Sign In to Follow Application
View All Documents & Correspondence

Novel Resorcinol Derivatives For Skin

Abstract: New 4-substituted resorcinol derivatives of general formula (I) and/or B and process for synthesizing same, cosmetic compositions and methods of using same, particularly for skin lightening: formula (I) and formula (B) wherein, X1 and/or X2 represents hydrogen (H); linear or branched, saturated or unsaturated C1-C12 alkyl, alkenyl, or acyl groups. Preferably, X1 and/or X2 represents hydrogen (H); linear or branched, saturated or unsaturated C1-C12 alkyl or acyl groups. R1 represents hydrogen (H); linear or branched, cyclic or acyclic, saturated or unsaturated C1-C12 alkyl, alkenyl, cycloalkyl, or cycloalkenyl group. Preferably, R1 represents hydrogen (H) or a C1 alkyl group (i.e, methyl group). More preferably, R1 represents hydrogen. n represents 0, 1. When n = 0, the ring is a cyclopentyl with or without one heteroatom from O, N or S and/or with or without one double bond. When n = 1, the ring is a cyclohexyl with or without one heteroatom from O, N or S and/or with or without one double bond. m represents an integer between 1 and 6.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
13 September 2007
Publication Number
44/2007
Publication Type
INA
Invention Field
AGROCHEMICALS
Status
Email
Parent Application
Patent Number
Legal Status
Grant Date
2009-12-02
Renewal Date

Applicants

HINDUSTAN UNILEVER LIMITED
HINDUSTAN LEVER HOUSE, 165/166,BACKBAY RECLAMATION, MUMBAI.

Inventors

1. HARICHIAN BIJAN
UNILEVER HOME & PERSONAL CARE USA, 40 MERRITT BOULEVARD, TRUMBULL, CONNECTICUT 06611
2. JOSE GUILLERMO ROSA
UNILEVER HOME & PERSONAL CARE USA, 40 MERRITT BOULEVARD, TRUMBULL, CONNECTICUT 06611

Specification

J6951/C
FORM - 2
THE PATENTS ACT, 1970
(39 of 1970)
&
The Patents Rules, 2003
COMPLETE SPECIFICATION
(See Section 10 and Rule 13)
NOVEL RESORCINOL DERIVATIVES FOR SKIN
HINDUSTAN UNILEVER LIMITED, a company incorporated under the Indian Companies Act, 1913 and having its registered office at Hindustan Lever House, 165/166, Backbay Reclamation, Mumbai -400 020, Maharashtra, India
The following specification particularly describes the invention and the manner in which it is to be performed

WO 2006/097224 PCT/EP2006/002099

NOVEL RESORCINOL DERIVATIVES FOR SKIN
FIELD OF THE INVENTION
The invention relates to 4-substituted cycloalkyl methyl resorcinol derivatives, cosmetic compositions containing same, and cosmetic methods of using and making same. More specifically, the present invention relates to 4-substituted cycloalkyl methyl resorcinol derivatives as skin lightening actives, cosmetic compositions and methods of using same for skin lightening.

BACKGROUND OF THE INVENTION
Many people are concerned with the degree of pigmentation of their skin. For example, people with age spots or freckles may wish such pigmented spots to be less pronounced. Others may wish to reduce the skin darkening caused by exposure to
sunlight or to lighten their natural skin color. To meet this need, many attempts have been made to develop products that reduce the pigment production in the melanocytes. However, the substances identified thus far tend to have either low efficacy or undesirable side effects, such as, for example, toxicity or skin irritation. Therefore, there is a continuing need for new skin lightening agents, with improved
overall effectiveness, as well as agents that lend themselves to ease of processing in their manufacture.
Resorcinol derivatives are generally known compounds and can be readily obtained, for example, by a method wherein a saturated carboxylic acid and resorcinol are
condensed in the presence of zinc chloride and the resultant condensate is reduced with zinc amalgam/hydrochloric acid (Lille. J. Bitter, LA. Peiner. V, Tr. Nauch-lssled. Inst, slantsev 1969, No. 18, 127), or by a method wherein resorcinol and a corresponding alkyl alcohol are reacted in the presence of an alumina catalyst at a high temperature of from 200 to 400° C (GB 1 581 428).

Resorcinol derivatives have cosmetic skin and hair benefits. Certain resorcinol derivatives, particularly 4-substituted resorcinol derivatives, are useful in cosmetic compositions for skin lightening benefits. Resorcinol derivatives are described in many publications, including US 4 959 393 (Torihara et al.); US 6 132 740 (Hu et al.);

WO 2006/097224 PCT/EP2006/002099

US 6 504 037 (Bradley, et al.); and JP 2001-010925 and JP 2000-327557. Skin lightening compounds that may be derived from coumarin are disclosed in US 2004/0042983. Some of these compounds can be difficult to formulate and/or irritating to the skin.
Applicants have now discovered new compounds that which deliver skin lightening benefits. The general chemical formulas and structures of these compounds are discussed in more detail herein below. Especially, 4-substituted cycloalkyl methyl resorcinol derivatives, have been found to be effective and possibly less irritating to the skin and are relatively simple to manufacture.
SUMMARY OF THE INVENTION
Applicants have now discovered new 4-substituted resorcinol derivatives that have skin lightening activity. Accordingly, the present invention provides novel compounds of general formula I, of which compound of general formula B is an example, cosmetic compositions and methods comprising same, particularly for skin lightening, as well as a process for producing the inventive compounds:

wherein,
X1 and/or X2 represents hydrogen (H); linear or branched, saturated or unsaturated C1-C12 alkyl, alkenyl, acyl groups. Preferably, X1 and/or X2 represents hydrogen (H); linear or branched, saturated or unsaturated C1-C12 alkyl or acyl groups. More preferably, Xi and/or X2 represents hydrogen.
R! represents hydrogen (H); linear or branched, cyclic or acyclic, saturated or unsaturated C1-C12 alkyl, alkenyl, cycloalkyl, or cycloalkenyl group. Preferably, R1

