (18A) and second (18B) lower electrodes respectively forming a first (16A) and a
second (16B) photovoltaic cell with the corresponding stack (20);
the method being characterized in that:
- step b) is carried out after step a);
- the method comprises the following steps:
- c) formation of a first insulating strip (42) on the layer of first material, so as
to cover a location of the groove (36A, 36B); said first strip comprising a first (50)
and second (52) adjacent portion, respectively oriented toward the first and toward
the second lower electrodes; then
d) formation of a conductive strip (46) on the layer of first material (19), said
conductive strip covering the second portion (52) and leaving the first portion (50) of
the first insulating strip free; said conductive strip comprising a first (54) and second
(56) adjacent portion, respectively oriented toward the first and toward the second
lower electrode, said first portion forming a relief relative to the first insulating strip;
then
- e) forming a second insulating strip (44) on the layer of first material, said
second strip covering the second portion (56) and leaving the first portion (54) of the
conductive strip free;
at least steps d) and e) being carried out between steps a) and b); and
- in step b), the upper electrodes (22) of the first (16A) and second (16B)
photovoltaic cells are respectively formed in contact (65) with, and away (66) from, the
first portion (50) of the electrically conductive strip.
2.- The method according to claim 1, wherein step c) is done between steps a) and
b), the first insulating strip (42) further being formed in the groove (36A, 36B).
12
3.- The method according to claim 1 or claim 2, wherein at least one of the first
(42) and second (44) insulating strips is made by depositing a first liquid formulation
comprising electrically insulating materials, followed by a passage to the solid state of said
first formulation. I
4.- The method according to -one of the preceding claims, wherein the conductive
strip (46) is made by depositing a second liquid formulation comprising electrically
conductive materials, followed by a passage to the solid state of said second formulation.
5.- The method according to claim 4, the passage to the solid state of the second
formulation comprises heating to a temperature above 120°C. k
f
6.- The method according to one of the preceding claims, wherein the at least one
of the first (42) and second (44) insulating strips and the conductive strip (46) is formed by
I a coating or printing technique using a continuous wet method, preferably chosen from
' among slot-die, photogravure, flexography and rotary serigraphy.
/ 1'.- A photovoltaic module (10) derived from a method according to one of the
preceding claims.
8.- The photovoltaic module according to claim 7, wherein the first (42) and second
(44) insulating strips and the conductive strip (46) form, with the groove (36A, 36B), an
inactive zone (34A, 34B) separating two adjacent photovoltaic cells (16A, 16B, 16C), a
width (58) of the inactive zone being between 0.30 mm and 1.60 mm.
9.-The photovoltaic module according to claim 7 or claim 8, wherein a width (60,
62) of at least one of the first and second insulating strips (42, 44) is between 100 urn and
800 urn.
10.- The photovoltaic module according to one of claims 7 to 9, wherein a width
(64) of the conductive strip (46) is between 200 urn and 900 urn.
| # | Name | Date |
|---|---|---|
| 1 | 201914022413-TRANSLATIOIN OF PRIOIRTY DOCUMENTS ETC. [06-06-2019(online)].pdf | 2019-06-06 |
| 2 | 201914022413-STATEMENT OF UNDERTAKING (FORM 3) [06-06-2019(online)].pdf | 2019-06-06 |
| 3 | 201914022413-FORM 1 [06-06-2019(online)].pdf | 2019-06-06 |
| 4 | 201914022413-DRAWINGS [06-06-2019(online)].pdf | 2019-06-06 |
| 5 | 201914022413-DECLARATION OF INVENTORSHIP (FORM 5) [06-06-2019(online)].pdf | 2019-06-06 |
| 6 | 201914022413-COMPLETE SPECIFICATION [06-06-2019(online)].pdf | 2019-06-06 |
| 7 | 201914022413-FORM-26 [06-07-2019(online)].pdf | 2019-07-06 |
| 8 | 201914022413-Power of Attorney-080719.pdf | 2019-07-13 |
| 9 | 201914022413-Correspondence-080719.pdf | 2019-07-13 |
| 10 | abstract.jpg | 2019-07-15 |
| 11 | 201914022413-Verified English translation (MANDATORY) [19-09-2019(online)].pdf | 2019-09-19 |
| 12 | 201914022413-Proof of Right (MANDATORY) [19-09-2019(online)].pdf | 2019-09-19 |
| 13 | 201914022413-Certified Copy of Priority Document (MANDATORY) [19-09-2019(online)].pdf | 2019-09-19 |
| 14 | 201914022413-OTHERS-200919.pdf | 2019-09-24 |
| 15 | 201914022413-OTHERS-200919-.pdf | 2019-09-24 |
| 16 | 201914022413-Correspondence-200919.pdf | 2019-09-24 |
| 17 | 201914022413-FORM 3 [02-12-2019(online)].pdf | 2019-12-02 |
| 18 | 201914022413-PA [04-09-2020(online)].pdf | 2020-09-04 |
| 19 | 201914022413-ASSIGNMENT DOCUMENTS [04-09-2020(online)].pdf | 2020-09-04 |
| 20 | 201914022413-8(i)-Substitution-Change Of Applicant - Form 6 [04-09-2020(online)].pdf | 2020-09-04 |