Abstract: The present invention relates to a microorganisms of the genus Corynebacterium producing 5’-inosinic acid in which the expression of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression and to a method for producing 5’-inosinic acid comprising culturing the microorganisms of the genus Corynebacterium with improved 5’-inosinic acid productivity.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a microorganism belonging to the genus Corynebacterium producing 5’-inosinic acid in which the expression of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression and a method for producing 5’-inosinic acid comprising culturing the microorganism of the genus Corynebacterium with improved 5""-inosinic acid productivity.
2. Description of the Related Art
One of the nucleotide compounds 5’-inosinic acid is an intermediate material of the metabolic system of nucleotide biosynthesis which is used in a variety of fields such as foods medicines and other various medical areas and functions to play an important role in animal and plant physiology. In particular 5’-inosinic acid is a nucleotide seasoning which has drawn much attention as a savory seasoning because it has synergistic effects when used with monosodium glutamate (MSG).
So far well known processes for producing 5’-inosinic acid include a process of enzymatically decomposing ribonucleic acid extracted from yeast cells (Japanese Published Examined Patent Application No. 1614/1957 etc) a process of chemically phosphorylating inosine produced by fermentation (Agric. Biol. Chem. 36 1511(1972) etc) and a process of culturing a microorganism capable of producing 5’-inosinic acid and recovering inosine monophosphate (IMP) accumulated in the medium. Currently the processes of producing 5’-inosinic acid using microorganisms are mostly used. The strains of the genus Corynebacterium are widely used as a microorganism for the production of 5’-inosinic acid and for example a method for producing 5’-inosinic acid by culturing Corynebacterium ammoniagenes is disclosed (Korean Patent Publication No. 2003-0042972).
To improve a production yield of 5’-inosinic acid by a microorganism studies have been made to develop strains by increasing or decreasing activity or expression of the enzymes involved in the biosynthetic or degradative pathway of 5’-inosinic acid. Korean Patent No. 785248 discloses a microorganism in which a purC gene encoding phosphoribosylaminoimidazole succinocarboxamide synthetase is overexpressed in the purine biosynthetic pathway and a method for producing 5’-inosinic acid using the same. In addition Korean Patent No. 857379 discloses a Corynebacterium ammoniagenes strain in which the purKE -encoded phosphoribosylaminoimidazole carboxylase is overexpressed and a method for producing high concentration of IMP in a high yield using the same.
However there is still a need to develop a strain capable of producing 5’-inosinic acid in a higher yield and a method for producing 5’-inosinic acid using the same.
Therefore the present inventors have conducted studies to develop a strain capable of producing 5’-inosinic acid with high productivity. As a result they found that the productivity of 5’-inosinic acid can be improved by simultaneously increasing activities of the major enzymes involved in the purine biosynthesis pathway higher than the intrinsic activity thereby completing the present invention.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity.
Another object of the present invention is to provide a method for producing 5’-inosinic acid using the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows a pDZ vector for chromosomal insertion into the microorganism of the genus Corynebacterium;
FIG. 2 shows a pDZ-2purFM vector for chromosomal insertion into the microorganism of the genus Corynebacterium;
FIG. 3 shows a pDZ-2purNH vector for chromosomal insertion into the microorganism of the genus Corynebacterium;
FIG. 4 shows a pDZ-2purSL vector for chromosomal insertion into the microorganism of the genus Corynebacterium;
FIG. 5 shows a pDZ-2purKE vector for chromosomal insertion into the microorganism of the genus Corynebacterium;
FIG. 6 shows a pDZ-2purC vector for chromosomal insertion into the microorganism of the genus Corynebacterium; and
FIG. 7 shows a pDZ-2prs vector for chromosomal insertion into the microorganism of the genus Corynebacterium.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
In order to achieve the above objects the present invention provides a microorganism belonging to the genus Corynebacterium producing 5’-inosinic acid in which the expression of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression.
The microorganism of the genus Corynebacterium of the present invention has more improved 5’-inosinic acid productivity than a parental strain because the expression of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression.
As used herein the term “purine biosynthesis related enzyme” means an enzyme that catalyzes the reaction involved in the purine biosynthesis pathway producing a purine base as a final product and includes phosphoribosylpyrophosphate amidotransferase phosphoribosylglycinamide formyltransferase phosphoribosylformylglycinamidin synthetase phosphoribosylformylglycinamidin synthetase II phosphoribosylaminoimidazole synthetase phosphoribosylaminoimidazole carboxylase phosphoribosyl aminoimidazole succinocarboxamide synthetase inosinic acid cyclohydrolase ribosephosphate pyrophosphokinase or the like.
In a specific embodiment of the present invention the purine biosynthesis related enzymes may be a combination of one or more enzymes selected from the group consisting of phosphoribosylpyrophosphate amidotransferase phosphoribosylglycinamide formyltransferase phosphoribosylformylglycinamidin synthetase phosphoribosylformylglycinamidin synthetase II phosphoribosylaminoimidazole synthetase phosphoribosylaminoimidazole carboxylase phosphoribosyl aminoimidazole succinocarboxamide synthetase and inosinic acid cyclohydrolase and ribosephosphate pyrophosphokinase.