WO 2006/097224 PCT/EP2006/002099

represents hydrogen (H) or C1 alkyl group (i.e. methyl group). More preferably, R1 represents hydrogen.
n represents 0, 1. When n = 0, the ring is a cyclopentyl with or without one heteroatom from O, N or S and/or with or without one double bond. When n = 1, the ring is a cyclohexyl with or without one heteroatom from O, N or S and/or with or without one double bond.
m = 1, 2, 3,4, 5,6 (i.e, an integer between 1 and 6).
Preferred compounds include:
n = 0, m = 1, R1= H, alkyl, and/or alkenyl; anywhere in the ring;
n = 1,m = 1, R1 = Hl alkyl, and/or alkenyl; anywhere in the ring;
n = 0, m = 2 - 5, R1 = H, alkyl, and/or alkenyl; any substitution pattern anywhere in the ring; and
n = 1, m = 2 - 6, R1 = H, alkyl and/or alkenyl; any substitution pattern anywhere in the
ring.
Cosmetic compositions according to the present invention include:
(a) about 0.0001 wt. % to about 50 wt. % of a 4-substituted resorcinol derivative of the general formula B; and
(b) a cosmetically acceptable vehicle.
The inventive compounds and compositions may be applied to the skin as part of inventive cosmetic method for skin lightening.
In another aspect, the present invention relates to a process for synthesizing the novel resorcinol compounds of general formula I, II and/or B1, having the following general reaction scheme:

WO 2006/097224 PCT/EP2006/002099

wherein a, b, c, d represent reaction steps, reagents and conditions:
(a) cycloalkylcarbonyl chloride, ZnCI2, organic solvent (e.g. dichloromethane);
(b) acetic anhydride, triethylamine;
(c) hydrogen, catalyst (e.g. Pd/C), acid (e.g. acetic acid); (d) aqueous acid hydrolysis (e.g. 3M HCl:methanol).
DETAILED DESCRIPTION OF THE INVENTION
The invention is concerned with new 4-substituted resorcinol derivatives for cosmetically lightening skin color, cosmetic compositions and methods employing same, and a process for producing same.
As used herein, the term "cosmetic composition" is intended to describe compositions for topical application to human skin, including leave-on and wash-off products.

WO 2006/097224 PCT/EP2006/002099

The term "skin" as used herein includes the skin on the face, neck, chest, back, arms, axillae, hands, legs, and scalp.
Except in the examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as optionally modified by the word "about". All amounts are by weight of the composition, unless otherwise specified.
For the avoidance of doubt, the term "comprising" means including, made up of, composed of, consisting and/or consisting essentially of. Furthermore, in the ordinary meaning of "comprising," the term is defined as not being exhaustive of the steps, components, ingredients, or features to which it refers.
4-SUBSTITUTED CYCLOALKYL METHYL RESORCINOL DERIVATIVES
The present invention is based on a new resorcinol derivative of the general formula I, of which compounds of general formula B are preferred:

wherein,
X1 and/or X2 represents hydrogen (H); linear or branched, saturated or unsaturated C1-C12 alkyl, alkenyl, or acyl groups. Preferably, Xi and/or X2 represents hydrogen (H); linear or branched, saturated or unsaturated C1-C12 alkyl or acyl groups.
R1 = hydrogen (H); linear or branched, cyclic or acyclic, saturated or unsaturated C1-C12 alkyl, alkenyl, cycloalkyl, or cycloalkenyl group. Preferably, R1 represents hydrogen (H) or a C1 alkyl group (i.e, methyl group). More preferably, R1 represents hydrogen.


WO 2006/097224 PCT/EP2006/002099

n represents 0,1. When n = 0, the ring is a cyclopentyl with or without one heteroatom from O, N or S and/or with or without one double bond. When n = 1, the ring is a cyclohexyl with or without one heteroatom from O, N or S and/or with or without one double bond.
m = 1, 2, 3,4, 5,6 (i.e, an integer between 1 and 6).

Preferred compounds include:
n = 0, m = 1, R1 = H, alkyl, or alkenyl; anywhere in the ring; 0
n = 1,m = 1,R1 = H, alkyl and/or alkenyl; anywhere in the ring;
n = 0, m = 2-5, R1 = H, alkyl and/or alkenyl; any substitution pattern anywhere in the
ring; and
n = 1, m = 2-6, R1 = H, alkyl and/or alkenyl; any substitution pattern anywhere in the
ring.

Examples of more specific embodiments of the 4-substituted cycloalkyl-methyl resorcinols include compounds of general formula B1:

wherein,

R1 = hydrogen (H); linear or branched, cyclic or acyclic, saturated or unsaturated C1-C12
alkyl, alkenyl, cycloalkyl, or cycloalkenyl group. Preferably, R1 represents hydrogen (H)
or a C1 alkyl group (i.e, methyl group). More preferably, R1 represents hydrogen.
n represents 0,1. When n = 0, the ring is a cyclopentyl with or without one heteroatom from O, N or S and/or with or without one double bond. When n - 1, the ring is a

WO 2006/097224 PCT/EP2006/002099

cyclohexyl with or without one heteroatom from O, N or S and/or with or without one double bond.
Preferred compounds are 4-cyclopentyl methyl resorcinol and 4-cyclohexyl methyl resorcinol.
Cosmetic compositions according to the present invention include:
(a) 0.0001 wt. % to 50 wt. % of a 4-substituted resorcinol derivative of the general formula B; and
(b) a cosmetically acceptable vehicle.
The amount of the resorcinol derivative is preferably in the range of 0.00001% to 10 %, more preferably 0.001 to 7 %, most preferably from 0.01% to 5 %, of the total amount of a cosmetic composition.
The inventive compounds and compositions may be applied to the skin as part of inventive cosmetic method for skin lightening.
SYNTHETIC PROCESS FOR NOVEL RESORCINOL DERIVATIVES
I. General Reaction Scheme

wherein a, b, c, d represent reaction steps, reagents and conditions:
(a) cycloalkylcarbonyl chloride, ZnC12, organic solvent (e.g. dichloromethane, chloroform);
(b) acetic anhydride, triethylamine;
(c) hydrogen, catalyst (e.g. Pd/C), acid (e.g. acetic acid);

