Sign In to Follow Application
View All Documents & Correspondence

Method Of Reducing Glycosylation Of Proteins, Processes And Proteins Thereof

Abstract: The disclosure relates to method of reducing O-glycosylation levels of the insulin or insulin analog precursor molecule produced by Pichia sp. The present disclosure provides genetically engineered knock-out strains of methylotrophic yeast including Pichia and especially Pichia pastoris by disruption of Protein mannosyl transferase (PMT) genes and rendering them capable of producing heterologous proteins with reduced glycosylation. Vectors, which comprise coding sequences for PMT1, PMT2, PMT4, PMT5, and PMT6 genes, for transforming methylotrophic yeasts are contemplated by the present disclosure. PMT inactivated strains of this disclosure have been deposited at MTCC, Chandigarh. The strains are PMT1/GS115 (MTCC 5515), PMT4/GS115 (MTCC 5516), PMT5/GS115 (MTCC 5517) and PMT6/GS115 (MTCC 5518)

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
10 February 2010
Publication Number
33/2011
Publication Type
INA
Invention Field
BIOTECHNOLOGY
Status
Email
ipo@knspartners.com
Parent Application
Patent Number
Legal Status
Grant Date
2018-06-27
Renewal Date

Applicants

BIOCON LIMITED
20th KM,  Hosur Road,  Electronic City P.O.,  Bangalore – 560 100  Karnataka,  India.

Inventors

1. Nagaraj Govindappa
Kodagikere,  Durvigere post,  Channagiri Tq.Davanagere-577213, Karnataka  India.
2. Komal Kanojia
24,  ‘Ashray’  2nd Main,  4th Cross,  Banagirinagar,  Banashankari 3rd Stage, Bengaluru-560085, Karnataka,  India.
3. Krishnamurthy Venkatesan
Plot no.82.Door-22, Flat C,  Grace Enclave,  2nd Main Road,  North Jaganathan Nagar,  Villivakkam,  Chennai-600049  Tamil Nadu  India
4. Nitesh Dave
424,  Mahaveer Woods,  22nd main,  JP nagar,  5th phase,  Near IDBI bank, Bangalore-560078, Karnataka,  India.
5. Mukesh Babuappa Patale
Mali Galli,  Ausa-413520,  Latur District,  Maharashtra,  India.
6. Sanjay Tiwari
# 54,  Ramanashree Nagar,  Dodakamanahalli Road,  Off Bannerghatta Road,  Bangalore – 560076 Karnataka,  India.
7. Kedarnath N Sastry
77/A,  2nd Cross,  Banashankari,  3rd Stage,  3rd Phase,  4th Block, Bengaluru-560085,  Karnataka,  India.
8. Harish Iyer
407,  2nd Main Road,  HRBR Layout,  3rd Block,  Kalyan Nagar,  Bengaluru-560043, Karnataka,  India.

Specification

TECHNICAL FIELD
The disclosure relates to disruption of Protein mannosyl transferase (PMT) genes of Pichia pastoris leading to reduction in the O-glycosylation levels of the insulin precursor molecule produced by Pichia sp. The present disclosure provides genetically engineered knock-out strains of methylotrophic yeast including Pichia and especially Pichia pastoris capable of producing heterologous proteins with reduced glycosylation. Vectors, which comprise coding sequences for PMT1, PMT2, PMT4, PMT5, and PMT6 genes, for transforming methylotrophic yeasts are contemplated by the present disclosure.
BACKGROUND OF THE DISCLOSURE
Recombinant forms of insulin, insulin analogues and/or derivatives have been produced in various microbial expression Systems. Currently organisms such as E.coli, S.cerevisiae have been employed for the commercial production of recombinant human insulin and derivatives thereof. Owing to certain disadvantages of these Systems such as low expression levels, difficulties in down stream purification etc., the use of methylotrophic yeast Pichia pastoris has been favored as a protein expression System. The expression System offers several advantages such as high expression, simple processing, low production cost, high density culture (US6800606).
Yeast expression Systems are populär because they are easy to grow, are fast and scalable; however, some yeast expression Systems have produced inconsistent results, and it is sometimes difficult to achieve high yields. One yeast expression System that has shown great promise is the methylotrophic yeast, Pichia pastoris. Compared to other eukaryotic expression Systems, Pichia offers many advantages because it does not have the endotoxin problem associated with bacteria or the viral contamination problem of proteins produced in animal cell culture (Cino, Am Biotech Lab, May 1999).
Albeit various advantages are attributed to yeast based expression Systems such as Pichia pastoris, one of the major disadvantages of this System is the post-translational modification of resulting proteins which later exist as impurities in the final product that is difficult to purify. Although there are a number of post translational modifications of proteins known, the most common form of post

translational modification is glycosylation. (Hart G.W, Glycosylation, Curr. Opin. Cell.Biol 1992; 4: 1017). Glycosylation can be either N-linked or O-linked depending on the expression System. (Gemmill TR et al., Overview of N- and O- linked Oligosaccharide structures found in various yeast species, Biochemica et Biophysica Acta, 1999; 1426:227). Glycosylation affects stability of protein conformation, immunogenicity, clearance rate, protection from proteolysis and improves protein solubility. (Walsh G, Biopharmaceutical benchmarks 2006, Nature Biotechnology, 2006; 24:769).
In yeasts, the modification of the sugar branches in the Golgi apparatus involves a series of additions of mannose residues by different mannosyl transferases ("outer chain" glycosylation). The structure of the outer chain glycosylation is specific to the organisms. Such glycosylations are often undesired since it leads to heterogeneity of a recombinant protein product in both carbohydrate composition and molecular weight, which may complicate the protein purification. It may also lead the protein to be become highly immunogenic or can provoke allergic reactions which are undesirable.
Despite great advances in improving biotechnological manufacturing, no global Solutions exist for every protein. The manufacturing process for a specific therapeutic protein requires novel and innovative Solutions to problems that may be specific for that protein or family of proteins.
Therefore, it is desirable to genetically engineer methylotrophic yeast strains such as Pichia pastoris in which glycosylation of proteins can be manipulated, essentially reduced and from which recombinant glycoproteins can be produced having a mammalian-like post translation pattern without affecting the productivity of the desired end product.
STATEMENT OF THE DISCLOSURE
Accordingly, the present disclosure relates to a method of reducing glycosylation of a protein produced from a methylotrophic yeast enabled through inactivation of at least one or more genes selected from the group comprising PMT1, PMT2, PMT4, PMT5 and PMT6 genes having a nucleotide sequence that is at least 80% homologous to nucleotide sequence represented by SEQ

ID Nos. 1, 2, 3, 4 and 5 respectively, said sequences encoded for the protein mannosyl transferase or a functional part thereof; a vector containing the protein mannosyl transferase gene or a functional part thereof selected from the group comprising PMT1, PMT2, PMT4, PMT5 and PMT6 genes having a nucleotide sequence that is at least 80% homologous to nucleotide sequence represented by SEQ ID Nos. 1, 2, 3, 4 and 5 respectively, the Integration of the vector into the homologous locus inhibits the expression of functional protein mannosyl transferase in a host, preferably a methylotrophic yeast; a process for the production of knock-out strain of methylotrophic yeast wherein (a) a vector incorporating a nucleic acid sequence capable of homologous recombination containing a target nucleic acid sequence encoding at least one of the genes selected from the group comprising PMT1, PMT2, PMT4, PMT5 and PMT6 having a nucleotide sequence that is at least 80% homologous to nucleotide sequence represented by SEQ ID Nos. 1, 2, 3, 4 and 5 respectively and a nucleic acid sequence coding for a selection marker (b) culturing cells under conditions to permit homologous recombination between the DNA encoding the target gene in the vector and in the host cell to occur thereby leading to disruption of the target gene in the host cell (c) selecting host cells with the inactivated target gene; a protein produced from the process described above; a knock-out strain of a methylotrophic yeast, said strain having at least one inactivated gene selected from the group comprising PMT1, PMT2, PMT4, PMT5 and PMT6 having a nucleotide sequence that is at least 80% homologous to nucleotide sequence represented by SEQ ID Nos. 1, 2, 3, 4 and 5 respectively; PMT1 genes inactivated strain as described above; PMT4 genes inactivated strain as described above; PMT5 genes inactivated strain as described above; PMT6 genes inactivated strain as described above; a protein produced from the knock-out strain as described above; a protein produced from knockout strain in accordance to claim 23, wherein the knockout strain is one among MTCC 5515, MTCC 5516, MTCC 5517, MTCC 5518 or any modified strains thereof; and a protein according to any of Statements above, wherein the protein exhibits modified glycosylation.
SUMMARY OF THE DISCLOSURE
The present disclosure is directed to methods of producing protein with reduced glycosylation, said method involves use of vectors that genetically modified the methylotrophic yeast strains and enable them to produce proteins with reduced glycosylation.