In a specific embodiment of the present invention the gene encoding purine biosynthesis related enzymes of which expression is increased higher than the intrinsic expression are a combination of a purN gene of SEQ ID NO. 36 which codes for phosphoribosylglycinamide formyltransferase a purS gene of SEQ ID NO. 37 which codes for phosphoribosylformylglycinamidin synthetase a purL gene of SEQ ID NO. 38 which codes for phosphoribosylformylglycinamidin synthetase II a purKE gene of SEQ ID NO. 40 which codes for phosphoribosylaminoimidazole carboxylase a purC of SEQ ID NO. 41 which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase a purH gene of SEQ ID NO. 42 which codes for inosinic acid cyclohydrolase and a prs gene of SEQ ID NO. 43 which codes for ribosephosphate pyrophosphokinase.
In a specific embodiment of the present invention the gene encoding purine biosynthesis related enzymes of which expression is increased higher than the intrinsic expression are a combination of a purF gene of SEQ ID NO. 35 which codes for phosphoribosylpyrophosphate amidotransferase a purN gene of SEQ ID NO. 36 which codes for phosphoribosylglycinamide formyltransferase a purS gene of SEQ ID NO. 37 which codes for phosphoribosylformylglycinamidin synthetase a purL gene of SEQ ID NO. 38 which codes for phosphoribosylformylglycinamidin synthetase II a purM gene of SEQ ID NO. 39 which codes for phosphoribosylaminoimidazole synthetase a purKE gene of SEQ ID NO. 40 which codes for phosphoribosylaminoimidazole carboxylase a purC of SEQ ID NO. 41 which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase a purH gene of SEQ ID NO. 42 which codes for inosinic acid cyclohydrolase and a prs gene of SEQ ID NO. 43 which codes for ribosephosphate pyrophosphokinase.
As used herein the term “increased higher than the intrinsic expression” means that the gene expression level is higher than that in naturally expressed in a microorganism or higher than that expressed in a parental strain and includes an increase in the number (copy number) of the genes encoding corresponding enzyme and the expression level increased thereby or an increase in the expression level by mutation or an increase in the expression level by both of them.
In a specific embodiment of the present invention the increase in the expression level of the gene encoding purine biosynthesis related enzyme includes the increase in the copy number of the gene by additionally introducing the corresponding foreign gene into a strain or by amplifying the intrinsic gene or the increase in transcription efficiency or translation efficiency by mutation in the transcription or translation regulatory sequence but is not limited thereto. The amplification of the intrinsic gene may be easily performed by a method known in the art for example by cultivation under a suitable selection pressure.
In a specific embodiment of the present invention the expression level of the gene encoding purine biosynthesis related enzyme may be increased by additionally introducing the gene encoding purine biosynthesis related enzyme into a cell or by amplifying the intrinsic gene encoding the purine biosynthesis related enzyme.
In a specific embodiment of the present invention the gene encoding purine biosynthesis related enzyme of which the expression level is increased higher than the intrinsic expression may exist as two or more copies in the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity by introducing one or more copies into a cell in addition to the corresponding intrinsic gene.
In a specific embodiment of the present invention the gene encoding purine biosynthesis related enzyme is introduced into the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity by transformation using a recombinant vector containing two copies of the corresponding gene that are consecutively arranged.
In a specific embodiment of the present invention the recombinant vector used for preparation of the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity may be selected from the group consisting of pDZ-2purFM pDZ-2purNH pDZ-2purSL pDZ-2purKE pDZ-2purC and pDZ-2prs recombinant vectors which have the cleavage maps of FIGs. 2 to 7 respectively depending on the genes introduced.
In a specific embodiment of the present invention the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity may be derived from Corynebacterium microorganisms capable of producing 5’-inosinic acid. For example the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity according to the present invention may be derived from Corynebacterium ammoniagenes ATCC6872 Corynebacterium thermoaminogenes FERM BP-1539 Corynebacterium glutamicum ATCC13032 Brevibacterium flavum ATCC14067 Brevibacterium lactofermentum ATCC13869 and strains prepared therefrom.
In a specific embodiment of the present invention the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity may include two or more copies of the gene encoding purine biosynthesis related enzyme.
In a specific embodiment of the present invention the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity may be Corynebacterium ammoniagenes and more preferably a transformed Corynebacterium ammoniagenes in which the activity of a combination of the prs gene and one or more genes selected from the group consisting of purF purN purS purL purM purKE purC and purH is increased to produce high concentration of 5’-inosinic acid.
In a specific embodiment of the present invention the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity may be a strain in which the 5’-inosinic acid-producing Corynebacterium ammoniagenes CJIP2401 (KCCM-10610) strain is introduced with each of the pDZ-2purFM pDZ-2purNH pDZ-2purSL pDZ-2purKE pDZ-2purC and pDZ-2prs recombinant vectors having the cleavage maps of FIGs. 2 3 4 5 6 and 7 in order or in combination and one of two copies of the introduced purF purN purS purL purM purKE purC purH and prs genes are substituted for the corresponding intrinsic genes by homologous recombination and thus each two copies of the purF purN purS purL purM purKE purC purH and prs genes are inserted into the strain.
In a specific embodiment of the present invention the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity may be Corynebacterium ammoniagenes containing two copies of the genes encoding purine biosynthesis related enzymes that are a combination of the purN gene of SEQ ID NO. 36 which codes for phosphoribosylglycinamide formyltransferase the purS gene of SEQ ID NO. 37 which codes for phosphoribosylformylglycinamidin synthetase the purL gene of SEQ ID NO. 38 which codes for phosphoribosylformylglycinamidin synthetase II the purKE gene of SEQ ID NO. 40 which codes for phosphoribosylaminoimidazole carboxylase the purC of SEQ ID NO. 41 which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase the purH gene of SEQ ID NO. 42 which codes for inosinic acid cyclohydrolase and the prs gene of SEQ ID NO. 43 which codes for ribosephosphate pyrophosphokinase and preferably Corynebacterium ammoniagenes CN01-0120.