WO 2006/097224 PCT/EP2006/002099

(d) aqueous acid hydrolysis (e.g. 3M HCl:methanol).
II. General Procedure
(a) A cycloalkylcarbonyl derivative (e.g. cyclohexylcarbonyl when n represents 1) or substituted cycloalkyl carbonyl derivative (e.g. mono-substituted when m represents 1, or multisubstituted when m represents an integer greater than 1) is added to a suspension of zinc chloride in an organic solvent (i.e. dichloromethane, chloroform), followed by resorcinol A and the reaction
vigorously stirred at or above 25 °C (i.e. 25 to 100 °C) and monitored using a
suitable analytical method (i.e. TLC, GC, LC) until complete consumption of the starting material. The reaction is diluted with an organic solvent and washed successively with aqueous acid (i.e 1N HCI) and aqueous base (i.e. saturated NaHC03). The solvents are removed under reduced pressure and
the product is purified using conventional methods (i.e. recrystallization,
distillation, chromatography) to give a cycloalkylcarbonyl resorcinol derivative.
(b) The cycloalkylcarbonyl resorcinol derivative is dissolved in a mixture of acetic
anhydride and triethylamine and the reaction is monitored using a suitable
analytical method (i.e. TLC, GC, LC) until complete consumption of the starting
material. The solvents are removed under reduced pressure and the product is purified using conventional methods (i.e. recrystallization, distillation, chromatography) to give cycloalkylcarbonyl resorcinol diacetate.
(c) A high pressure reaction vessel is charged with the cycloalkylcarbonyl resorcinol diacetate in acetic acid and a catalyst is added (i.e. homogeneous or heterogeneous catalysts such as Pd attached to a suitable matrix). The reactor is pressurized with hydrogen (i.e. 100 to 800 psi) and stirred above 25 °C (i.e. 25 to 60 °C) until complete consumption of the reactant is observed as
monitored using a suitable analytical method (i.e. TLC, GC, LC, hydrogen
consumption). The reaction mixture is filtered through an insoluble support (i.e. celite, silica gel), the solvents removed under reduced pressure and the product purified using conventional methods (i.e. recrystallization, distillation, chromatography) to give cycloalkylmethyl resorcinol monoacetate.

WO 2006/097224 PCT/EP2006/002099

(d) The cycloalkylmethyl resorcinol monoacetate is dissolved in aqueous acidic
media (i.e. aqueous acetic acid) and stirred at or above 23 °C (i.e. 23 to 150
°C) until complete consumption of the reactant is observed as monitored using
a suitable analytical method (i.e. TLC, GC, LC). The solvents are removed
under reduced pressure and the product is purified using conventional methods (i.e. recrystallization, distillation, chromatography) to give cycloalkylmethyl resorcinol of general formula II.

SKIN BENEFIT AGENTS
Preferred cosmetic compositions are those suitable for the application to human skin,
which optionally, but preferably, include a skin benefit agent.
Suitable skin benefit agents include anti-aging, wrinkle-reducing, skin whitening, anti-acne, and sebum reduction agents. Examples of these include alpha-hydroxy acids and esters, beta-hydroxy acids and esters, polyhydroxy acids and esters, kojic acid and esters, ferulic acid and ferulate derivatives, vanillic acid and esters, dioic acids (such as sebacic and azoleic acids) and esters, retinol, retinal, retinyl esters,
hydroquinone, t-butyl hydroquinone, mulberry extract, licorice extract, and resorcinol derivatives other than the 4-substituted resorcinol derivatives discussed hereinabove.
COSMETICALLY ACCEPTABLE CARRIER
The skin benefit agent together with the organic sunscreen compound and resorcinol
derivative of the invention is usually used along with a cosmetic base. Suitable cosmetic carriers are well known to one skilled in the art. The cosmetic bases may be any bases which are ordinarily used for skin benefit agents and are not thus critical. Specific preparations of the cosmetics to which the skin benefit agents of the invention is applicable include creams, ointments, emulsions, lotions, oils, packs and non-woven
wipes. Cream bases are, for example, beeswax, cetyl alcohol, stearic acid, glycerine, propylene glycol, propylene glycol monostearate, polyoxyethylene cetyl ether and the like. Lotion bases include, for example, oleyl alcohol, ethanol, propylene glycol, glycerine, lauryl ether, sorbitan monolaurate and the like.

WO 2006/097224 PCT/EP2006/002099

The cosmetically acceptable vehicle may act as a dilutant, dispersant or carrier for the skin benefit ingredients in the composition, so as to facilitate their distribution when the composition is applied to the skin.
The vehicle may be aqueous, anhydrous or an emulsion. Preferably, the compositions are aqueous or an emulsion, especially water-in-oil or oil-in-water emulsion, preferentially oil-in-water emulsion. Water when present will be in amounts which may range from 5 to 99%, preferably from 20 to 70%, optimally between 40 and 70% by weight.

Besides water, relatively volatile solvents may also serve as carriers within compositions of the present invention. Most preferred are monohydric C1-C3 alkanols. These include ethyl alcohol, methyl alcohol and isopropyl alcohol. The amount of monohydric alkanol may range from 1 to 70%, preferably from 10 to 50%, optimally between 15 to 40% by
weight.
Emollient materials may also serve as cosmetically acceptable carriers. These may be in the form of silicone oils and synthetic esters. Amounts of the emollients may range anywhere from 0.1 to 50%, preferably between 1 and 20% by weight.
Silicone oils may be divided into the volatile and non-volatile variety. The term "volatile" as used herein refers to those materials which have a measurable vapor pressure at ambient temperature. Volatile silicone oils are preferably chosen from cyclic or linear polydimethylsiloxanes containing from 3 to 9, preferably from 4 to 5, silicon atoms.
Linear volatile silicone materials generally have viscosities less than about 5 centistokes
at 25°C while cyclic materials typically have viscosities of less than about 10 centistokes. Non-volatile silicone oils useful as an emollient material include polyalkyl siloxanes, polyalkylaryl siloxanes and polyether siloxane copolymers. The essentially non-volatile polyalkyl siloxanes useful herein include, for example, polydimethyl siloxanes with
viscosities of from about 5 to about 25 million centistokes at 25°C. Among the preferred
non-volatile emollients useful in the present compositions are the polydimethyl siloxanes having viscosities from about 10 to about 400 centistokes at 25°C.
Among the ester emollients are:

WO 2006/097224 PCT/EP2006/002099

(1) Alkenyl or alkyl esters of fatty acids having 10 to 20 carbon atoms. Examples thereof include isoarachidyl neopentanoate, isononyl isonanonoate, oleyl myristate, oleyl stearate, and oleyl oleate.
(2) Ether-esters such as fatty acid esters of ethoxylated fatty alcohols.

(3) Polyhydric alcohol esters. Ethylene glycol mono and di-fatty acid esters,
diethylene glycol mono- and di-fatty acid esters, polyethylene glycol (200-6000)
mono- and di-fatty acid esters, propylene glycol mono- and di-fatty acid esters,
polypropylene glycol 2000 monooleate, polypropylene glycol 2000 monostearate, ethoxylated propylene glycol monostearate, glyceryl mono- and di-fatty acid esters, polyglycerol poly-fatty esters, ethoxylated glyceryl monostearate, 1,3-butylene glycol monostearate, 1,3-butylene glycol distearate,
polyoxyethylene polyol fatty acid ester, sorbitan fatty acid esters, and polyoxy-
ethylene sorbitan fatty acid esters are satisfactory polyhydric alcohol esters.
(4) Wax esters such as beeswax, spermaceti, myristyl myristate, stearyl stearate
and arachidyl behenate.