In a preferred embodiment, the inactivation vectors of the present disclosure include a nucleotide sequence encoding Protein mannosyl transferases (PMTs, Dolichyl-phosphate-mannose-protein mannosyltransferase proteins, E.C. 2.4.1.109) or a functional part thereof and are capable of disrupting or inactivating the protein mannosyl transferases or the functional part in a methylotrophic yeast strain. The preferred nucleotide sequences are nucleotide sequences encoding the PMT1, PMT2, PMT4, PMT5, PMT6 genes as represented in SEQ ID 1, SEQ ID 2, SEQ ID 3, SEQ ID 4, SEQ ID 5 and the functional part thereof selected for disrupting the genes as represented in SEQ ID 6, SEQ ID 7, SEQ ID 8, SEQ ID 9, SEQ ID 10 respectively.
In accordance with methods presented in the instant disclosure, a nucleotide sequence capable of expressing a heterologous protein can be introduced into a methylotrophic yeast strain which has previously been transformed with one or more of the vectors of the present disclosure in as Step wise fashion. Such yeast strain can be transformed, either consecutively or simultaneously, with one or more vectors of the present disclosure. Additionally, a methylotrophic yeast strain can be transformed with one or more of the present inactivation vectors which include a nucleotide sequence encoding a protein mannosyl transferase as represented in the sequence listings.
Methylotrophic yeast strains generated using present methods and vectors, as well as proteins produced firom such genetically modified strains, are also provided.
Heterologous protein products produced by using the methods of the present disclosure, i.e., proteins with reduced O-glycosylation, are also part of the present disclosure.
According to the most significant aspects of the present disclosure, the productivity of the desired end product remains unaffected.
Additional objects and advantages of the disclosure will be set forth in part in the description which follows, and in part will be obvious from the description or may be learned from practice of

the disclosure. The objects and advantages may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended Claims.
The accompanying drawings, which are incorporated herein and constitute a part of this application, illustrate various attributes useful in this disclosure and, together with the description, serve to explain the various significant attributes forming the crux of the disclosure.
BRIEF DESCRIPTION OF ACCOMPANYING FIGURES
Figure 1: Clones obtained upon subcloning PMT genes in pPICZ alpha.
Lanel = PMBL184 plasmid digested at BamHI and Smal restriction enzymes (1775 + 576 bps
fragments),
Lane2 = PMBL184 plasmid digested at BstEII restriction enzyme (linearize 2351 bps fragment),
Lane3 = PMBL185 plasmid digested at BamHI and Smal restriction enzymes (1930 + 431 bps
fragments)
Lane4 = PMBL185 plasmid digested at Kpnl restriction enzyme (linearize 2361 bps fragment),
Lane5 = Marker, XDNA EcoRI and Hindlll digest,
Laneö = PMBL186 plasmid digested at BamHI and Smal restriction enzymes (1923 + 428 bps
fragments),
Lane7 = PMBL186 plasmid digested at XmnI restriction enzyme (linearize 2351 bps fragment).
Lane8 = PMBL187 plasmid digested at BamHI and Smal restriction enzymes (1929 + 437 bps
fragments),
Lane9 = PMBL187 plasmid digested at BstEII restriction enzyme (linearize 2366 bps fragment),
LanelO = PMBL188 plasmid digested at BamHI and Smal restriction enzymes (1929 + 497 bps
fragments) and
Lanel 1 = PMBL188 plasmid digested at Ndel restriction enzymes (linearize 2426 bps fragment).
Figure 2a: pMBL184 describes PMT1 disruption gene cloned in pPICZ alpha. BstEII restriction
site used for linearising the plasmid
Figure 2b: Knock - out BICC#9104 with PMT1 gene disrupted, Lane 1 and 13 = X marker, Lane
18 = BICC#9104.

Figure 2(c): Southern Blot by digesting genomic DNA with Hind III restriction enzymes and
using PMTldisruption fragments as probe.
Lane M= 1Kb DNA marker,
Lane 1= Insulin precursor producing parent clone #11,
Lane 2 = PMT1 Knock out insulin precursor producing clone #11,
Lane 3= Insulin precursor producing parent clone #8,
Lane 4 = PMT1 Knock out insulin precursor producing clone of #8,
Lane 5= Insulin analog precursor producing parent clone,
Lane 6 = PMT1 Knock out insulin analog precursor producing clone and Plasmid control.
Figure 3a: pMBL188 describes PMT6 disruption gene cloned in pPICZ alpha plasmid. Ndel
restriction site was used for linearizing the plasmid
Figure 3b: PCR confirmation result of PMT6 gene knock-out
Lanel = DNA marker, lkb ladder,
Lane2 = Parent clone PCR with InsteZRP and PMT6DSCHK (No product),
Lane3 = BICC#9107 PCR with InsteZRP and PMT6DSCHK (895 bp product),
Lane4 = Parent clone PCR with TEFDSRP and SPMT6DCFP (No product),
Lane5 = BICC#9107 PCR with TEFDSRP and SPMT6DCFP (639 bp product),
Lane6 = BICC#9107 PCR with ISCHKFP and PMT6DSCHK (835 bp product).
Figure 4a: pMBL186 describes PMT4 disruption gene cloned in pPICZ alpha plasmid. Xcml
restriction site was used for linearizing the plasmid.
Figure 4b: PCR confirmation result of PMT4 gene disrupted.
Lanel = Parent clone PCR with InsteZRP and PMT4DSCHK (No product, -ve control),
Lane2 = Positive control PMT6 #79, with InsteZRP and PMT6DSCHK (895 bp product),
Lane3 = BICC#9105 PCR with InsteZRP and PMT4DSCHK (981 bp product) (4th subculture),
Lane4 = BICC#9105 PCR with TEFDSRP and SPMT4DCFP(649 bp product) (4th subculture),
Lane5= 1 kb ladder DNA marker,
Lane6 = BICC#9105 PCR with InsteZRP and PMT4DSCHK (981 bp product ) (Ist subculture),
Lane7 = BICC#9105 PCR with TEFDSRP and SPMT4DRP (649 bp product) (Ist subculture).
Figure 5a: pMBL187 describes PMT5 disruption gene cloned in pPICZ alpha plasmid. BstEII
restriction site was used for linearizing the plasmid

Figure 5b: PCR Screening of PMT5 disrupted clones
Lanel and 13= DNA Molecular weight marker
Lane 2-12 and 14-21 are different PMT5 disrupted clones screened.
Figure 6a:pMBL185 describes PMT2 disruption gene cloned in pPICZ alpha plasmid. Kpnl
restriction site was used for linearizing the plasmid
Figure 6b: PMT2 gene knock out positives Screening.
Figure 7: Overlay of chromatogram indicating reduced glycosylation of PMTl/insulin clone.
Figure 8: RPHPLC Profile indicating Glycosylation profile with Insulin Analog 1 before and after
PMT1 gene inactivation.
Figure 9: RPHPLC Profile indicating Glycosylation profile with Insulin Analog2 before and after
PMT1 gene inactivation.
REPRESENTATION OF ACCOMPANYING SEOUENCE LISTINGS
SEQID 1: Nucleotide Coding sequence of PMT1 SEQ ID 2: Nucleotide Coding sequence of PMT2 SEQ ID 3: Nucleotide Coding sequence of PMT4 SEQ ID 4: Nucleotide Coding sequence of PMT5 SEQ ID 5: Nucleotide Coding sequence of PMT6 SEQ ID 6: Disrupted sequence of PMT1 SEQID7: Disrupted sequence ofPMT2 SEQ ID 8: Disrupted sequence of PMT4 SEQ ID 9: Disrupted sequence of PMT5 SEQ ID 10: Disrupted sequence of PMT6
DETAILED DESCRIPTION OF THE DISCLOSURE
The Biological material, Pichia pastoris used in the present disclosure is obtained from Invitrogen Inc., United States of America (USA).
The present disclosure relates to a method of reducing glycosylation of a protein produced from a methylotrophic yeast enabled through inactivation of at least one or more genes selected from the

5 respectively, said sequences encoded for the protein mannosyl transferase or a functional part
thereof.
In an embodiment of the present disclosure, the methylotrophic yeast belongs to Pichia sp.
In another embodiment of the present disclosure, the methylotrophic yeast is Pichiapastoris.
In a further embodiment of the present disclosure, the protein is represented by formula I
X-B-Y-A wherein,
X is a leader peptide sequence comprising at least one amino acid.
B is the amino acid sequence of the B chain of the insulin molecule, its derivatives or analogs Y is a linker peptide comprising at least one amino acid.
A is the amino acid sequence of the A chain of the insulin molecule, its derivatives or analogs and the A and B chain can be modified by amino acid Substitution, deletion and/or additions. In another embodiment of the present disclosure, the mode of glycosylation is O-glycosylation. In yet another embodiment of the present disclosure, the glycosylation is reduced by at least 10 % to about 99%
In still another embodiment of the present disclosure, the glycosylation is reduced by 25%. In still another embodiment of the present disclosure, the glycosylation is reduced by 65%. The present disclosure relates to A vector containing the protein mannosyl transferase gene or a functional part thereof selected firom the group comprising PMT1, PMT2, PMT4, PMT5 and PMT6 genes having a nucleotide sequence that is at least 80% homologous to nucleotide sequence represented by SEQ ID Nos. 1, 2, 3, 4 and 5 respectively, the Integration of the vector into the homologous locus inhibits the expression of functional protein mannosyl transferase in a host, preferably a methylotrophic yeast.
In an embodiment of the present disclosure, The method of reducing or modifying glycosylation on proteins produced from methylotrophic yeast comprising transforming said yeast with a vector as described above.
In another embodiment of the present disclosure, the methylotrophic yeast belongs to Pichia sp. In yet another embodiment of the present disclosure, the methylotrophic yeast is Pichia pastoris. The present disclosure relates to a process for the production of knock-out strain of methylotrophic yeast wherein (a) a vector incorporating a nucleic acid sequence capable of homologous

recombination containing a target nucleic acid sequence encoding at least one of the genes selected
from the group comprising PMT1, PMT2, PMT4, PMT5 and PMT6 having a nucleotide sequence
that is at least 80% homologous to nucleotide sequence represented by SEQ ID Nos. 1, 2, 3, 4 and
5 respectively and a nucleic acid sequence coding for a selection marker (b) culturing cells under
conditions to permit homologous recombination between the DNA encoding the target gene in the
vector and in the host cell to occur thereby leading to disruption of the target gene in the host cell
(c) selecting host cells with the inactivated target gene.
The present disclosure further relates to a protein produced from the process according to any of
the said preceding claims.
The present disclosure further relates to a knock-out strain of a methylotrophic yeast, said strain
having at least one inactivated gene selected from the group comprising PMT1, PMT2, PMT4,
PMT5 and PMT6 having a nucleotide sequence that is at least 80% homologous to nucleotide
sequence represented by SEQ ID Nos. 1, 2, 3, 4 and 5 respectively.
The present disclosure relates to PMT1 genes inactivated strain as described above, having
Accession number MTCC5515
The present disclosure further relates to PMT4 genes inactivated strain as described above, having
Accession number MTCC5516
The present disclosure relates to PMT5 genes inactivated strain as described above, having
Accession number MTCC5517
The present disclosure further relates to PMT6 genes inactivated strain as described above, having
Accession number MTCC5518
In an embodiment of the present disclosure, the host strain yields protein with reduced level of
glycosylation compared to protein product expressed in an unaltered host strain.
In yet another embodiment of the present disclosure, the glycosylation is reduced by at least 25%.
In still another embodiment of the present disclosure, the glycosylation is reduced by at least 65%.
The present disclosure relates to a protein produced from the knock-out strain as described above.
The present disclosure relates to a protein produced from knockout strain in accordance to claim
23, wherein the knockout strain is one among MTCC 5515, MTCC 5516, MTCC 5517, MTCC
5518 or any modified strains thereof.
In an embodiment of the present disclosure, the selection marker is zeocin resistance marker.