In a specific embodiment of the present invention the microorganism of the genus Corynebacterium having improved 5’-inosinic acid productivity may be Corynebacterium ammoniagenes containing two copies of the genes encoding purine biosynthesis related enzymes that are a combination of the purF of SEQ ID NO. 35 which codes for phosphoribosylpyrophosphate amidotransferase the purN gene of SEQ ID NO. 36 which codes for phosphoribosylglycinamide formyltransferase the purS gene of SEQ ID NO. 37 which codes for phosphoribosylformylglycinamidin synthetase the purL gene of SEQ ID NO. 38 which codes for phosphoribosylformylglycinamidin synthetase II the purM of SEQ ID NO. 39 which codes for phosphoribosylaminoimidazole synthetase the purKE gene of SEQ ID NO. 40 which codes for phosphoribosylaminoimidazole carboxylase the purC of SEQ ID NO. 41 which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase the purH gene of SEQ ID NO. 42 which codes for inosinic acid cyclohydrolase and the prs gene of SEQ ID NO. 43 which codes for ribosephosphate pyrophosphokinase and preferably Corynebacterium ammoniagenes CN01-0316 (KCCM 10992P).
Further the present invention provides a method for producing 5’-inosinic acid comprising the steps of culturing the microorganism belonging to the genus Corynebacterium producing 5’-inosinic acid in which the expression of a gene encoding purine biosynthesis related enzyme is increased higher than the intrinsic expression and recovering 5’-inosinic acid from the culture medium.
In the method for producing 5’-inosinic acid of the present invention the medium and other culture conditions used for the cultivation of the microorganism of the genus Corynebacterium may be the same as those typically used in the cultivation of the microorganism of the genus Corynebacterium and easily selected and adjusted by those skilled in the art. In addition the cultivation may be performed by any cultivation method known to those skilled in the art for example batch continuous and fed-batch culture but is not limited thereto.
In a specific embodiment of the present invention the microorganism belonging to the genus Corynebacterium producing 5’-inosinic acid may be Corynebacterium ammoniagenes.
In a specific embodiment of the present invention the microorganism belonging to the genus Corynebacterium producing 5’-inosinic acid may be Corynebacterium ammoniagenes CN01-0120 or Corynebacterium ammoniagenes CN01-0316 (KCCM 10992P).
In a specific embodiment of the present invention culturing the microorganism of the genus Corynebacterium is performed by culturing the strain in a conventional medium containing suitable carbon sources nitrogen sources amino acids vitamins or the like under aerobic conditions by adjusting temperature pH or the like.
As a carbon source carbohydrates such as glucose and fructose may be used. As a nitrogen source various inorganic nitrogen sources such as ammonia ammonium chloride and ammonium sulphate may be used and organic nitrogen sources such as peptone NZ-amine beef extract yeast extract corn steep liquor casein hydrolysate fish or fish meal and defatted soybean cake or meal may be used. Examples of the inorganic compounds include potassium monohydrogen phosphate potassium dihydrogen phosphate magnesium sulfate ferrous sulfate manganese sulfate and calcium carbonate. When needed vitamins and auxotrophic bases may be used.
The cultivation is performed under aerobic conditions for example by shaking culture or stirring culture preferably at a temperature of 28 to 36°C. During the cultivation the pH is preferably maintained within the range of pH 6 to 8. The cultivation may be performed for 4 to 6 days.
Hereinafter the present invention will be described in more detail with reference to Examples. However these Examples are for illustrative purposes only and the invention is not intended to be limited by these Examples.
Example 1. Insertion of genes encoding purine biosynthesis related enzymes using vector (pDZ) for chromosomal insertion and Development of strain producing high yield of 5’-inosinic acid thereby
In order to insert a foreign gene into the chromosome of Corynebacterium ammoniagenes strain a pDZ-based recombinant vector containing two consecutive copies of the corresponding gene was used. The pDZ vector is a vector for chromosomal insertion into the microorganism of the genus Corynebacterium and was prepared by the method disclosed in Korean Patent Publication No. 2008-0025355 incorporated by reference herein. FIG. 1 is a schematic diagram showing the structure of the pDZ vector.
In the following (1) to (6) recombinant vectors were prepared in which the recombinant vectors function to insert the gene encoding purine biosynthesis related enzyme into the chromosome of the microorganism of the genus Corynebacterium to obtain two copies of each gene. Transformation by each recombinant vector and selection of transformants were performed as follows.