(5) Sterol esters, of which cholesterol fatty acid esters are examples.
Fatty acids having from 10 to 30 carbon atoms may also be included as cosmetically acceptable carriers for compositions of this invention. Illustrative of this category are pelargonic, lauric, myristic, palmitic, stearic, isostearic, hydroxystearic, oleic, linoleic, ricinoleic, arachidic, behenic and erucic acids.
Humectants of the polyhydric alcohol-type may also be employed as cosmetically acceptable carriers in compositions of this invention. The humectant aids in increasing the effectiveness of the emollient, reduces skin dryness and improves skin feel. Typical polyhydric alcohols include glycerol, polyalkylene glycols and more preferably alkylene polyols and their derivatives, including propylene glycol, dipropylene glycol, polypropylene glycol, polyethylene glycol and derivatives thereof, sorbitol, hydroxypropyl sorbitol, hexylene glycol, 1,3-butylene glycol, 1,2,6-hexanetriol, ethoxylated glycerol,

WO 2006/097224 PCT/EP2006/002099

propoxylated glycerol and mixtures thereof. The amount of humectant may range anywhere from 0.5 to 30%, preferably between 1 and 15% by weight of the composition.
Thickeners may also be utilized as part of the cosmetically acceptable carrier of compositions according to the present invention. Typical thickeners include crosslinked acrylates (e.g. Carbopol 982), hydrophobically-modified acrylates (e.g. Carbopol 1382), cellulosic derivatives and natural gums. Among useful cellulosic derivatives are sodium carboxymethylcellulose, hydroxypropyl methylcellulose, hydroxypropyl cellulose, hydroxyethyl cellulose, ethyl cellulose and hydroxymethyl cellulose. Natural gums suitable for the present invention include guar, xanthan, sclerotium, carrageenan, pectin and combinations of these gums. Amounts of the thickener may range from 0.0001 to 5%, usually from 0.001 to 1%, optimally from 0.01 to 0.5% by weight.
Collectively the water, solvents, silicones, esters, fatty acids, humectants and/or thickeners will constitute the cosmetically acceptable carrier in amounts from 1 to 99.9%, preferably from 80 to 99% by weight.
An oil or oily material may be present, together with an emulsifier to provide either a water-in-oil emulsion or an oil-in-water emulsion, depending largely on the average hydrophilic-lipophilic balance (HLB) of the emulsifier employed.
Surfactants may also be present in cosmetic compositions of the present invention. For leave-on products, total concentration of the surfactant will range from 0.1 to 40%, preferably from 1 to 20%, optimally from 1 to 5% by weight of the composition. For
wash-off products, such as cleansers and soap, total concentration of surfactant will be in the range 1 to 90 %. The surfactant may be selected from the group consisting of anionic, nonionic, cationic and amphoteric actives. Particularly preferred nonionic surfactants are those with a C10-C20 fatty alcohol or acid hydrophobe condensed with from 2 to 100 moles of ethylene oxide or propylene oxide per mole of hydrophobe; C2-C10
alkyl phenols condensed with from 2 to 20 moles of alkylene oxide; mono- and di- fatty acid esters of ethylene glycol; fatty acid monoglyceride; sorbitan, mono- and di- C8-C20 fatty acids; block copolymers (ethylene oxide/propylene oxide); and polyoxyethylene sorbitan as well as combinations thereof. Alkyl polyglycosides and saccharide fatty amides (e.g. methyl gluconamides) are also suitable nonionic surfactants.

WO 2006/097224 PCT/EP2006/002099

Preferred anionic surfactants include soap, alkyl ether sulfate and sulfonates, alkyl sulfates and sulfonates, alkylbenzene sulfonates, alkyl and dialkyl sulfosuccinates, C8-C20 acyl isethionates, acyl glutamates, C8-C20 alkyl ether phosphates and combinations thereof.
The inventive cosmetic compositions optionally contain a lathering surfactant. By a "lathering surfactant" is meant a surfactant which, when combined with water and mechanically agitated, generates a foam or lather. Preferably, the lathering surfactant should be mild, meaning that it must provide sufficient cleansing or detergent benefits but not overly dry the skin, and yet meet the lathering criteria described above. The cosmetic compositions of the present invention may contain a lathering surfactant in a concentration of 0.01 % to 50 %.
OPTIONAL COMPONENTS
In the cosmetic compositions of the invention, there may be added various other plasticizers, elastomers, calamine, pigments, antioxidants, chelating agents, and perfumes, as well as organic sunscreens and sunscreens such UV diffusing agents, typical of which is finely divided titanium oxide and zinc oxide.
Other adjunct minor components may also be incorporated into the cosmetic compositions. These ingredients may include coloring agents, opacifiers, and perfumes. Amounts of these other adjunct minor components may range anywhere from 0.001% up to 20% by weight of the composition.
ORGANIC SUNSCREENS
The inventive cosmetic compositions include an organic sunscreen to provide protection from the harmful effects of excessive exposure to sunlight. Organic sunscreens for purposes of the inventive compositions are organic sunscreen agents having at least one chromophoric group absorbing within the ultraviolet range of from
290 to 400 nm. Chromophoric organic sunscreen agents may be divided into the following categories (with specific examples) including: p-aminobenzoic acid, its salts and its derivatives (ethyl, isobutyl, glyceryl esters; p-dimethylaminobenzoic acid); anthranilates (o-aminobenzoates; methyl, menthyl, phenyl, benzyl, phenylethyl, linalyl, terpinyl, and cyclohexenyl esters); salicylates (octyl, amyl, phenyl, benzyl,