In another embodiment of the present disclosure, the protein is an insulin/insulin analogs/insulin
precursor molecule.
In still another embodiment of the present disclosure, the protein produced is a hetorologous
protein product.
In still another embodiment of the present disclosure, the protein exhibits modified glycosylation.
In still another embodiment of the present disclosure, the productivity of the desired protein end
product remains unaffected.
Reference will now be made in detail to the presently preferred embodiments of the disclosure
which, together with the following example, serve to explain the principles of the disclosure.
The Examples which follow are set forth to aid in understanding the disclosure but are not
intended to, and should not be construed to, limit its scope in any way. The Examples do not
include detailed descriptions for conventional methods employed in the construction of vectors, the
insertion of genes encoding Polypeptides into such vectors or the introduction of the resulting
Plasmids into hosts. The Examples also do not include detailed description for conventional
methods employed for assaying the Polypeptides produced by such host vector Systems. Such
methods are well known to those of ordinary skill in the art and are described in numerous
publications including by way of examples.
Standard techniques are used for various recombinant DNA techniques, transformation (e.g., electroporation, lipofection) and assays. The recombination techniques and procedures are generally performed according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout the present specification. See e.g., Sambrook et al. Molecular Cloning: A Laboratory Manual (3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2001)), which is incorporated herein by reference.
In describing and claiming the present disclosure, the following terminology will be used in accordance with the definitions set out herein.

Unless otherwise defined herein, scientific and technical terms used in connection with the present disclosure shall have the meanings that are commonly understood by those of ordinary skill in the art. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. The methods and techniques of the present disclosure are generally performed according to conventional methods well known in the art. Generally, nomenclatures used in connection with, and techniques of molecular and cellular biology, biochemistry, protein and nucleic acid chemistry and hybridization described herein are those well known and commonly used in the art. The methods and techniques of the present disclosure are generally performed according to conventional methods well known in the art.
As used herein "amino acid" refers to peptide or protein sequences or portions thereof. The terms "protein", "peptide" and "Polypeptide" are used interchangeably.
Heterologous protein according to preferred embodiments of the disclosure is an insulin or insulin analog precursor molecule.
The DNA encoding a heterologous protein as represented by formula I X-B-Y-A
wherein,
X is a leader peptide sequence comprising at least one amino acid.
B is the amino acid sequence of the B chain of the insulin molecule, its derivatives or analogs
Y is a linker peptide comprising at least one amino acid.
A is the amino acid sequence of the A chain of the insulin molecule, its derivatives or analogs
and the A and B chain can be modified by amino acid Substitution, deletion and/or additions.
The term "C-peptide" or "linker peptide" as used herein includes all forms of insulin C-peptide, including native or synthetic peptides. Such insulin C-peptides may be human peptides, or may be from other animal species and genera, preferably mammals. Thus variants and modifications of native insulin C-peptide are included as long as they retain insulin C-peptide activity. It is known in the art to modify the sequences of proteins or peptides, whilst retaining their useful activity and

this may be achieved using techniques which are Standard in the art and widely described in the literature e.g. random or site-directed mutagenesis, cleavage and ligation of nucleic acids etc. Thus, functionally equivalent variants or derivatives of native insulin C-peptide sequences may readily be prepared according to techniques well known in the art, and include peptide sequences having a functional, e.g. a biological, activity of a native insulin C-peptide. All such analogues, variants, derivatives or fragments of insulin C-peptide are especially included in the scope of this disclosure, and are subsumed under the term "an insulin C-peptide".
The linker sequence can be any sequence having at least two amino acids The linker region may comprise from 2 to 25, 2 to 15, 2 to 12 or 2 to 10 amino residues, although the length is not critical and may be selected for convenience or according to choice or it can be without a linker.
The linker peptide may be any sequence comprising at least two amino acids under the provision that the first two amino acids represent "RR".
Polypeptides according to yet other embodiments of the disclosures are referred to herein as possessing the activity of insulin glargine , e.g. are insulin glargine are understood to have an amino acid sequence with two changes of the human insulin structure: Substitution of the amino acid glycine for the native asparagine at position A21 of the A-chain of human insulin and the addition of two arginine molecules to the COOH-terminal end of the B-chain of human insulin produced by recombinant DNA technology The primary action of any insulin, including insulin glargine, is regulation of glucose metabolism. Insulin and its analogs lower blood glucose levels by Stimulation of peripheral glucose uptake, especially within skeletal muscle and fat, and by inhibition of hepatic glucose production.
The term "insertional inactivation" means interruption of the coding region of a gene by the insertion of exogenous DNA, leading to the loss of gene function. This is widely used in gene technology to permit easy selection of recombinants following transformation.

The term "knockout" refers to the disruption of a gene wherein the disruption results in the functional inactivation of the native gene; the deletion of the native gene or a portion thereof, or a mutation in the native gene. With specific reference to the instant disclosure "knock out" refers to the disruption of PMT1, PMT2, PMT4, PMT5, PMT6 genes.
A knock-out strain can be prepared according to any of the various methods known in the art as effective. For example, homologous recombination vectors containing homologous targeted gene sequences 5' and 3' of the desired nucleic acid deletion sequence can be transformed into the host cell. Ideally, upon homologous recombination, a desired targeted enzymatic gene knock-out can be produced.
"Homologous recombination" means the exchange of DNA fragments between two DNA molecules paired chromosomes at the site of identical or nearly identical nucleotide sequences. In homologous recombination, the incoming DNA interacts with and integrates into a site in the genome that contains a substantially homologous DNA sequence. In non-homologous ("random" or "illicit") Integration, the incoming DNA integrates not at a homologous sequence in the genome but elsewhere, at one of a large number of potential locations.
For example, mutant, functional or non-functional genes, flanked by DNA homologous to the endogenous target gene (e.g., the coding regions flanking the target gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transform cells encoding the undesirable form of the target gene in vivo. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the endogenous gene.
As used herein, the term "homologous" or means either i) a protein or peptide that has an amino acid sequence that is substantially similar (i.e., at least 70, 75, 80, 85, 90, 95, or 98%) to the sequence of a given original protein or peptide and that retains a desired function of the original protein or peptide or ii) a nucleic acid that has a sequence that is substantially similar (i.e., at least 70, 75, 80, 75, 90, 95, or 98%) to the sequence of a given nucleic acid and that retains a desired function of the original nucleic acid sequence. In all of the embodiments of this disclosure and

disclosure, any disclosed protein, peptide or nucleic acid can be substituted with a homologous or substantially homologous protein, peptide or nucleic acid that retains a desired function. In all of the embodiments of this disclosure and disclosure, when any nucleic acid is disclosed, it should be assumed that the disclosure also includes all nucleic acids that hybridize to the disclosed nucleic acid.
By "functional part" is meant a fragment of the PMT gene which substantially retains the enzymatic activity of the full-length protein. By "substantially" is meant that at least about 40%, or preferably, at least 50% or more of the enzymatic activity of the full-length PMT is retained.
A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. Thus, a coding sequence "operably linked" to control sequences refers to a configuration wherein the coding sequence can be expressed under the control of these sequences and wherein the DNA sequences being linked are contiguous.
As used herein the term "expression" refers to a process by which a Polypeptide is produced based on the nucleic acid sequence of a gene. The process includes both transcription and translation.
In one aspect, the isolated nucleic acid molecule comprises a nucleotide sequence having at least about 80%) nucleic acid sequence identity, alternatively at least about 81%> nucleic acid sequence identity, alternatively at least about 82% nucleic acid sequence identity, alternatively at least about 83%) nucleic acid sequence identity, alternatively at least about 84% nucleic acid sequence identity, alternatively at least about 85% nucleic acid sequence identity, alternatively at least about 86%> nucleic acid sequence identity, alternatively at least about 87% nucleic acid sequence identity, alternatively at least about 88% nucleic acid sequence identity, alternatively at least about 89% nucleic acid sequence identity, alternatively at least about 90% nucleic acid sequence identity, alternatively at least about 91% nucleic acid sequence identity, alternatively at least about 92% nucleic acid sequence identity, alternatively at least about 93% nucleic acid sequence identity, alternatively at least about 94% nucleic acid sequence identity, alternatively at least about 95% nucleic acid sequence identity, alternatively at least about 96% nucleic acid sequence identity,

alternatively at least about 97% nucleic acid sequence identity, alternatively at least about 98% nucleic acid sequence identity and alternatively at least about 99% nucleic acid sequence identity to a DNA molecule encoding a PMT1, PMT2, PMT4, PMT5, PMT6 genes.
Alternatively, optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman (1981) Add. APL. Math 2:482, by the identity alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity methods of Pearson and Lipman (1988) Proc. Natl. Acad. Sei. USA 85: 2444, by computerized implementations of these algorithms (BLAST, FASTA, GAP, BESTFIT and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by inspection. One example of algorithms that can be suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1977) Nucl. Acids Res. 25:3389 3402 and Altschul et al. (1990) J. Mol. Biol. 215:403 410, respectively.
More particularly, the present disclosure is directed to a nucleic acid sequence, suitably an isolated nucleic acid sequence, which includes or comprises at least SEQ ID 1, SEQ ID 2, SEQ ID 3, SEQ ID 4, SEQ ID 5, their variants or portions thereof, or at least one of the PMT1, PMT2, PMT4, PMT5, PMT6 genes, including variants or portions. The disclosure is also directed to an isolated nucleic acid sequence capable of hybridizing under stringent conditions with these nucleic acid sequences.
The disclosure provides vectors comprising DNA encoding any of the herein described genes. Host cell comprising any such vectors are also provided. By way of example, the host cells may be bacterial, fungal, or mammalian.
The disclosure is also directed to a recombinant host cell in which at least a portion of a nucleic acid sequence as defined above is disrupted to result in a recombinant host cell that produces reduced levels of glycosylated insulin precursor relative to a corresponding parent recombinant host cell. A recombinant expression System is selected from prokaryotic and eukaryotic hosts.