The 5’-inosinic acid-producing strain Corynebacterium ammoniagenes CJIP2401 (KCCM-10610) was transformed with the pDZ recombinant vector containing the desired gene encoding purine biosynthesis related enzyme by electroporation and then strains in which the gene carried by the vector is inserted into their chromosome by homologous recombination were selected on a selection medium containing 25 mg/l of kanamycin. The successful chromosomal insertion of the vector was confirmed by the color of the colonies on a solid medium (1% beef extract 1% yeast extract 1% peptone 0.25% sodium chloride 1% adenine 1% guanine 1.5% agarose) containing X-gal (5-bromo-4-chloro-3-indolyl-ß-D-galactoside). That is blue colonies were selected as a transformant in which the vector was inserted into the chromosome. The strain in which the vector was inserted into its chromosome via a first crossover was shaking-cultured (30°C 8 hours) in a nutrient medium (1% glucose 1% beef extract 1% yeast extract 1% peptone 0.25% sodium chloride 1% adenine 1% guanine). Then the cultured strain was serially diluted from 10-4 to 10-10 and the diluted culture was plated on a solid medium containing X-gal. Most colonies exhibited blue color but white colonies also existed at a low level. By selecting the white colonies strains in which the sequence of the vector was removed from the chromosome via a second crossover were selected. The selected strain was identified as a final strain by a susceptibility test for kanamycin and a gene sequence analysis by PCR.
(1) Cloning of purFM gene and Construction of recombinant vector (pDZ-2purFM)
The purF and purM genes are located close to each other on the chromosome of the microorganism of the genus Corynebacterium and thus a purFM vector containing both of the genes and the promoter region was constructed in order to express both of the genes at the same time.
The chromosome was isolated from Corynebacterium ammoniagenes CJIP2401 producing 5’-inosinic acid and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purFM namely a fragment containing the consecutively arranged purF and purM. PfuUltra™ High-Fidelity DNA Polymerase (Stratagene) was used as a polymerase and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec annealing at 53°C for 30 sec and polymerization at 72°C for 2 min. As a result two purFM genes containing the promoter region (purFM-A purFM-B) were obtained. The purFM-A was amplified using the primers of SEQ ID NOs. 1 and 2 and the purFM-B was amplified using the primers of SEQ ID NOs. 3 and 4. The amplification products were cloned into an E.coli vector pCR2.1 using a TOPO Cloning Kit (Invitrogen) so as to obtain pCR-purFM-A and pCR-purFM-B vectors respectively. The pCR vectors were treated with restriction enzymes contained in each end of the purFM-A and purFM-B (purFM-A: EcoRI+XbaI purFM-B: XbaI+HindIII) and each purFM gene was separated from the pCR vectors. Thereafter the pDZ vector treated with restriction enzymes EcoRI and HindIII was cloned by 3-piece ligation so as to construct a pDZ-2purFM recombinant vector where two purFM genes are consecutively cloned. FIG. 2 shows a pDZ-2purFM vector for chromosomal insertion into Corynebacterium.
The 5’-inosinic acid-producing strain Corynebacterium ammoniagenes CJIP2401 was transformed with the pDZ-2purFM vector by electroporation and one purFM gene is additionally inserted next to the intrinsic purFM gene on the chromosome via a second crossover so as to obtain a strain having total two copies. The consecutively inserted purFM genes were identified by PCR using the primers of SEQ ID NOs. 5 and 6 which are able to amplify the regions of connecting two purFM genes.
(2) Cloning of purNH gene and Construction of recombinant vector (pDZ-2purNH) preparation of purNH-inserted strain
The purN and purH genes are located close to each other on the chromosome of the microorganism of the genus Corynebacterium and thus a purNH vector containing the promoter region was constructed in order to express both of the genes at the same time.
The chromosome was isolated from Corynebacterium ammoniagenes CJIP2401 producing 5’-inosinic acid and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purNH namely a fragment containing the consecutively arranged purN and purH. PfuUltra™ High-Fidelity DNA Polymerase (Stratagene) was used as a polymerase and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec annealing at 53°C for 30 sec and polymerization at 72°C for 2 min. As a result two purNH genes containing the promoter region (purNH-A purNH-B) were obtained. The purNH-A was amplified using the primers of SEQ ID NOs. 7 and 8 and the purNH-B was amplified using the primers of SEQ ID NOs. 8 and 9. The amplification products were cloned into an E.colivector pCR2.1 using a TOPO Cloning Kit (Invitrogen) so as to obtain pCR-purNH-A and pCR-purNH-B vectors respectively. The pCR vectors were treated with restriction enzymes contained in each end of the purNH-A and purNH-B (purNH-A: BamHI+SalI purNH-B: SalI) and each purNH gene was separated from the pCR vectors. Thereafter the pDZ vector treated with restriction enzymes BamHI and SalI was cloned by 3-piece ligation so as to construct a pDZ-2purNH recombinant vector where two purNH genes are consecutively cloned. FIG. 3 shows a pDZ-2purNH vector for chromosomal insertion into Corynebacterium.
The 5’-inosinic acid-producing strain Corynebacterium ammoniagenes CJIP2401 was transformed with the pDZ-2purNH vector by electroporation and one purNH gene is additionally inserted next to the intrinsic purNH gene on the chromosome via a second crossover so as to obtain a strain having total two copies. The consecutively inserted purNH genes were identified by PCR using the primers of SEQ ID NOs. 10 and 11 which are able to amplify the regions of connecting two purNH genes.
(3) Cloning of purSL gene and Construction of recombinant vector (pDZ-2purSL) preparation of purSL-inserted strain
The purS and purL genes are located close to each other on the chromosome of the microorganism of the genus Corynebacterium and thus a purSL vector containing the promoter region was constructed in order to express both of the genes at the same time.