WO 2006/097224 PCT/EP2006/002099

menthyl, glyceryl, and dipropyleneglycol esters); cinnamic acid derivatives (menthyl and benzyl esters, alpha- phenyl cinnamonitrile; butyl cinnamoyl pyruvate); dihydroxycinnamic acid derivatives (umbelliferone, methylumbelliferone, methylaceto-umbelliferone); trihydroxycinnamic acid derivatives (esculetin, methylesculetin, daphnetin, and the glucosides, esculin and daphnin); hydrocarbons (diphenylbutadiene, stilbene); dibenzalacetone and benzalacetophenone; naphtholsulfonates (sodium salts of 2-naphthol-3,6-disulfonic and of 2-naphthol-6,8-disulfonic acids); dihydroxy-naphthoic acid and its salts; o- and p-hydroxybiphenyldisulfonates; coumarin derivatives (7-hydroxy, 7-methyl, 3-phenyl);
diazoles (2-acetyl-3-bromoindazole, phenyl benzoxazole, methyl naphthoxazole, various aryl benzothiazoles); quinine salts (bisulfate, sulfate, chloride, oleate, and tannate); quinoline derivatives (8-hydroxyquinoline salts, 2-phenylquinoline); hydroxy-or methoxy-substituted benzophenones; uric and vilouric acids; tannic acid and its derivatives (e.g., hexaethylether); (butyl carbityl) (6-propyl piperonyl) ether;
hydroquinone; Benzophenones (oxybenzone, sulisobenzone, dioxybenzone,
benzoresorcinol, 2,2,,4,4'-tetrahydroxybenzophenone, 2,2'-dihydroxy-4,4'-
dimethoxybenzophenone, octabenzone); 4-isopropyldibenzoylmethane;
butylmethoxydibenzoylmethane; etocrylene; and 4-isopropyl- dibenzoylmethane).
Particularly useful are: 2-ethylhexyl p-methoxycinnamate, 4,4'-t-butyl methoxydibenzoylmethane, 2-hydroxy-4-methoxybenzophenone, octyldimethyl p-aminobenzoic acid, digalloyltrioleate, 2,2-dihydroxy-4-methoxybenzophenone, ethyl 4-[bis(hydroxypropyl)]aminobenzoate, 2-ethylhexyl-2-cyano-3,3-diphenylacrylate, 2-ethylhexylsalicylate, glyceryl p-aminobenzoate, 3,3,5-trimethylcyclohexylsalicylate,
methylanthranilate, p-dimethylaminobenzoic acid or aminobenzoate, 2-ethylhexyl p-dimethylaminobenzoate, 2-phenylbenzimidazole-5-sulfonic acid, 2-(p-dimethylaminophenyl)-5-sulfoniobenzoxazoic acid and mixtures thereof.
Suitable commercially available organic sunscreen agents are those identified under the following table.

WO 2006/097224

PCT/EP2006/002099


CTFA Name
Benzophenone-3 Benzophenone-4
Benzophenone-8
DEA
Methoxycinnamate
Ethyl dihydroxypropyl-PABA Glyceryl PABA
Homosalate
Methyl anthranilate
Octocrylene
Octyl dimethyl PABA Octyl methoxycinnamate
Octyl salicylate
PABA
2-Phenylbenzimidazole-5-sulphonic acid
TEA salicylate
3-(4-methylbenzylidene)-camphor
Benzophenone-1
Benzophenone-2
Benzophenone-6
Benzophenone-12
4-lsopropyl dibenzoyl methane
Butyl methoxy dibenzoyl methane
Etocrylene

TABLE 1 Trade Name
UVINUL M-40 UVINUL MS-40 SPECRA-SORB UV-24
BERNEL HYDRO AMERSCREEN P
NIPA G.M.P.A. KEMESTER HMS SUNAROME UVA UVINUL N-539 AMERSCOL
PARSOL MCX SUNAROME WMO PABA
EUSOLEX 232 SUNAROME W EUSOLEX 6300 UVINUL 400 UVINUL D-50 UVINUL D-49 UVINUL 408 EUSOLEX 8020 PARSOL 1789 UVINUL N-35

Supplier
BASF Chemical Co. BASF Chemical Co. American Cyanamide
Bernel Chemical Amerchol Corp. Nipa Labs. Hunko Chemical Felton Worldwide BASF Chemical Co. Amerchol Corp. Bernel Chemical Felton Worldwide National Starch EM Industries Felton Worldwide EM Industries BASF Chemical Co. BASF Chemical Co. BASF Chemical Co. BASF Chemical Co. EM Industries Givaudan Corp. BASF Chemical Co.

The amount of the organic sunscreens in the personal care composition is generally in the range of 0.01 % to 20 %, preferably in the range of 0.1 % to 10 %.
Preferred organic sunscreens are Parsol MCX and Parsol 1789, due to their effectiveness and commercial availability.

WO 2006/097224 PCT/EP2006/002099

USE OF THE COMPOSITION
The composition according to the invention is intended primarily as a cosmetic
product for topical application to human skin, preferably for cosmetic skin lightening.
In use, a small quantity of the composition, for example about 0.1 to about 5 ml, is applied to exposed areas of the skin, from a suitable container or applicator and, if necessary, it is then spread over and/or rubbed into the skin using the hand or fingers or a suitable device.
PRODUCT FORM AND PACKAGING
The cosmetic composition of the invention can be formulated as a lotion having a viscosity of from 4,000 to 10,000 mPas, a fluid cream having a viscosity of from 10,000 to 20,000 mPas or a cream having a viscosity of from 20,000 to 100,000 mPas or above. The composition can be packaged in a suitable container to suit its
viscosity and intended use by the consumer. For example, a lotion or fluid cream can be packaged in a bottle or a roll-ball applicator or a propellant-driven aerosol device or a container fitted with a pump suitable for finger operation. When the composition is a cream, it can simply be stored in a non-deformable bottle or squeeze container, such as a tube or a lidded jar.

The invention accordingly also provides a closed container containing a cosmetically acceptable composition as herein defined.
The following specific examples further illustrate the invention, but the invention is not limited thereto.
EXAMPLES 1-7
A set of compositions within the scope of the present invention were prepared and listed in table 2 below. The compositions are in weight percent.

WO 2006/097224 PCT/EP2006/002099

TABLE 2

Ingredient Trade and CTFA Name Phase 1 2 3 4 5 6 7
Stearic acid A 14.9 14.9 12.9 17.9 14.0 14.0 14.0
Sodium cetearyl sulfate A 1.0 1.0 1.5 1.5 1 1 1
Myrj 59 A 2.0 1.5 2 2 2 2 2
Span 60 A 2.0 1.5 2 2 2 2 2
Propyl paraben A 0.10 0.10 0.10 0.10 0.10 0.10 0.10
BHT A 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Dimethicone A 0.50 0.75 0.75 0.75 0.75
Water B BAL* BAL BAL BAL BAL BAL BAL

EDTA B 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Pemulen TR 2 B 0.10 0.05 0.05 0.05 0.05
Methyl paraben B 0.15 0.15 0.15 0.15 0.15 0.15 0.15
Parsol MCX C 0.75 1.25 1 1 0.75 0.75 0.75
Parsol 1789 C 0.40 0.4 0.4 0.4 0.4 0.4
Micronized Titanium oxide C 0.2 0.2 0.2
Propylene glycol D 8 8 8
Transcutol D 4 4 4
4-cyclopentyl methyl resorcinol D 0.05 2.0 2.0 3.5
4-cyclohexyl methyl resorcinol D 2.5
4-cyclothiane methyl resorcinol D 3.51
4-cycloamido methyl resorcinol D 5.0
*BAL = balanced to 100%
The compositions of examples 1 - 7 in the table above were prepared in the following fashion. Phase A is heated at 75°C. Phase B is heated to 75°C in a container separate from that of Phase A. Thereafter the phases are combined with mixing with heat being turned off. Phase C was premixed and warmed then added immediately after phase A and B mixed. Phase D is pre-dissolved and added into the main pot at 60 °C. The mixture is cooled until 40°C and then packed.