Eukaryotic hosts include yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris), mammalian cells or plant cells. Bacterial and eukaryotic cells are available from a number of different sources including commercial sources to those skilled in the art, e.g., the American Type Culture Collection (ATCC; Rockville, Md.). Commercial sources of cells used for recombinant protein expression also provide Instructions for usage of the cells. The choice of the expression System depends on the features desired for the expressed Polypeptide.
Most preferably related to aspects to the present disclosures, the most preferred host cells are methylotrophic yeasts. Strains of a methylotrophic yeast which can be modified using the present disclosure include, but are not limited to, yeast strains capable of growing on methanol, such as yeasts of the genera Pichia, Candida, Hansenula, or Torulopsis. Preferred methylotrophic yeasts are of the genus Pichia. Methylotrophic yeast strains which can be modified using the present methods also include those methylotrophic yeast strains which have been engineered to express one or more heterologous proteins of interest. The glycosylation on the heterologous proteins expressed from these previously genetically engineered strains can be reduced by transforming such strains with one or more of the vectors of the present disclosure.
The host cell or organism can be engineered to express recombinant protein or peptide using Standard techniques. For example, recombinant protein can be expressed from a vector or from an exogenous gene inserted into the genome of the host.
Vectors that can be used to express exogenous proteins are well known in the art and are described below. Genes for expressing recombinant protein or peptide can also be inserted into the genome using techniques such as homologous or heterologous recombination, as described in the instant disclosure. Preferred vectors of the present disclosure carrying Protein mannosyl transferase genes include but are not limited to pPICZ alpha and pTZ57R.
In another aspect, the present disclosure provides inactivation vectors which, when introduced into a methylotrophic yeast strain, inactivate or disrupt a gene thereby facilitating the reduction in the

glycosylation of desired protein end products produced in the methylotrophic yeast strain without affecting the productivity of the end product.
The recombinant protein or peptide can be expressed after induction with a chemical Compound or upon expression of an endogenous gene or gene product. The recombinant protein can also be expressed when the host cell is placed in a particular environment. Specific promoter elements are described below.
As used herein, the terms "transformed" and "stably transformed" refers to a cell that has been made to incorporate a non-native (heterologous) polynucleotide sequence integrated into an episomal plasmid that is maintained for at least two generations.
As used herein, "recombinant" includes reference to a cell or vector, that has been modified by the introduction of a heterologous nucleic acid sequence or that the cell is derived from a cell so modified.
Vectors may be transformed into host cells by means including, but not limited to electroporation, viral infection, calcium phosphate precipitation, DEAE-dextran, direct microinjection, DNA-loaded liposomes and lipofectamine-DNA complexes, cell sonication, gene bombardment using high velocity microprojectiles or any other means described herein or known in the art.
The disclosure is also directed to a method of producing a desired protein comprising fermenting, under conditions and in a medium suitable for producing such a protein Compound or its analogue, in an organism such as Pichia sp, in which the genes encoding Polypeptides sufficient to direct the production of the desired end product has been incorporated.
It is been found that Protein mannosyl transferase genes (PMT) catalyse the O-glycosylation of serine and threonine residues of proteins in the endoplasmic reticulum. It is has been demonstrated in the instant disclosure that disruption of PMT genes dramatically decreases the O-glycosylation levels of the insulin precursor molecule produced. Disruption of the PMT1 gene resulted in an

insulin precursor showing -65% of decrease in mannosylation. The individual disruption of PMT5 and PMT6 genes resulted in reduction of insulin precursor glycosylation levels by 31% and 28% respectively. The disruption of PMT2 and PMT4 did not affect mannosylation.
As used herein, the term "reduced expression" is broadly construed to include reduced production of a protein of interest. Reduced expression is that expression below the normal level of expression in the corresponding host strain that has not been altered according to the teachings herein but has been grown under essentially the same growth conditions. In context of the present disclosure the enzyme or protein of interest are mannosyl transferases that have a significant role to play in glycosylation of the mannose residues of the insulin/insulin analog precursor molecule.
According to one aspect of the disclosure, reduction of glycosylation may be at least 20%, preferably at least 25%, preferably at least 30%, preferably at least 35%, more preferably at least 40%), more preferably at least 45%, more preferably at least 50%, more preferably at least 55%, most preferably at least 60%, most preferably at least 65% and most preferably at least 70%. According to yet another aspect of the disclosure the reduction of glycosylation obtainable is about 100%.
As used herein, the term "primer" refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product which is complementary to a nucleic acid Strand is induced, (i.e., in the presence of nucleotides and an inducing agent such as DNA Polymerase and at a suitable temperature and pH). The technique of PCR is described in numerous publications, including, PCR: A Practical Approach, M. J. McPherson et al., IRL Press (1991), PCR Protocols: A Guide to Methods and Applications, by Innis et al., Academic Press (1990), and PCR Technology: Principals and Applications of DNA Amplification, H. A. Erlich, Stockton Press (1989).

PCR is also described in many U.S. patents, including U.S. Pat. Nos. 4, 683,195, 4,683,202; 4,800,159; 4,965,188; 4, 889,818; 5, 075, 216; 5,079, 352; 5,104,792, 5,023,171; 5,091,310; and 5, 066,584, which are hereby incorporated by reference.
According to the most significant aspects of the present disclosure, process for the production of "knock-out" strains of methylotrophic yeasts wherein (a) a vector incorporating a nucleic acid sequence encoding for at least one gene selected from the group consisting PMT1, PMT2, PMT4, PMT5, and PMT6 as represented by SEQ IDs 1, 2, 3, 4 and 5 respectively and a nucleic acid sequence coding for a selectable marker (b) culturing the cells under conditions that a homologous recombination occurs thereby disrupting the target nucleic acid sequences in the host cells thereby (c) selecting the cells in which the homologous recombination has taken place and (d) assessing the level of decrease in glycosylation in the altered strains.
All transformations to Pichia pastoris hosts were performed with electroporation. Transformants of vectors carrying the Zeocin resistance gene were selected on YPD plates containing 100 ug/ml of Zeocin.
Thus, the methods of the instant disclosure result in an altered yeast strain capable of producing a protein of interest, wherein said strain has at least one inactivated gene selected from the group comprising PMT1, PMT2, PMT4, PMT5, and PMT6 as represented by SEQ IDs 1, 2, 3, 4 and 5 respectively and (b) growing said altered strains under conditions such that reduced level of glycosylated end products in comparison to the protein products produced in an unaltered host strain.
It is to be understood that this disclosure is not limited to the particular methodology, protocols, cell lines, vectors, species or genera, and media components described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present disclosure which will be limited only by the appended claims. The above description is for the purpose of teaching the person of ordinary skill in the art how to practice the present disclosure, and it is not intended to

detail all those obvious modifications and variations of it which will become apparent to the skilled worker upon reading the description.
Deposit of PMT Genes inactivated Strains
In compliance with the requirements of füll disclosure, Strains of this disclosure have been deposited in the IMTEC Institute of Microbial Technology, Sector 39-A, Chandigarh 160036, India (according to international deposition based on Budapest Treaty). The strains are (accession numbers shown in parentheses):
The disclosure will be more fully described and understood with reference to the following examples, which are given by way of illustration and are not intended to limit the scope of the disclosure in any way.
EXAMPLE 1: DISRUPTION OF PMT1:
About -477 bps of coding sequence involving part of the Pichia pastoris PMT1 coding region was
amplified using following PMT1 primers
PMT1FP = 5' GGA TCC TAA TAG CCC ACT CTG ATC TAC CTC ACT 3'
PMT1RP = 5' GGA TCC AAA GCC CTC ATG TCC ATA AGC AGA 3'.
Two stop codons were included in the forward primer in firame to avoid any read-through from
Potential earlier translation Starts sites in the vector. PCR product was cloned into pTZ57R vector,
and sequenced using M13FP and M13RP to confirm the clone. The PMT1 fragment was excised
using BamHI and cloned into pPICZ alpha in BamHI and Bgl II sites. Clone giving 1775 bps and
576 bps fragments was selected.