The chromosome was isolated from Corynebacterium ammoniagenes CJIP2401 producing 5’-inosinic acid and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purSL namely a fragment containing the consecutively arranged purS and purL. PfuUltra™ High-Fidelity DNA Polymerase (Stratagene) was used as a polymerase and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec annealing at 53°C for 30 sec and polymerization at 72°C for 2 min. As a result two purSL genes containing the promoter region (purSL-A purSL-B) were obtained. The purSL-A was amplified using the primers of SEQ ID NOs. 12 and 13 and the purSL-B was amplified using the primers of SEQ ID NOs. 14 and 15. The amplification products were cloned into an E.coli vector pCR2.1 using a TOPO Cloning Kit (Invitrogen) so as to obtain pCR-purSL-A and pCR-purSL-B vectors respectively. The pCR vectors were treated with restriction enzymes contained in each end of the purSL-A and purSL-B (purSL-A: BamHI+SalI purSL-B: SalI+BamHI) and each purSL gene was separated from the pCR vectors. Thereafter the pDZ vector treated with restriction enzyme BamHI was cloned by 3-piece ligation so as to construct a pDZ-2purSL recombinant vector where two purSL genes are consecutively cloned. FIG. 4 shows a pDZ-2purSL vector for chromosomal insertion into Corynebacterium.
The 5’-inosinic acid-producing strain Corynebacterium ammoniagenes CJIP2401 was transformed with the pDZ-2purSL vector by electroporation and one purSL gene is additionally inserted next to the intrinsic purSL gene on the chromosome via a second crossover so as to obtain a strain having total two copies. The consecutively inserted purSL genes were identified by PCR using the primers of SEQ ID NOs. 16 and 17 which are able to amplify the regions of connecting two purSL genes.
(4) Cloning of purKE gene and Construction of recombinant vector (pDZ-2purKE) preparation of purKE-inserted strain
The purK and purE genes are located close to each other on the chromosome of the microorganism of the genus Corynebacterium and thus a purKE vector containing the promoter region was constructed in order to express both of the genes at the same time.
The chromosome was isolated from Corynebacterium ammoniagenes CJIP2401 producing 5’-inosinic acid and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purKE namely a fragment containing the consecutively arranged purK and purE. PfuUltra™ High-Fidelity DNA Polymerase (Stratagene) was used as a polymerase and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec annealing at 53°C for 30 sec and polymerization at 72°C for 2 min. As a result two purKE genes containing the promoter region (purKE-A purKE-B) were obtained. The purKE-A was amplified using the primers of SEQ ID NOs. 18 and 19 and the purKE-B was amplified using the primers of SEQ ID NOs. 20 and 21. The amplification products were cloned into an E.coli vector pCR2.1 using a TOPO Cloning Kit (Invitrogen) so as to obtain pCR-purKE-A and pCR-purKE-B vectors respectively. The pCR vectors were treated with restriction enzymes contained in each end of the purKE-A and purKE-B (purKE-A: BamHI+KpnI purKE-B: KpnI+XbaI) and each purKE gene was separated from the pCR vectors. Thereafter the pDZ vector treated with restriction enzymes BamHI and XbaI was cloned by 3-piece ligation so as to construct a pDZ-2purKE recombinant vector where two purKE genes are consecutively cloned. FIG. 5 shows a pDZ-2purKE vector for chromosomal insertion into Corynebacterium.
The 5’-inosinic acid-producing strain Corynebacterium ammoniagenes CJIP2401 was transformed with the pDZ-2purKE vector by electroporation and one purKE gene is additionally inserted next to the intrinsic purKE gene on the chromosome via a second crossover so as to obtain a strain having total two copies. The consecutively inserted purKE genes were identified by PCR using the primers of SEQ ID NOs. 22 and 23 which are able to amplify the regions of connecting two purKE genes.
(5) Cloning of purC gene and Construction of recombinant vector (pDZ-2purC) preparation of purC-inserted strain
The chromosome was isolated from Corynebacterium ammoniagenes CJIP2401 and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain purC. PfuUltra ™ High-Fidelity DNA Polymerase was used as a polymerase and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec annealing at 53°C for 30 sec and polymerization at 72°C for 2 min. As a result two purC genes containing the promoter region (purC-A purC-B) were obtained. The purC-A was amplified using the primers of SEQ ID NOs. 24 and 25 and the purC-B was amplified using the primers of SEQ ID NOs. 25 and 26. The amplification products were cloned into an E.coli vector pCR2.1 using a TOPO Cloning Kit so as to obtain pCR-purC-A and pCR-purC-B vectors respectively. The pCR vectors were treated with restriction enzymes contained in each end of the purC-A and purC-B (purC-A: BamHI+SalI purC-B: SalI) and each purC gene was separated from the pCR vectors. Thereafter the pDZ vector treated with restriction enzymes BamHI and SalI was cloned by 3-piece ligation so as to construct a pDZ-2purC recombinant vector where two purC genes are consecutively cloned. FIG. 6 shows a pDZ-2purC vector for chromosomal insertion into Corynebacterium.
The 5’-inosinic acid-producing strain Corynebacterium ammoniagenes CJIP2401 was transformed with the pDZ-2purC vector by electroporation and one purC gene is additionally inserted next to the intrinsic purC gene on the chromosome via a second crossover so as to obtain a strain having total two copies. The consecutively inserted purC genes were identified by PCR using the primers of SEQ ID NOs. 27 and 28 which are able to amplify the regions of connecting two purC genes.