WO 2006/097224

PCT/EP2006/002099

EXAMPLE 8
This example demonstrates an inventive process for producing 4-cyclohexyl methyl
resorcinol (CHMR) (B2) from resorcinol (A).
Reaction Scheme


Reagents and conditions:
(a) cyclohexylcarbonyl chloride, ZnCI2, dichloromethane, 64h at R.T. (room temperature of about 20-25 °C);
(b) acetic anhydride, triethylamine, tetrahydrofuran, 4h at R.T.;
(c) hydrogen, 5% Pd/C, acetic acid, 16h at 30 °C, 16h at 50 °C;
(d) 3M HCI:methanol (16:84), 4h at R.T.

WO 2006/097224 PCT/EP2006/002099

Specific Procedure:
Cyclohexylcarbonyl chloride (1.54ml, 11.3mmol) was added to a suspension of zinc chloride (4.20g, 31.4mmol) in dichloromethane (10ml) at room temperature, followed by resorcinol A (1.38g, 12.5mmol) and the solution stirred for 3h (Note 1). At this time, TLC showed the formation of a major product (Rf 0.45) and resorcinol (Rf 0.10) (Note 2). After a total of 64h, the mixture was partitioned between ethyl ether (200ml) and 1 M HCI (50ml), washed sequentially with 1 M HCI (2 X 25ml), saturated NaHC03 (2 X 25ml), saturated NaCI (50ml), dried (Na2S04), filtered and the solvent removed to give a yellow oil (2.75g) (Note 3). The crude product was purified by flash chromatography to give 4-cyclohexylcarbonyl resorcinol (1.5g, 88% purity) (Note 4).
Acetic anhydride (1.58ml, 16.7mmol) was added to a solution of 4-cyclohexylcarbonyl resorcinol (1.47g, 6.68mmol) in tetrahydrofuran (15ml) at room temperature, followed by triethylamine (2.80ml, 20.0mmol) and the solution stirred for 4h. At this time, TLC showed the clean formation of a single product (Rf 0.71) and no starting material (Rf 0.40) (Note 5). The solvent was removed under reduced pressure to give 4-cyclohexylcarbonyl resorcinol diacetate as a light-yellow oil (3.0g) and used without further purification for the next synthetic step (Note 6).
A Parr hydrogenator (1 L) was charged with crude 4-cyclohexylcarbonyl resorcinol diacetate (3.0g, 60% purity, 5.9mmol) and acetic acid (50ml) under nitrogen (Note 7). A suspension of 5% Pd/C (200mg, Engelhard) in acetic acid (50ml) was added and the reactor sealed, evacuated and purged with nitrogen (4X). The reactor was pressurized to 100 psi with hydrogen and stirred at 30 °C for 16h, 50 °C for 16h,
recharged with catalyst (250mg), pressurized to 200psi H2 and stirred at 50 °C for 16h, and finally recharged with catalyst (400mg), pressurized to 200psi H2 and stirred at 50 °C for 64h (Note 8). At this time, GC showed the formation of products at the expense of starting material (Note 9). The reactor was evacuated, purged with nitrogen and the mixture filtered through celite (Note 10). The solvent was removed to
give 4-cyclohexylmethyl resorcinol monoacetate as a light amber-colored oil which crystallized upon standing at room temperature (2.76g).
3 M HCI (13ml) was added to a solution of crude 4-cyclohexylmethyl resorcinol monoacetate (2.71 g) in methanol (70ml) and the solution stirred at room temperature

WO 2006/097224 PCT/EP2006/002099

for 16h. At this time, TLC showed the clean formation of product (Rf 0.14) and traces of starting material (Rf 0.48) (Note 11). The solvent was reduced to 1/3 volume under reduced pressure and partitioned between ethyl ether (300ml) and 1 M HCI (100ml), washed with saturated NaCI (100ml), the aqueous layer back extracted with ethyl ether (200ml), the organic layers dried (Na2S04), filtered and the solvent removed to give 4-cyclohexyl methyl resorcinol as a light amber-colored oil which crystallized upon standing at room temperature (1.1g, 75% yield). The crude product was purified by flash chromatography to give 4-cyclohexyl methyl resorcinol B2 as a white solid (617mg, 51% yield) (Note 12): m.p. 112-113 °C; 1H NMR (60 MHz, acetone-d6) delta 1.08-1.76 (m, 11H), 2.44 (d, JJ = 6.2 Hz, 2H), 6.26 (dd, JJ = 7.9, 2.3 Hz, 1H), 6.39 (m, 1H), 6.86 (d, JJ = 7.9 Hz, 1H), 7.90 (s, 1H); 13C NMR (60 MHz, acetone-d6) delta 27.3, 33.3, 38.2, 39.5, 102.9, 106.7, 119.0, 132.5, 157.0, 157.4; m/z (El; TMS derivatized; M+) 350.
Notes
1. During the first five minutes of the reaction a gas is given off and pressure needs to be released.
2. The reaction was monitored using thin layer chromatography (TLC) by partitioning a reaction aliquot (10uL) into diethyl ether: 1M HCI (300uL:300uL), spotting the
organic layer into a silica gel plate, eluting with 5% methanol in chloroform, and
visualizing with UV and PMA stain. Alternately, the organic layer can be analyzed by gas chromatography (GC).
3. Analysis by GC and GC-MS showed 70% cyclohexylcarbonyl resorcinol (C-
acylated resorcinol), 17% resorcinol, 7% cyclohexylcarbonyl resorcinol monoester
(O-acylated resorcinol) and 5% unknown.
4. Flash chromatography was performed using silica gel as the stationary phase and 4% methanol in chloroform as the eluent.
5. The reaction was monitored using thin layer chromatography (TLC) by partitioning a reaction aliquot (30uL) into diethyl ether: 1M HCI (300uL:300uL), spotting the
organic layer into a silica gel plate, eluting with 4% methanol in chloroform, and
visualizing with UV and PMA stain. Alternately, the organic layer can be analyzed by gas chromatography (GC).