The PMT1 disruption cassette was transformed into Pichia Pastoris GS 115. The plasmid was linearized using the BstEII site which is almost in the middle of PMT1 disruption fragment that is transformed into the Pichia strain by electroporation. The transformed clones are selected using 100 ug/ml of zeocin. A couple of hundred colonies were obtained and the individual colonies were streaked onto YPD plates. The genomic DNA was isolated from each of the clones and PCR was carried out to check the correctly disrupted clones. PMT1 knocked out was confirmed by PCR (see fig.2b) and also by Southern blotting (see fig.2c). Selected clone was deposited as MTCC5515.
Primer sequences:
InSTEzRP: 5' TAG CAG AGC GAG GTA TGT AGG CGG TGC 3' TEFDSRP: GAG TCC GAG AAA ATC TGG AAG AGT 3' ISCHKFP: 5' GCT ACA CTA GAA GGA CAG TAT TTG GTA 3' SPMT1DCFP: 5' GGA CTT ATG GTT CAT CAT TGG TGA 3'
EXAMPLE 2: DISRUPTION OF PMT6:
About -515 bps of coding sequence involving part of the PMT6 coding region was amplified using following primers
PMT6FP =5' GGA TCC TAA TAG CTT GCC GTT AAG AGA TAC GAT GA 3' PMT6RP = 5'GGA TCC TGA GAA TGC AAG TTT GCA CCA GTA 3'
Two stop codons were included in the forward primer in firame to avoid any read-through from Potential earlier translation Starts sites in the vector. The PCR product was cloned into pTZ57R vector, sequenced using M13 FP and M13RP to confirm the clone.
The PMT6 disruption cassette was transformed into Pichia Pastoris GS 115. The plasmid was linearised using the unique Ndel site which is almost in the middle of PMT6 disruption fragment that is transformed into the Pichia strain by electroporation. The transformed clones are selected

using 100 ug/ml of zeocin. A couple of hundred colonies were obtained and the individual colonies were streaked onto YPD plates. The genomic DNA was isolated from each of the clones and PCR was carried out to screen the correctly disrupted clones (see fig.3b) .Selected clone was depositedasMTCC5518
EXAMPLE 3: DISRUPTION OF PMT4:
About -516 bps of coding sequence involving part of the PMT4 coding region was amplified using following primers.
PMT4FP = 5' GGA TCC TAA TAG GTT CAT TTC GCT ATT CTA AGC A 3' PMT4RP = 5' GGA TCC TTT CGA CTT CAA AGG ACG GGT T 3'
Two stop codons were included in the forward primer in firame to avoid any read-through from Potential earlier translation Starts sites in the vector. The PCR product was cloned into pTZ57R vector, sequenced using M13 FP and M13RP to confirm the clone.
The PMT4 disruption cassette was transformed into Pichia Pastoris GS 115. The plasmid was linearised using the unique Xcml site which is almost in the middle of PMT4 disruption fragment that is transformed into the Pichia strain by electroporation. The transformed clones are selected using 100 ug/ml of zeocin. A couple of hundred colonies were obtained and the individual colonies were streaked onto YPD plates. The genomic DNA was isolated from each of the clones and PCR was carried out to screen the correctly disrupted clones (see fig 4 b) Selected clone was depositedasMTCC5516
EXAMPLE 4: DISRUPTION OF PMT5:
About -455 bps of coding sequence involving part of the PMT5 coding region was amplified using
primers
PMT5FP = 5' AGA TCT TAA TAG ATC CTA CCA GTG ATC ATT TAC CT 3'

PMT5RP = 5' AGA TCT TCA CTA ATT GGA AGG TCT AGA ATC 3'
Two stop codons were included in the forward primer in frame to avoid any read-through from Potential earlier translation Starts sites in the vector. The PCR product was cloned into pTZ57R vector, sequenced using M13FP and M13RP to confirm the clone.
The PMT5 disruption cassette was transformed into Pichia Pastoris GS115. The plasmid were linearised using the unique BstEII site which is almost in the middle of PMT5 disruption fragment that is transformed into the Pichia strain by electroporation. The transformed clones are selected using 100 ug/ml of zeocin. A couple of hundred colonies were obtained and the individual colonies were streaked onto YPD plates. The genomic DNA was isolated from each of the clones and PCR was carried out to screen the correctly disrupted clone and the clone was confirmed by PCR. (See fig.5 b).Selected clone was deposited as MTCC5517.
EXAMPLE 5: DISRUPTION OF PMT2:
About -439 bps of coding sequence involving part of the PMT2 coding region was amplified using following primer set.
PMT2FP = 5' GGA TCC TAA TAG GTG GGT TTA TTT GTC ACA GTA 3' Pmt2RP = 5' GGA TCC GAA ACA CCC AAT CAT TGT TGG CA 3'
Two stop codons were included in the forward primer in frame to avoid any read-through from Potential earlier translation Starts sites in the vector. The PCR product was cloned into pTZ57R vector, and sequenced using M13 FP and M13RP to confirm the clone.
The PMT2 disruption cassette was transformed into Pichia Pastoris GS 115. The plasmid was linearised using the unique Kpnl site which is almost in the middle of PMT2 disruption fragment that is transformed into Pichia strain by electroporation. The transformed clones are selected using 100 ug/ml of zeocin. A couple of hundred colonies were obtained and the individual colonies were

streaked onto YPD plates. The genomic DNA was isolated from each of the clones and PCR was carried out to screen the correctly disrupted clones (fig 6).
EXAMPLE 6:
REDUCTION OF GLYCOSYLATION IN INSULIN BY PMT KNOCKOUT
Pichia pastoris GS115 was transformed with insulin expression construct to get clone BICC#7743 as a control for glycosylation levels; secreted insulin had glycosylation levels of 1.90-2.0 (considered 100%). PMT knockout strains MTCC 5515, MTCC 5517 and MTCC 5518 were also cloned with the insulin expression construct to compare the glycosylation levels of the secreted insulin to the control. There was a marked reduction (see Fig 7) in the glycosylation of 61%, 31% and 28%) respectively, when compared to the insulin produced by the control BICC#7743.
EXAMPLE 7:
REDUCTION OF GLYCOSYLATION IN INSULIN ANALOG 1 BY PMT KNOCKOUT
Pichia pastoris GS115 was transformed with insulin expression construct to get clone BICC#7744 as a control for glycosylation levels; secreted insulin had glycosylation levels of 1.66 (considered 100%)). PMT knockout strains MTCC 5515 was also cloned with the insulin expression construct to compare the glycosylation levels of the secreted insulin to the control. There was a marked reduction (Fig. 8) in the glycosylation of 46%> when compared to the insulin analog 1, produced by the control BICC#7744.

EXAMPLE 8:
REDUCTION OF GLYCOSYLATION IN INSULIN ANALOG 2 BY PMT KNOCKOUT
Pichia pastoris GS115 was transformed with insulin expression construct to get clone BICC#7996 as a control for glycosylation levels; secreted insulin had glycosylation levels of 1.92 (considered 100%). PMT knockout strains MTCC 5515 was also cloned with the insulin expression construct to compare the glycosylation levels of the secreted insulin to the control. There was a marked reduction (Fig. 9) in the glycosylation of 65% when compared to the insulin analog 1, produced by the control BICC#7996.

SEQUENCE LISTING
<110> BioconLtd
Govindappa, Nagaraj <120> Protein mannosyl transferase genes in Pichia pastoris <130> 070508 <160> 10
<170> Patentin version 3.5 <210> 1 <211> 2313 <212> DNA <213 > Pichia pastoris <220> <221> gene <222> (1)..(2313)
<400> 1
atgagtaaaa caagtcctca agaggtgcca gaaaacacta ctgagcttaa aatctcaaaa 60
ggagagctcc gtccttttat tgtgacctct ccatctcctc aattgagcaa gtctcgttct 120
gtgacttcaa ccaaggagaa gctgatattg gctagtttgt tcatatttgc aatggtcatc 180
aggttccaca acgtcgccca ccctgacagc gttgtgtttg atgaagttca ctttgggggg 240
tttgccagaa agtacatttt gggaaccttt ttcatggatg ttcatccgcc attggccaag 300
ctattatttg ctggtgttgg cagtcttggt ggatacgatg gagagtttga gttcaagaaa 360
attggtgacg aattcccaga gaatgttcct tatgtgctca tgagatatct tccctctggt 420
atgggagttg gaacatgtat tatgttgtat ttgactctga gagcttctgg ttgtcaacca 480
atagtctgtg ctctgacaac cgctcttttg atcattgaga atgctaatgt tacaatctcc 540
agattcattt tgctggattc gccaatgctg ttttttattg cttcaacagt ttactctttc 600
aagaaatttc aaattcagga accgtttacc ttccaatggt acaagaccct tattgctact 660
ggtgtttctt tagggttagc agcttccagt aaatgggttg gtttgttcac cgttgcctgg 720
attggattga taacaatttg ggacttatgg ttcatcattg gtgatttgac tgtttctgta 780
aagaaaattt tcggccattt tatcaccaga gctgtagctt tcttagtcgt ccccactctg 840

atctacctca ctttctttgc catccatttg caagtcttaa ccaaggaagg tgatggtggt 900 gctttcatgt cttccgtctt cagatcgacc ttagaaggta atgctgttcc aaaacagtcg 960 ctggccaacg ttggtttggg ctctttagtc actatccgtc atttgaacac cagaggtggt 1020 tacttacact ctcacaatca tctttacgag ggtggttctg gtcaacagca ggtcaccttg 1080 tacccacaca ttgattctaa taatcaatgg attgtacagg attacaacgc gactgaggag 1140 ccaactgaat ttgttccatt gaaagacggt gtccaaatca gattaaacca caaattgact 1200 tcccgaagat tgcactctca taacctcaga ccctcctgtg atgaacaaga ttggcaaaat 1260 gaggtatctg cttatggaca tgagggcttt ggcggtgatg ccaatgatga ctttgttgtg 1320 gagattgcca aggatctttc aactactgaa gaagctaagg aaaacgttag ggccattcaa 1380 actgttttta gattgagaca tgcgatgact ggttgttact tgttctccca cgaagtcaag 1440 cttcccaagt gggcatatga gcaacaagag gttacttgtg ctactcaagg tatcaaacca 1500 ctatcttact ggtacgttga gaccaacgaa aacccattct tggataaaga ggttgatgaa 1560 atagttagct atcctgttcc gactttcttt caaaaggttg ccgagctaca cgccagaatg 1620 tggaagatca acaagggctt aactgatcat catgtctatg aatccagtcc agattcttgg 1680 cccttcctgc tcagaggtat aagctactgg tcaaaaaatc actcacaaat ttatttcata 1740 ggtaatgctg tcacttggtg gacagtcacc gcaagtattg ctttgttctc tgtctttttg 1800 gttttctcta ttctgagatg gcaaagaggt tttgggttca gcgttgaccc aactgtgttc 1860 aacttcaatg ttcaaatgct tcattacatc ctaggatggg tactgcatta cttgccatct 1920 ttccttatgg cccgtcagct atttttgcac cactatctac catcattgta ctttggtata 1980 ttggctctcg gacatgtgtt tgagattatt cactcttatg tcttcaaaaa caaacaggtt 2040 gtgtcttact ccatattcgt tctctttttt gccgttgcgc tttctttctt ccaaagatat 2100 tctccattga tctatgcagg acgatggacc aaggaccaat gcaacgaatc caagatactc 2160 aagtgggact ttgactgtaa caccttcccc agtcacacat ctcagtatga aatatgggca 2220