(6) Cloning of prs gene and Construction of recombinant vector (pDZ-2prs) preparation of prs-inserted strain
The chromosome was isolated from Corynebacterium ammoniagenes CJIP2401 and Polymerase Chain Reaction (PCR) was performed using the chromosome as a template in order to obtain prs. PfuUltra™ High-Fidelity DNA Polymerase was used as a polymerase and Polymerase Chain Reaction was performed with 30 cycles of denaturing at 96°C for 30 sec annealing at 53°C for 30 sec and polymerization at 72°C for 2 min. As a result two prs genes containing the promoter region (prs-A prs-B) were obtained. The prs-A was amplified using the primers of SEQ ID NOs. 29 and 30 and the prs-B was amplified using the primers of SEQ ID NOs. 31 and 32. The amplification products were cloned into an E.coli vector pCR2.1 using a TOPO Cloning Kit so as to obtain pCR-prs-A and pCR-prs-B vectors respectively. The pCR vectors were treated with restriction enzymes contained in each end of the prs-A and prs-B (prs-A: BamHI+SpeI prs-B: SpeI+PstI) and each prs gene was separated from the pCR vectors. Thereafter the pDZ vector treated with restriction enzymes BamHI and PstI was cloned by 3-piece ligation so as to construct a pDZ-2prs recombinant vector where two prs genes are consecutively cloned. FIG. 7 shows a pDZ-2prs vector for chromosomal insertion into Corynebacterium.
The 5’-inosinic acid-producing strain Corynebacterium ammoniagenes CJIP2401 was transformed with the pDZ-2prs vector by electroporation and one prs gene is additionally inserted next to the intrinsic prs gene on the chromosome via a second crossover so as to obtain a strain having total two copies. The consecutively inserted prs genes were identified by PCR using the primers of SEQ ID NOs. 33 and 34 which are able to amplify the regions of connecting two prs genes.
(7) Development of strain producing high yield of 5’-inosinic acid by enhancement of purine biosynthesis
Combinations of pDZ-2purFM pDZ-2purNH pDZ-2purSL pDZ-2purKE pDZ-2purC and pDZ-2prs vectors constructed in (1) to (6) were introduced into the 5’-inosinic acid-producing Corynebacterium ammoniagenes CJIP2401. The introduction order of the vectors was randomly selected and introduction method and identification are the same as the above.
The Corynebacterium ammoniagenes CJIP2401 was used as a parental strain and transformed with a combination of pDZ-2purNH pDZ-2purSL pDZ-2purKE pDZ-2purC and pDZ-2prs and a combination of pDZ-2purNH pDZ-2purSL pDZ-2purKE pDZ-2purC pDZ-2purFM and pDZ-2prs to obtain Corynebacterium ammoniagenes CN01-0120 (2purNH + 2purSL + 2purKE + 2purC + 2prs) and Corynebacterium ammoniagenes CN01-0316 (2purNH + 2purSL + 2purKE + 2purC + 2purFM + 2prs) which contain two copies of the genes encoding the major enzymes involved in the purine biosynthetic pathway.
Example 2. Fermentation titer test of recombinant Corynebacterium ammoniagenes
Each 3 ml of the seed medium with the following composition was distributed into test tubes having a diameter of 18 mm and sterilized under pressure. Then the parental strain Corynebacterium ammoniagenes CJIP2401 and the Corynebacterium ammoniagenes CN01-0120 and Corynebacterium ammoniagenes CN01-0316 prepared in Example 1 were inoculated and shaking-cultured at 30°C for 24 hours to be used as a seed culture. Each 27 ml of the fermentation medium with the following composition was distributed into 500 ml Erlenmeyer shake flasks and sterilized under pressure at 120°C for 10 minutes and each 3 ml of the seed culture was inoculated thereto and shaking-cultured for 5 to 6 days. The cultivation was carried out under the conditions of 200 rpm 32°C and pH 7.2
The seed medium and the fermentation medium have the following compositions.
Seed medium: 1% glucose 1% peptone 1% beef extract 1% yeast extract 0.25% sodium chloride 100 mg/l adenine 100 mg/l guanine pH7.2
Flask fermentation medium: 0.1% sodium glutamate 1% ammonium chloride 1.2% magnesium sulfate 0.01% calcium chloride 20 mg/l iron sulfate 20 mg/l manganese sulfate 20 mg/l zinc sulfate 5 mg/l copper sulfate 23 mg/l L-cysteine 24 mg/l alanine 8 mg/l nicotinic acid 45 µg/l biotin 5 mg/l thiamine hydrochloride 30 mg/l adenine 1.9% phosphoric acid (85%) 4.2% glucose and 2.4% raw sugar
After completion of the cultivation the productivity of 5’-inosinic acid was measured by HPLC and the accumulation amount of 5’-inosinic acid in the culture medium is shown in the following Table.
[Table 1]
Strain name Cell OD (5 days after culture) Productivity (g/l/hr) (5 days after culture)
Control group (CJIP2401) 31.2 0.136
CN01-0120 31.8 0.155
CN01-0316 31.3 0.149
The accumulation amount of 5’-inosinic acid in the culture medium was compared with that of the parental strain Corynebacterium ammoniagenes CJIP2401. As a result in Corynebacterium ammoniagenes CN01-0120 and Corynebacterium ammoniagenes CN01-0316 their 5’-inosinic acid productivity per hour was found to be increased to 10.9 - 11.4% under the same conditions compared to the parental strain Corynebacterium ammoniagenes CJIP2401.