WO 2006/097224 PCT/EP2006/002099

6. Based on weight %, GC and GC-MS analysis, the crude material is comprised of
4-cyclohexylcarbonyl resorcinol diacetate (60%), 1-acetoxy-3-
cyclohexanecarbonyloxybenzene (6%) and acetic anhydride (34%).
7. The purity of 4-cyclohexylcarbonyl resorcinol diacetate does not have to be 100%
for this reaction to work properly. In addition, the reagent concentration can be
increased without affecting reaction quality.
8. The amount of catalyst, hydrogen pressure, temperature and reaction time can be
varied. In this case, a reaction intermediate arising from hydrogenation of the
starting material was stable at 30 °C and 100psi H2 and the conditions were
modified (i.e. additional amounts of catalyst added, higher pressures and
temperatures) to convert this intermediate to the final desired product.
9. Analysis by GC and GC-MS showed 4-cyclohexylmethyl resorcinol monoacetate
as the major product (85%) and several minor products (15%). The reaction was
monitored by filtering a reaction aliquot (1mL) through glass wool, removal of the
solvent under reduced pressure, derivatizing the crude residue to trimethylsilane
(TMS) derivatives and analysis by GC and GC-MS.
10. If thermally-driven hydrolysis of this material is desired, this crude solution can be
used directly for the next reaction by addition of 0.2 volumes of water and
refluxing.
11. The reaction was monitored using TLC by partitioning a reaction aliquot (50uL) into ethyl acetate: 1M HCI (300uL:300uL), spotting the organic layer into a silica gel plate, eluting with 4% methanol in chloroform, and visualizing with UV and PMA stain. Alternately, the organic layer can be analyzed by gas chromatography (GC).
12. Flash chromatography was performed using silica gel as the stationary phase and 7% methanol in chloroform as the eluent.
EXAMPLE 9
This example demonstrates the skin lightening activity of 4-cycloalkyl methyl resorcinol.

Mushroom Tyrosinase Assay
Mushroom tyrosinase inhibition is indicative of reduction in melanin synthesis, thereby
showing skin lightening effect.

WO 2006/097224 PCT/EP2006/002099

Reagents:
Assay buffer: phosphate (100 mM, pH 7.0)
Mushroom tyrosinase stock solution (Sigma-Aldrich, Batch # 023K7024): 0.2 mg/m! in assay buffer L-DOPA stock solution: 1.05 mM in assay buffer Test compound stock solutions: 10 mM in DMSO
Assay Conditions:
Mushroom tyrosinase: 0.1 mg/ml in assay buffer L-DOPA: 0.5 mM in assay buffer
Test compounds: various concentrations, 2.5% final [DMSO] Temperature: room temperature
Procedure:
Test compounds (5uL of stock solutions) are added into wells of a 96-well plate, followed by L-DOPA (L-3,4-dihydroxyphenylalanine; 95uL of stock solution). The reaction is started by adding mushroom tyrosinase (100uL of stock solution) into each well and the absorbance is monitored at 490nm over a time period of 30sec to 2min. The initial reaction velocity in the presence or absence of test compounds is
calculated (A490nm/ min) and the % inhibition of test compounds is calculated using the following equation:


where v0 is the initial reaction velocity in the absence of compound, v is the slope of the reaction in the absence of mushroom tyrosinase and v\ is the slope of the reaction in the presence of test compound. The data (% inhibition vs. [test compound]) is fitted using data analysis software and the concentration of test compound at 50% inhibition (IC50) is determined from the fitted data.

WO 2006/097224 PCT/EP2006/002099

TABLE 3

Name IC50 (uM)
4-cyclohexylmethyl resorcinol (CHMR) 0.95
4-ethyl resorcinol (ER) 1.10

The IC50 value refers to the skin lightener concentration that results in 50 %
tyrosinase inhibition relative to the control (with a goal being obtaining maximum
tyrosinase inhibition at minimum concentration).
The data appear to show that cyclohexyl methyl resorcinol and ethyl resorcinol have comparable potency.
It should be understood that the specific forms of the invention herein illustrated and described are intended to be representative only. Changes, including but not limited to those suggested in this specification, may be made in the illustrated embodiments without departing from the clear teachings of the disclosure. Accordingly, reference should be made to the following appended claims in determining the full scope of the invention.

CLAIMS:
1. A cosmetic method of skin lightening comprising applying to the skin a
cosmetic composition comprising:
(a) a 4-substituted resorcinol derivative of general formula B:

wherein,
X1 and/or X2 represents hydrogen (H); linear or branched, saturated or
unsaturated C1-C12 alkyl, alkenyl, or acyl groups;
R1 - hydrogen (H); linear or branched, cyclic or acyclic, saturated or unsaturated C1-C12 alkyl, alkenyl, cycloalkyl, or cycloalkenyl group;


n = 0,1; and
when n = 0, the ring is cyclopentyl with or without one heteroatom from O, N or S and/or with or without one double bond; or
when n = 1, the ring is cyclohexyl with or without one heteroatom from O, N or S
and/or with or without one double bond; and
(b) a cosmetically acceptable carrier.


ed at the EPO on Jan 18, 2007 17:35:25. Page 9 of 24 18/01/2007

2 A cosmetic method according to claim 1, wherein the said 4-substituted resorcinol derivative is present in an amount of 0.1 wt. % to 5 wt. %.
3. A cosmetic method according to claim 1 or claim 2, wherein the 4-substituted
resorcinol is selected from the group consisting of 4-cyclopentyl methyl
resorcinols, 4-cyclohexyl methyl resorcinols and mixtures thereof.