tcccctgtac aaacttccac tcctaaagaa ggaacccact cagaatctac cgtcggagaa 2280
cctgacgttg agaagctggg agagacagtc taa 2313
<210> 2
<211> 2316
<212> DNA
<213 > Pichia pastoris
<220>
<221> gene
<222> (1)..(2316)
<400> 2
atgggtggtg gattaattcc tttcgattct tattttttat cttcgatgac aggccgtgtc 60
gaccagaaat ctgatcagaa ggtgaaggaa ttgatcgaaa agatcgactc cgaatccact 120
tccagagttt ttcaggaaga accagtcact tcgatcttga cacgttacga accctatgtc 180
gccccaatta tattcacgtt gttgtccttt ttcactcgta tgtacaaaat tgggatcaac 240
aaccacgtcg tttgggatga agctcacttc ggaaagtttg gctcctacta tctcagacac 300
gagttctacc acgatgtcca ccctccgttg ggtaagatgt tggtcggtct atctggctac 360
attgccggtt acaatggctc ctgggatttc ccctccggtc aagagtaccc tgactatatt 420
gattacgtta aaatgaggtt attcaatgcc accttcagtg ccttatgtgt gccattcgcc 480
tatttcacca tgaaggagat tggatttgat atcaagacaa cttggctatt cacactgatg 540
gtcttgtgtg aaacaagtta ttgtacgtta ggaaaattca tcttgctgga ttcaatgctg 600
ctgctattca ctgtgactac ggttttcacc tttgttaggt tccataacga aaacagtaaa 660
ccaggaaact cgttttctcg caaatggtgg aaatggcttc tgcttactgg tatttccatt 720
ggtctcactt gttccgtcaa aatggtgggt ttatttgtca cagtattagt tggaatttac 780
acagttgttg acttatggaa taaatttggt gatcaatcca tttctcgtaa gaaatatgct 840
gctcattggc tagctcgttt catcggcttg attgccatcc caattggcgt ttttctattg 900
tcattccgta tccattttga aatattatcc aattctggta ccggtgatgc aaacatgtct 960

tcattgttcc aagctaacct tcgtggatca tccgtcggag gaggccccag agatgtgacc 1020 actctcaact ctaaagtgac cataaagagc caaggtttag gatctggtct agatcttaat 1080 aggttacatt cccacgttca aacttatcct caaggttcca gccaacaaca gattacaacc 1140 tattctcaca aagatgccaa caatgattgg gtgtttcaac ttacgagaga agactctcga 1200 aacgctttca aggaagccca ctatgtcgtt gatggtatgt ctgttcgtct cgttcattca 1260 aacactggta gaaacttaca cactcaccaa gttgctgctc ccgtctcctc atccgaatgg 1320 gaagtcagtt gttatggtaa tgaaaccatt ggagacccga aagataattg gattgttgaa 1380 attgtcgacc agtatggtga tgaagataag ctgagattgc acccattgac ctccagtttc 1440 cgtttgaaat cggcaactct gggatgctat ttgggtactt cgggtgcttc actgcctcaa 1500 tggggtttca gacaaggtga agttgtttgt tacaaaaatc cgttccgtag agataagcgc 1560 acctggtgga acatcgagga cggatcccat aacaatcctg atctacctaa tcctccagaa 1620 aattttgttc ttcccaggac tcattttttg aaagactttg ttcaattaaa tttagcaatg 1680 atggcaacaa acaacgcttt ggtcccagac ccagataagg aagataatct agcttcttct 1740 gcctgggaat ggcccacgct acacgttggt atccgtctgt gcggttgggg cgatgacaac 1800 gtcaagtatt tcttgattgg ttctcccgca accacctgga cttcttcagt tggtattgta 1860 gtattcctgt tcctgctgtt aatttacttg atcaaatggc aacgtcaata tgtcattttc 1920 ccatccgtcc agactccact agagtcagcc gacaccaaaa cagttgcatt gtttgacaag 1980 tctgatagct tcaacgtctt ccttatggga ggattatacc cgcttctggg atggggttta 2040 cattttgctc cgtttgtgat catgtcgcgt gttacctacg ttcaccatta tcttcctgca 2100 ttgtactttg ccatgattgt tttctgctac ttggtttctc tgttggataa gaaactaggc 2160 cacccagcat taggattact gatctatgtg gctctgtatt ccttggtcat tggaacattt 2220 atttggctca gccccgttgt gtttggtatg gacggtccga acagaaatta cagttaccta 2280

<210> 3
<211> 1725
<212> DNA
<213 > Pichia pastoris
<220>
<221> gene
<222> (1)..(1725)
<400> 3
atgataaaat caagaaagag atcgagaaaa gtttctttga acactgaaaa ggagctgaaa 60
aatagccata tttctcttgg agatgaaaga tggtacactg tgggtcttct cttggtgaca 120
atcacagctt tctgtactcg attctatgct atcaactatc cagatgaggt tgtttttgac 180
gaagttcatt tcggaaaatt tgctagctac tatctagagc gtacttattt ttttgatctg 240
caccctccgt ttgccaagct cctgattgcg tttgtcggct ttttagctgg gtacaatggt 300
gagttcaagt ttacaactat tggtgaatct tatatcaaaa acgaggttcc ctacgtagtt 360
tacagatcat tgagcgctgt gcaaggatct ttaacggtgc caattgttta tttgtgtctc 420
aaagaatgcg gatatacagt tttgacttgt gtttttggtg catgtatcat attgtttgat 480
ggggcccacg ttgctgagac tagactaatc ttgctggatg ccacgttgat ttttttcgtt 540
tcattgtcca tctatagcta tatcaaattc acaaaacaaa gatcagaacc attcggccaa 600
aagtggtgga agtggctgtt ctttacaggg gtgtctttat cttgcgtcat aagtaccaag 660
tatgtggggg tgttcaccta tcttacaata ggctgtggtg tcctgtttga cttatggagt 720
ttactggatt ataaaaaggg acattccttg gcatatgttg gtaaacactt tgctgcacga 780
tttttccttc taatactggt ccctttcttg atatatctca attggtttta tgttcatttc 840
gctattctaa gcaagtctgg cccaggagac agttttatga gctctgaatt ccaggagact 900
ctcggagatt ctcctcttgc agctttcgca aaggaagttc actttaacga cataatcaca 960
ataaagcata aagagactga tgccatgttg cactcacact tggcaaacta ccccctccgt 1020

tacgaggacg ggagggtatc atctcaaggt caacaagtta cagcatactc tggagaggac 1080
ccaaacaata attggcagat tatttctccc gaaggactta ctggcgttgt aactcagggc 1140
gatgtcgtta gactgagaca cgttgggaca gatggctatc tactgacgca tgatgttgcg 1200
tctcctttct atccaactaa cgaggagttt actgtagtgg gacaggagaa agctactcaa 1260
cgctggaacg aaacactttt tagaattgat ccctatgaca agaagaaaac ccgtcctttg 1320
aagtcgaaag cttcattttt caaactcatt catgttccta cggttgtggc catgtggact 1380
cataatgacc agcttcttcc tgattggggt ttcaaccaac aagaagtcaa tggtaataag 1440
aagcttgctg atgaatcaaa cttatgggtt gtagacaata tcgtcgatat tgcagaggac 1500
gatccaagga aacactacgt tccaaaggaa gtgaaaaatt tgccattttt gaccaagtgg 1560
ttggaattac aaagacttat gtttattcag aataacaagt tgagctcaga tcatccattt 1620
gcgtctgacc ctatatcttg gcctttttca cttagtgggg tttcattttg gacaaacaac 1680
gagtcacgca aacagatcta ttttgtcgga aatattcctg gatgg 1725
<210> 4
<211> 1278
<212> DNA
<213 > Pichia pastoris
<220>
<221> gene
<222> (1)..(1278)
<220>
<221> misc_feature
<222> (952)..(952)
<223> n is a, c, g, or t
<400> 4
atggccgcct ttgagtacaa aaagggcatt caaagaccct atttttttac caagccattg 60
gtgaaaccta taacgctaag cggctttgaa aaaatacaat tggctttgtt tcttgcgttc 120
acagtggccg tgagattctt caatattcaa taccccaacc aaattgtatt tgatgaggtc 180

cattttggaa aatatgcccg aaactacatc aatagctcat acttcatgga tgtgcaccct 240
cctttagtca agatgcttta cgccgccata ggctatttag gtggttacag aggagatttt 300
gttttcaaca agattgggga taactacatt ggtaaagagg gtgaaaaatt ggtaccctac 360
gttttgatgc gatcgtttcc cgcaatttgt ggagtcttga ttgttattct ttcttacttt 420
atccttagat acagcggatg ccgacatttt attgcacttt ttggagcttt actggtttgt 480
attgaaaact cattggtagc tcaatcaaga tttattctac tagattctcc attgctttta 540
ttcattgttc tcacagtata cagttttgtg agattcagca atgaaccaga accttttggc 600
aaaggctgga taagatatct atttttcact ggtgtgtcct tgggactcag tgtcagtagt 660
aaatgggttg gaatattcac aattggttgg ttaggagtca tgactgtaaa ccaattgtgg 720
tggttaattg gagacttaag cgttcccgat cgtgatgtgg taaagcatgt cttgtacaga 780
gcgtattttc ttattatcct accagtgatc atttaccttg gggtgtttgc aatccatttt 840
ttggttctcc atgaagctag tggctggttc agtgtacatg tgagtcctat gattcaaatg 900
ccatgtttgg acgtgaactt gatttttcca atcctttatg ctaactgtgt cnttttggat 960
ccacctgttt cgataagaca ccttggtaca ggagagtttc tacactccca caaccacaca 1020
tatcctaaat cgcacaacca acaggtaacc ctatacggat acaaagactc caataatctt 1080
ttcactattt gaaaagaaag aaaagctatc tggacaggga ctattctcgg agatgtattc 1140
tccctcagac agaagatgat gttaataaga ttatttcaca aaaaaaccga ggatatgagg 1200
acgtgtctga ttctagacct tccaattagt gaagatctgc aagagtacaa caatgagttc 1260
agtattatag gagactaa 1278
<210> 5
<211> 2259
<212> DNA
<213 > Pichia pastoris
<220>
<221> gene