Corynebacterium ammoniagenes CN01-0316 having improved 5’-inosinic acid productivity by increasing the activity of purine biosynthesis related enzymes was deposited in the Korean Culture Center of Microorganisms (KCCM) located at Hongje 1-dong Seodaemun-gu Seoul with the Accession No. KCCM 10992P on Feb. 19 2009 under the Budapest treaty.
Effect of the invention
The microorganism belonging to the genus Corynebacterium producing 5’-inosinic acid according to the present invention in which the expression of gene encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression can be used to produce 5’-inosinic acid in a high concentration and a high yield thereby reducing production costs.
WE CLAIM:
1. A microorganism belonging to the genus Corynebacterium producing 5’-inosinic acid in which the expression level of genes encoding purine biosynthesis related enzymes is increased higher than the intrinsic expression level wherein the purine biosynthesis related enzymes are a combination of ribosephosphate pyrophosphokinase and one or more enzymes selected from the group consisting of phosphoribosylpyrophosphate amidotransferase phosphoribosylglycinamide formyltransferase phosphoribosylformylglycinamidin synthetase phosphoribosylformylglycinamidin synthetase II phosphoribosylaminoimidazole synthetase phosphoribosylaminoimidazole carboxylase phosphoribosyl aminoimidazole succinocarboxamide synthetase and inosinic acid cyclohydrolase.
2. The microorganism belonging to the genus Corynebacterium according to claim 1 wherein the genes encoding purine biosynthesis related enzymes are a combination of a purN gene of SEQ ID NO. 36 which codes for phosphoribosylglycinamide formyltransferase a purS gene of SEQ ID NO. 37 which codes for phosphoribosylformylglycinamidin synthetase a purL gene of SEQ ID NO. 38 which codes for phosphoribosylformylglycinamidin synthetase II a purKE gene of SEQ ID NO. 40 which codes for phosphoribosylaminoimidazole carboxylase a purC of SEQ ID NO. 41 which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase a purH gene of SEQ ID NO. 42 which codes for inosinic acid cyclohydrolase and a prs gene of SEQ ID NO. 43 which codes for ribosephosphate pyrophosphokinase.
3. The microorganism belonging to the genus Corynebacterium according to claim 1 wherein the genes encoding purine biosynthesis related enzymes are a combination of a purF gene of SEQ ID NO. 35 which codes for phosphoribosylpyrophosphate amidotransferase a purN gene of SEQ ID NO. 36 which codes for phosphoribosylglycinamide formyltransferase a purS gene of SEQ ID NO. 37 which codes for phosphoribosylformylglycinamidin synthetase a purL gene of SEQ ID NO. 38 which codes for phosphoribosylformylglycinamidin synthetase II a purM gene of SEQ ID NO. 39 which codes for phosphoribosylaminoimidazole synthetase a purKE gene of SEQ ID NO. 40 which codes for phosphoribosylaminoimidazole carboxylase a purC of SEQ ID NO. 41 which codes for phosphoribosyl aminoimidazole succinocarboxamide synthetase a purH gene of SEQ ID NO. 42 which codes for inosinic acid cyclohydrolase and a prs gene of SEQ ID NO. 43 which codes for ribosephosphate pyrophosphokinase.
4. The microorganism belonging to the genus Corynebacterium according to claim 1 wherein the expression level of the gene encoding purine biosynthesis related enzyme is increased by additionally introducing the gene encoding purine biosynthesis related enzyme into a cell or by amplifying the intrinsic gene encoding purine biosynthesis related enzyme.
5. The microorganism belonging to the genus Corynebacterium according to claim 4 wherein the gene encoding purine biosynthesis related enzyme exists as two or more copies by introducing one or more copies into a cell in addition to the corresponding intrinsic gene.
6. The microorganism belonging to the genus Corynebacterium according to claim 5 wherein introduction of the gene encoding purine biosynthesis related enzyme into the cell is performed by transformation using a recombinant vector containing two copies of the corresponding gene that are consecutively arranged.
7. The microorganism belonging to the genus Corynebacterium according to claim 6 wherein the recombinant vector is selected from the group consisting of pDZ-2purFM pDZ-2purNH pDZ-2purSL pDZ-2purKE pDZ-2purC and pDZ-2prs that have the cleavage maps of FIGs. 2 to 7 respectively.
8. The microorganism belonging to the genus Corynebacterium according to claim 1 wherein the microorganism of the genus Corynebacterium is Corynebacterium ammoniagenes.
9. The microorganism belonging to the genus Corynebacterium according to claim 2 wherein the microorganism of the genus Corynebacterium is Corynebacterium ammoniagenes CN01-0120.
10. The microorganism belonging to the genus Corynebacterium according to claim 3 wherein the microorganism of the genus Corynebacterium is Corynebacterium ammoniagenes CN01-0316 (KCCM 10992P).