ed at the EPO on Jan 18, 2007 17:35:25. Page 10 of 24 18/01/2007

Documents

Application Documents

# Name Date
1 1417-MUMNP-2007-CORRESPONDENCE(15-12-2009).pdf 2009-12-15
1 1417-MUMNP-2007-FORM-27 [28-08-2024(online)].pdf 2024-08-28
2 1417-mumnp-2007-correspondence(ipo)-(22-12-2009).pdf 2009-12-22
2 237047-FORM 27-2013.pdf 2024-03-01
3 abstract1.jpg 2018-08-09
3 1417-MUMNP-2007-RELEVANT DOCUMENTS [29-09-2023(online)].pdf 2023-09-29
4 1417-MUMNP-2007_EXAMREPORT.pdf 2018-08-09
4 1417-MUMNP-2007-RELEVANT DOCUMENTS [14-09-2022(online)].pdf 2022-09-14
5 1417-MUMNP-2007-RELEVANT DOCUMENTS [09-09-2021(online)].pdf 2021-09-09
5 1417-mumnp-2007-pct-search report.pdf 2018-08-09
6 1417-MUMNP-2007-OTHER DOCUMENT(17-6-2009).pdf 2018-08-09
6 1417-mumnp-2007-assignment(26-9-2007).pdf 2018-08-09
7 1417-MUMNP-2007-GENERAL POWER OF ATTORNEY(17-6-2009).pdf 2018-08-09
7 1417-mumnp-2007-claims(granted)-(2-12-2009).pdf 2018-08-09
8 1417-mumnp-2007-form-5.pdf 2018-08-09
9 1417-mumnp-2007-claims.pdf 2018-08-09
9 1417-mumnp-2007-form-3.pdf 2018-08-09
10 1417-MUMNP-2007-CORRESPONDENCE 23-6-2008.pdf 2018-08-09
10 1417-mumnp-2007-form-2.pdf 2018-08-09
11 1417-mumnp-2007-correspondence(16-1-2008).pdf 2018-08-09
12 1417-MUMNP-2007-CORRESPONDENCE(17-6-2009).pdf 2018-08-09
13 1417-MUMNP-2007-CORRESPONDENCE(26-2-2014).pdf 2018-08-09
13 1417-mumnp-2007-form-1.pdf 2018-08-09
14 1417-MUMNP-2007-CORRESPONDENCE(6-11-2009).pdf 2018-08-09
14 1417-mumnp-2007-form 2(title page)-(granted)-(2-12-2009).pdf 2018-08-09
15 1417-MUMNP-2007-CORRESPONDENCE(8-12-2008).pdf 2018-08-09
15 1417-mumnp-2007-form 2(granted)-(2-12-2009).pdf 2018-08-09
16 1417-MUMNP-2007-CORRESPONDENCE(8-2-2012).pdf 2018-08-09
16 1417-mumnp-2007-form 18(16-1-2008).pdf 2018-08-09
17 1417-MUMNP-2007-FORM 1(17-6-2009).pdf 2018-08-09
17 1417-MUMNP-2007-CORRESPONDENCE(RENEWAL PAYMENT LETTER)-(1-3-2012).pdf 2018-08-09
18 1417-mumnp-2007-description(granted)-(2-12-2009).pdf 2018-08-09
18 1417-mumnp-2007-correspondence-received.pdf 2018-08-09
19 1417-mumnp-2007-description (complete).pdf 2018-08-09
20 1417-mumnp-2007-correspondence-received.pdf 2018-08-09
20 1417-mumnp-2007-description(granted)-(2-12-2009).pdf 2018-08-09
21 1417-MUMNP-2007-CORRESPONDENCE(RENEWAL PAYMENT LETTER)-(1-3-2012).pdf 2018-08-09
21 1417-MUMNP-2007-FORM 1(17-6-2009).pdf 2018-08-09
22 1417-MUMNP-2007-CORRESPONDENCE(8-2-2012).pdf 2018-08-09
22 1417-mumnp-2007-form 18(16-1-2008).pdf 2018-08-09
23 1417-MUMNP-2007-CORRESPONDENCE(8-12-2008).pdf 2018-08-09
23 1417-mumnp-2007-form 2(granted)-(2-12-2009).pdf 2018-08-09
24 1417-mumnp-2007-form 2(title page)-(granted)-(2-12-2009).pdf 2018-08-09
24 1417-MUMNP-2007-CORRESPONDENCE(6-11-2009).pdf 2018-08-09
25 1417-MUMNP-2007-CORRESPONDENCE(26-2-2014).pdf 2018-08-09
25 1417-mumnp-2007-form-1.pdf 2018-08-09
26 1417-MUMNP-2007-CORRESPONDENCE(17-6-2009).pdf 2018-08-09
27 1417-mumnp-2007-correspondence(16-1-2008).pdf 2018-08-09
28 1417-MUMNP-2007-CORRESPONDENCE 23-6-2008.pdf 2018-08-09
28 1417-mumnp-2007-form-2.pdf 2018-08-09
29 1417-mumnp-2007-claims.pdf 2018-08-09
29 1417-mumnp-2007-form-3.pdf 2018-08-09
30 1417-mumnp-2007-form-5.pdf 2018-08-09
31 1417-mumnp-2007-claims(granted)-(2-12-2009).pdf 2018-08-09
31 1417-MUMNP-2007-GENERAL POWER OF ATTORNEY(17-6-2009).pdf 2018-08-09
32 1417-MUMNP-2007-OTHER DOCUMENT(17-6-2009).pdf 2018-08-09
32 1417-mumnp-2007-assignment(26-9-2007).pdf 2018-08-09
33 1417-MUMNP-2007-RELEVANT DOCUMENTS [09-09-2021(online)].pdf 2021-09-09
33 1417-mumnp-2007-pct-search report.pdf 2018-08-09
34 1417-MUMNP-2007_EXAMREPORT.pdf 2018-08-09
34 1417-MUMNP-2007-RELEVANT DOCUMENTS [14-09-2022(online)].pdf 2022-09-14
35 abstract1.jpg 2018-08-09
35 1417-MUMNP-2007-RELEVANT DOCUMENTS [29-09-2023(online)].pdf 2023-09-29
36 237047-FORM 27-2013.pdf 2024-03-01
36 1417-mumnp-2007-correspondence(ipo)-(22-12-2009).pdf 2009-12-22
37 1417-MUMNP-2007-FORM-27 [28-08-2024(online)].pdf 2024-08-28
37 1417-MUMNP-2007-CORRESPONDENCE(15-12-2009).pdf 2009-12-15

ERegister / Renewals

3rd: 02 Mar 2010

From 06/03/2008 - To 06/03/2009

4th: 02 Mar 2010

From 06/03/2009 - To 06/03/2010

5th: 02 Mar 2010

From 06/03/2010 - To 06/03/2011

6th: 17 Feb 2011

From 06/03/2011 - To 06/03/2012

7th: 01 Mar 2012

From 06/03/2012 - To 06/03/2013

8th: 13 Feb 2013

From 06/03/2013 - To 06/03/2014

9th: 26 Feb 2014

From 06/03/2014 - To 06/03/2015

10th: 26 Feb 2015

From 06/03/2015 - To 06/03/2016

11th: 26 Feb 2016

From 06/03/2016 - To 06/03/2017

12th: 23 Feb 2017

From 06/03/2017 - To 06/03/2018

13th: 27 Feb 2018

From 06/03/2018 - To 06/03/2019

14th: 25 Feb 2019

From 06/03/2019 - To 06/03/2020

15th: 06 Feb 2020

From 06/03/2020 - To 06/03/2021

16th: 23 Jan 2021

From 06/03/2021 - To 06/03/2022

17th: 02 Feb 2022

From 06/03/2022 - To 06/03/2023

18th: 27 Feb 2023

From 06/03/2023 - To 06/03/2024

19th: 13 Feb 2024

From 06/03/2024 - To 06/03/2025