<222> (1)..(2259)
<400> 5
atggcaacag aggaagagag aaatgaactg agaagtcgga tggacgccaa taattcaaaa 60
gtttccacgt tcactacgaa caattcagat gatccttctg ttgatagcca gggtaaggtg 120
aaaattaagt catgggtttg gagccttgaa tctttaattg gccctctggt gatcactgcc 180
ttggcaattt ttcttcgagt ttaccaaata ggaaaagctg atagggttgt ttgggatgaa 240
gctcatttcg gaaagtttgg gtcattctac ttgaagcacc agttctattt tgatgtccat 300
cctcccctgg gaaaacttct tacaggtttg gctgggcaca tagctggcta taatgggtcg 360
tttgagttca agagtggggt gacgtatcca gaatatctcg atttcaaggt aatgaggata 420
ttcaatgctg ttttcagtgc actttgtgcc cctgtggcat attggactgc caaatcatgt 480
ggatattctc tactcacggt ttaccttata tcattgatgg tagtttttga aaactcctac 540
gttgttttgg ggaagtttat tctgttggat tccatgcttt tgtttttcac cacaacaacc 600
tttctgggtt tatcaaaagt tcattcattg agacagcaag gaaaagaatt aacttacccg 660
tggtgcttct ggttgacctt tacaggttta tctattggat gtgtatgcag tgtcaaactt 720
gttggactgt tcgtaactgc ccttgtgggt ctttatacca ttcttgacct tgccgttaag 780
agatacgatg aaaaccttaa atggtctaag tacttgactc attgggcagt gcgcattcta 840
acgttgatta ttctaccgtt tgccatctac atgttatcct ttaagatcca ttttgctgtg 900
ctttacaaga atggagatgg tgcttcttca atgtcaactc tgttccaatc caatttggag 960
ggaacaaaaa ttctaattga tgcccctaga gatgttgcat atggatctga acttacaata 1020
agatcccaag gcctttccca aaatcttttg cactcccatg ggtcaattta tcccgaagga 1080
tctaaccaac aacaagttac aacctacggt catagagaca ataataacca atggattgtt 1140
cattaccccg tcctcagcaa gaagcaagtt aaagaaaatg ataactcaac agttccagag 1200
atgatgaaag atggtgacac cattcgttta agacatcaac atactggtgc aaacttgcat 1260
tctcacagaa ttcaagctca tgttagtaaa caatactacg aagtatcatg ttacggaaat 1320

gcaaaagttt cagacggaaa cgatgagtgg gttgtggaag ttgcagagca aattcattcc 1380
gatgacccta aatatgccgc tgccaacgaa tcagatttaa aattccagga actgcttcac 1440
cctatatcta cttccttcag acttcgtcat aagagaattg gatgttactt ggccactact 1500
gggatggcat atccaagctg gggtttcaag cagggtgaag tagtctgccg accatcttgg 1560
acctcaaggg acaaatctac gtggtggaac atcgaggacc ataagaacaa aaagctgcca 1620
aatgctactt catataaagc tccaaaatct tacttctgga gagactttgt catgctgaac 1680
tatgcgatgt tagcatccaa taacgcctta gtgcctgatc ctgataaatt cgataaactg 1740
gcttctcaat ggtggcaatg gcctatcatt aatgttggac tccgaatgtg tggttggagc 1800
gcctcacaat ctagatactt cttgatgagt agcccattta atacttggtt gtcaactgct 1860
tctttggctg ttttttgctt gattgttctt attttagtcc tacaatggca aagacaaaga 1920
ctcaatctct cttctagaca gtactgggag ctagtcatca agggttttgt cccatttttt 1980
ggttgggcgt tgcattttgc tccattcatt gtgatgcaaa gggtcacata cgtgcaccat 2040
tatgttcccg ctctctactt tgccatgttc ctgctgggat ttactgtaga ctatttgaca 2100
gccaagagga actgctacat caaaacattg atctattttg tcttttatgc gggcactatc 2160
tactctttct actacttttc acctctcagt tttggcatgg atggcccttt aaaaaattat 2220
gcgtacttgc aatggttcaa gagttggacc atggtttga 2259
<210> 6
<211> 459
<212> DNA
<213 > Pichia pastoris
<220>
<221> gene
<222> (1)..(459)
<400> 6
cccactctga tctacctcac tttctttgcc atccatttgc aagtcttaac caaggaaggt 60
gatggtggtg ctttcatgtc ttccgtcttc agatcgacct tagaaggtaa tgctgttcca 120

aaacagtcgc tggccaacgt tggtttgggc tctttagtca ctatccgtca tttgaacacc 180
agaggtggtt acttacactc tcacaatcat ctttacgagg gtggttctgg tcaacagcag 240
gtcaccttgt acccacacat tgattctaat aatcaatgga ttgtacagga ttacaacgcg 300
actgaggagc caactgaatt tgttccattg aaagacggtg tccaaatcag attaaaccac 360
aaattgactt cccgaagatt gcactctcat aacctcagac cctcctgtga tgaacaagat 420
tggcaaaatg aggtatctgc ttatggacat gagggcttt 459
<210> 7
<211> 499
<212> DNA
<213 > Pichia pastoris
<220>
<221> gene
<222> (1)..(499)
<400> 7
gttacattcc cacgttcaaa cttatcctca aggttccagc caacaacaga ttacaaccta 60
ttctcacaaa gatgccaaca atgattgggt gtttcaactt acgagagaag actctcgaaa 120
cgctttcaag gaagcccact atgtcgttga tggtatgtct gttcgtctcg ttcattcaaa 180
cactggtaga aacttacaca ctcaccaagt tgctgctccc gtctcctcat ccgaatggga 240
agtcagttgt tatggtaatg aaaccattgg agacccgaaa gataattgga ttgttgaaat 300
tgtcgaccag tatggtgatg aagataagct gagattgcac ccattgacct ccagtttccg 360
tttgaaatcg gcaactctgg gatgctattt gggtacttcg ggtgcttcac tgcctcaatg 420
gggtttcaga caaggtgaag ttgtttgtta caaaaatccg ttccgtagag ataagcgcac 480
ctggtggaac atcgaggac 499
<210> 8
<211> 498
<212> DNA
<213 > Pichia pastoris

<220>
<221> gene
<222> (1)..(498)
<400> 8
gttcatttcg ctattctaag caagtctggc ccaggagaca gttttatgag ctctgaattc 60
caggagactc tcggagattc tcctcttgca gctttcgcaa aggaagttca ctttaacgac 120
ataatcacaa taaagcataa agagactgat gccatgttgc actcacactt ggcaaactac 180
cccctccgtt acgaggacgg gagggtatca tctcaaggtc aacaagttac agcatactct 240
ggagaggacc caaacaataa ttggcagatt atttctcccg aaggacttac tggcgttgta 300
actcagggcg atgtcgttag actgagacac gttgggacag atggctatct actgacgcat 360
gatgttgcgt ctcctttcta tccaactaac gaggagttta ctgtagtggg acaggagaaa 420
gctactcaac gctggaacga aacacttttt agaattgatc cctatgacaa gaagaaaacc 480
cgtcctttga agtcgaaa 498
<210> 9
<211> 437
<212> DNA
<213 > Pichia pastoris
<220>
<221> gene
<222> (1)..(437)
<220>
<221> misc_feature
<222> (157)..(157)
<223> n is a, c, g, or t
<400> 9
atcctaccag tgatcattta ccttggggtg tttgcaatcc attttttggt tctccatgaa 60
gctagtggct ggttcagtgt acatgtgagt cctatgattc aaatgccatg tttggacgtg 120
aacttgattt ttccaatcct ttatgctaac tgtgtcnttt tggatccacc tgtttcgata 180
agacaccttg gtacaggaga gtttctacac tcccacaacc acacatatcc taaatcgcac 240
aaccaacagg taaccctata cggatacaaa gactccaata atcttttcac tatttgaaaa 300

gaaagaaaag ctatctggac agggactatt ctcggagatg tattctccct cagacagaag 360
atgatgttaa taagattatt tcacaaaaaa accgaggata tgaggacgtg tctgattcta 420
gaccttccaa ttagtga 437
<210> 10
<211> 497
<212> DNA
<213 > Pichia pastoris
<220>
<221> gene
<222> (1)..(497)
<400> 10
cttgccgtta agagatacga tgaaaacctt aaatggtcta agtacttgac tcattgggca 60
gtgcgcattc taacgttgat tattctaccg tttgccatct acatgttatc ctttaagatc 120
cattttgctg tgctttacaa gaatggagat ggtgcttctt caatgtcaac tctgttccaa 180
tccaatttgg agggaacaaa aattctaatt gatgccccta gagatgttgc atatggatct 240
gaacttacaa taagatccca aggcctttcc caaaatcttt tgcactccca tgggtcaatt 300
tatcccgaag gatctaacca acaacaagtt acaacctacg gtcatagaga caataataac 360
caatggattg ttcattaccc cgtcctcagc aagaagcaag ttaaagaaaa tgataactca 420
acagttccag agatgatgaa agatggtgac accattcgtt taagacatca acatactggt 480
gcaaacttgc attctca 497