11. A method for producing 5’-inosinic acid comprising culturing the microorganism belonging to the genus Corynebacterium according to any one of claims 1 to 10 and recovering 5’-inosinic acid from the culture medium.
| Section | Controller | Decision Date |
|---|---|---|
| 15 | Bhanumathi R | 2017-12-18 |
| 15 | Bhanumathi R | 2017-12-18 |
| 15 | Bhanumathi R | 2017-12-18 |
| # | Name | Date |
|---|---|---|
| 1 | 7406-CHENP-2011 FORM-18 18-10-2011.pdf | 2011-10-18 |
| 2 | 7406-CHENP-2011 CORRESPONDENCE OTHERS 18-10-2011.pdf | 2011-10-18 |
| 3 | Form-5.pdf | 2011-10-25 |
| 4 | Form-3.pdf | 2011-10-25 |
| 5 | Form-1.pdf | 2011-10-25 |
| 6 | Drawings.pdf | 2011-10-25 |
| 7 | 7406-CHENP-2011 CORRESPONDENCE OTHERS 12-04-2012.pdf | 2012-04-12 |
| 8 | 7406-CHENP-2011 FORM-3 12-04-2012.pdf | 2012-04-12 |
| 9 | 7406-CHENP-2011 CORRESPONDENCE OTHERS 04-08-2014.pdf | 2014-08-04 |
| 10 | 30-01-2015_OFFICE ACTIONS.pdf | 2015-01-30 |
| 11 | 30-01-2015_Form 2.pdf | 2015-01-30 |
| 12 | 30-01-2015_Cover letter Section 8(2).pdf | 2015-01-30 |
| 13 | 7406-CHENP-2011 OTHER PATENT DOCUMENT 12-02-2015.pdf | 2015-02-12 |
| 14 | 7406-CHENP-2011 ENGLISH TRANSLATION 12-02-2015.pdf | 2015-02-12 |
| 15 | 7406-CHENP-2011 CORRESPONDENCE OTHERS. 12-02-2015.pdf | 2015-02-12 |
| 16 | 7406-CHENP-2011 CORRESPONDENCE OTHERS 12-02-2015.pdf | 2015-02-12 |
| 17 | Petition for irregularity in submitting verified translation.pdf | 2015-03-12 |
| 18 | Petition for irregularity in filing sequence listing pages.pdf | 2015-03-12 |
| 19 | OFFICE ACTIONS.pdf | 2015-03-12 |
| 20 | Form 2.pdf | 2015-03-12 |
| 21 | Cover letter.pdf | 2015-03-12 |
| 22 | Cover letter Section 8(2).pdf | 2015-03-12 |
| 23 | Other Document [05-02-2016(online)].pdf | 2016-02-05 |
| 24 | Form 13 [05-02-2016(online)].pdf | 2016-02-05 |
| 25 | 7406-CHENP-2011_EXAMREPORT.pdf | 2016-07-02 |
| 26 | 7406-CHENP-2011-HearingNoticeLetter.pdf | 2017-07-26 |
| 27 | 7406-CHENP-2011-Correspondence to notify the Controller (Mandatory) [17-08-2017(online)].pdf | 2017-08-17 |
| 28 | 7406-CHENP-2011-REQUEST FOR ADJOURNMENT OF HEARING UNDER RULE 129A [28-08-2017(online)].pdf | 2017-08-28 |
| 29 | 7406-CHENP-2011-ExtendedHearingNoticeLetter_11Oct2017.pdf | 2017-08-29 |
| 30 | 7406-CHENP-2011-REQUEST FOR ADJOURNMENT OF HEARING UNDER RULE 129A [27-09-2017(online)].pdf | 2017-09-27 |
| 31 | 7406-CHENP-2011-ExtendedHearingNoticeLetter_10Nov2017.pdf | 2017-10-10 |
| 32 | 7406-CHENP-2011-Correspondence to notify the Controller (Mandatory) [06-11-2017(online)].pdf | 2017-11-06 |
| 33 | 7406-CHENP-2011-Information under section 8(2) (MANDATORY) [09-11-2017(online)].pdf | 2017-11-09 |
| 34 | 7406-CHENP-2011-FORM 3 [09-11-2017(online)].pdf | 2017-11-09 |
| 35 | 7406-CHENP-2011-Written submissions and relevant documents (MANDATORY) [23-11-2017(online)].pdf | 2017-11-23 |
| 36 | Drawing_Granted 290746_18-12-2017.pdf | 2017-12-18 |
| 37 | Description_Granted 290746_18-12-2017.pdf | 2017-12-18 |
| 38 | Claims_Granted 290746_18-12-2017.pdf | 2017-12-18 |
| 39 | Abstract_Granted 290746_18-12-2017.pdf | 2017-12-18 |
| 40 | 7406-CHENP-2011-Written submissions and relevant documents (MANDATORY) [18-12-2017(online)].pdf | 2017-12-18 |
| 41 | 7406-CHENP-2011-PatentCertificate18-12-2017.pdf | 2017-12-18 |
| 42 | 7406-CHENP-2011-IntimationOfGrant18-12-2017.pdf | 2017-12-18 |
| 43 | 7406-CHENP-2011-RELEVANT DOCUMENTS [28-03-2019(online)].pdf | 2019-03-28 |
| 44 | 7406-CHENP-2011-RELEVANT DOCUMENTS [09-03-2020(online)].pdf | 2020-03-09 |
| 45 | 7406-CHENP-2011-RELEVANT DOCUMENTS [05-09-2021(online)].pdf | 2021-09-05 |
| 46 | 7406-CHENP-2011-RELEVANT DOCUMENTS [27-09-2021(online)].pdf | 2021-09-27 |
| 47 | 7406-CHENP-2011-RELEVANT DOCUMENTS [24-09-2022(online)].pdf | 2022-09-24 |
| 48 | 7406-CHENP-2011-RELEVANT DOCUMENTS [09-09-2023(online)].pdf | 2023-09-09 |