Documents

Orders

Section Controller Decision Date

Application Documents

# Name Date
1 298114 FORM 27.pdf 2023-11-17
1 332-CHE-2010 FORM-18 17-02-2010.pdf 2010-02-17
2 298114-Authorisation Letter_Form27_19-08-2022.pdf 2022-08-19
2 332-CHE-2010 POWER OF ATTORNEY 22-03-2010.pdf 2010-03-22
3 332-CHE-2010 FORM-1 22-03-2010.pdf 2010-03-22
3 298114-Correspondence_Form27_19-08-2022.pdf 2022-08-19
4 332-che-2010 form-3 05-01-2011.pdf 2011-01-05
4 298114-Form27_Statement of Working_19-08-2022.pdf 2022-08-19
5 332-che-2010 correspondence otehrs 05-01-2011.pdf 2011-01-05
5 298114-Correspondence_Form27_03-09-2021.pdf 2021-09-03
6 Form-5.pdf 2011-09-02
6 298114-Form-27_Working of Patent_03-09-2021.pdf 2021-09-03
7 Form-3.pdf 2011-09-02
7 332-CHE-2010-Form27_License_16-03-2020.pdf 2020-03-16
8 Form27_License_25-03-2019.pdf 2019-03-25
8 Form-1.pdf 2011-09-02
9 Correspondence by Agent_Power of Attorney_06-08-2018.pdf 2018-08-06
9 Drawings.pdf 2011-09-02
10 332-CHE-2010 FORM-3 09-05-2012.pdf 2012-05-09
10 332-CHE-2010-Changing Name-Nationality-Address For Service [02-08-2018(online)].pdf 2018-08-02
11 332-CHE-2010 CORRESPONDENCE OTHERS 09-05-2012.pdf 2012-05-09
11 332-CHE-2010-FORM-26 [02-08-2018(online)].pdf 2018-08-02
12 332-CHE-2010 CORRESPONDENCE OTHERS 10-10-2012.pdf 2012-10-10
12 332-CHE-2010-RELEVANT DOCUMENTS [02-08-2018(online)].pdf 2018-08-02
13 332-CHE-2010 FORM-3 10-10-2012.pdf 2012-10-10
13 332-CHE-2010-IntimationOfGrant27-06-2018.pdf 2018-06-27
14 332-CHE-2010 CORRESPONDENCE OTHERS 09-07-2014.pdf 2014-07-09
14 332-CHE-2010-PatentCertificate27-06-2018.pdf 2018-06-27
15 332-CHE-2010 FORM-3 09-07-2014.pdf 2014-07-09
15 Abstract_Granted 298114_27-06-2018.pdf 2018-06-27
16 332-CHE-2010 CORRESPONDENCE OTHERS 23-01-2015.pdf 2015-01-23
16 Claims_Granted 298114_27-06-2018.pdf 2018-06-27
17 Specification_Marked up & Clear Version.pdf 2015-03-12
17 Description_Granted 298114_27-06-2018.pdf 2018-06-27
18 Drawings_Granted 298114_27-06-2018.pdf 2018-06-27
18 Response to FER_IP13536.pdf 2015-03-12
19 Marked Up Claims_Granted 298114_27-06-2018.pdf 2018-06-27
19 Petition_IP13536.pdf 2015-03-12
20 332-CHE-2010-Written submissions and relevant documents (MANDATORY) [26-06-2018(online)].pdf 2018-06-26
20 Others_IP13536.pdf 2015-03-12
21 332-CHE-2010-FORM 3 [27-02-2018(online)].pdf 2018-02-27
21 Correspondence_IP13536.pdf 2015-03-12
22 332-CHE-2010-Written submissions and relevant documents (MANDATORY) [27-02-2018(online)].pdf 2018-02-27
22 Claims_Marked up & Clear Version.pdf 2015-03-12
23 Abstract_Marked up & Clear Version.pdf 2015-03-12
23 Correspondence by Agent_Power of Attorney_08-02-2018.pdf 2018-02-08
24 332-CHE-2010_EXAMREPORT.pdf 2016-07-02
24 332-CHE-2010-FORM-26 [03-02-2018(online)].pdf 2018-02-03
25 332-CHE-2010-HearingNoticeLetter.pdf 2018-01-17
26 332-CHE-2010-FORM-26 [03-02-2018(online)].pdf 2018-02-03
26 332-CHE-2010_EXAMREPORT.pdf 2016-07-02
27 Abstract_Marked up & Clear Version.pdf 2015-03-12
27 Correspondence by Agent_Power of Attorney_08-02-2018.pdf 2018-02-08
28 332-CHE-2010-Written submissions and relevant documents (MANDATORY) [27-02-2018(online)].pdf 2018-02-27
28 Claims_Marked up & Clear Version.pdf 2015-03-12
29 332-CHE-2010-FORM 3 [27-02-2018(online)].pdf 2018-02-27
29 Correspondence_IP13536.pdf 2015-03-12
30 332-CHE-2010-Written submissions and relevant documents (MANDATORY) [26-06-2018(online)].pdf 2018-06-26
30 Others_IP13536.pdf 2015-03-12
31 Marked Up Claims_Granted 298114_27-06-2018.pdf 2018-06-27
31 Petition_IP13536.pdf 2015-03-12
32 Drawings_Granted 298114_27-06-2018.pdf 2018-06-27
32 Response to FER_IP13536.pdf 2015-03-12
33 Description_Granted 298114_27-06-2018.pdf 2018-06-27
33 Specification_Marked up & Clear Version.pdf 2015-03-12
34 332-CHE-2010 CORRESPONDENCE OTHERS 23-01-2015.pdf 2015-01-23
34 Claims_Granted 298114_27-06-2018.pdf 2018-06-27
35 Abstract_Granted 298114_27-06-2018.pdf 2018-06-27
35 332-CHE-2010 FORM-3 09-07-2014.pdf 2014-07-09
36 332-CHE-2010-PatentCertificate27-06-2018.pdf 2018-06-27
36 332-CHE-2010 CORRESPONDENCE OTHERS 09-07-2014.pdf 2014-07-09
37 332-CHE-2010 FORM-3 10-10-2012.pdf 2012-10-10
37 332-CHE-2010-IntimationOfGrant27-06-2018.pdf 2018-06-27
38 332-CHE-2010 CORRESPONDENCE OTHERS 10-10-2012.pdf 2012-10-10
38 332-CHE-2010-RELEVANT DOCUMENTS [02-08-2018(online)].pdf 2018-08-02
39 332-CHE-2010 CORRESPONDENCE OTHERS 09-05-2012.pdf 2012-05-09
39 332-CHE-2010-FORM-26 [02-08-2018(online)].pdf 2018-08-02
40 332-CHE-2010 FORM-3 09-05-2012.pdf 2012-05-09
40 332-CHE-2010-Changing Name-Nationality-Address For Service [02-08-2018(online)].pdf 2018-08-02
41 Correspondence by Agent_Power of Attorney_06-08-2018.pdf 2018-08-06
41 Drawings.pdf 2011-09-02
42 Form-1.pdf 2011-09-02
42 Form27_License_25-03-2019.pdf 2019-03-25
43 332-CHE-2010-Form27_License_16-03-2020.pdf 2020-03-16
43 Form-3.pdf 2011-09-02
44 298114-Form-27_Working of Patent_03-09-2021.pdf 2021-09-03
44 Form-5.pdf 2011-09-02
45 298114-Correspondence_Form27_03-09-2021.pdf 2021-09-03
45 332-che-2010 correspondence otehrs 05-01-2011.pdf 2011-01-05
46 332-che-2010 form-3 05-01-2011.pdf 2011-01-05
46 298114-Form27_Statement of Working_19-08-2022.pdf 2022-08-19
47 332-CHE-2010 FORM-1 22-03-2010.pdf 2010-03-22
47 298114-Correspondence_Form27_19-08-2022.pdf 2022-08-19
48 332-CHE-2010 POWER OF ATTORNEY 22-03-2010.pdf 2010-03-22
48 298114-Authorisation Letter_Form27_19-08-2022.pdf 2022-08-19
49 332-CHE-2010 FORM-18 17-02-2010.pdf 2010-02-17
49 298114 FORM 27.pdf 2023-11-17
50 298114-Form 27-240925.pdf 2025-09-25

ERegister / Renewals

3rd: 10 Sep 2018

From 10/02/2012 - To 10/02/2013

4th: 10 Sep 2018

From 10/02/2013 - To 10/02/2014

5th: 10 Sep 2018

From 10/02/2014 - To 10/02/2015

6th: 10 Sep 2018

From 10/02/2015 - To 10/02/2016

7th: 10 Sep 2018

From 10/02/2016 - To 10/02/2017

8th: 10 Sep 2018

From 10/02/2017 - To 10/02/2018

9th: 10 Sep 2018

From 10/02/2018 - To 10/02/2019

10th: 04 Feb 2019

From 10/02/2019 - To 10/02/2020

11th: 25 Jan 2020

From 10/02/2020 - To 10/02/2021

12th: 04 Jan 2021

From 10/02/2021 - To 10/02/2022

13th: 18 Jan 2022

From 10/02/2022 - To 10/02/2023

14th: 25 Jan 2023

From 10/02/2023 - To 10/02/2024

15th: 18 Jan 2024

From 10/02/2024 - To 10/02/2025

16th: 24 Jan 2025

From 10/02/2025 - To 10/02/2026