Sign In to Follow Application
View All Documents & Correspondence

Nozzle Locating Insulator Having Spring Noncontact Sections Interposed Between Spring Contact Sections

Abstract: A nozzle locating insulator (300) comprising: a body assembly (302) having: a spring facing surface (304) including: spring contact sections (306); and spring noncontact sections (308) interposed between the spring contact sections (306).

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
25 March 2013
Publication Number
19/2016
Publication Type
INA
Invention Field
GENERAL ENGINEERING
Status
Email
remfry-sagar@remfry.com
Parent Application

Applicants

HUSKY INJECTION MOLDING SYSTEMS LTD.
500 Queen Street South Bolton Ontario L7E 5S5

Inventors

1. HAMMOND Gregory Ray
7 McNally Street Georgetown Ontario L7G 6B9

Specification

An aspect generally relates to (and is not limited to) a nozzle-locating insulator), a mold-tool
system having the nozzle-locating insulator, and/or a molding system having the mold-tool
system including the nozzle-locating insulator.
BACKGROUND
The first man-made plastic was invented in Britain in 1851 by Alexander PARKES. He
publicly demonstrated it at the 1862 International Exhibition in London, calling the material
Parkesine. Derived from cellulose, Parkesine could be heated, molded, and retain its shape
when cooled. It was, however, expensive to produce, prone to cracking, and highly
flammable. In 1868, American inventor John Wesley HYATT developed a plastic material he
named Celluloid, improving on PARKES' concept so that it could be processed into finished
form. HYATT patented the first injection molding machine in 1872. It worked like a large
hypodermic needle, using a plunger to inject plastic through a heated cylinder into a mold.
The industry expanded rapidly in the 1 40s because World War II created a huge demand for
inexpensive, mass-produced products. In 1 46, American inventor James Watson HENDRY
built the first screw injection machine. This machine also allowed material to be mixed before
injection, so that colored or recycled plastic could be added to virgin material and mixed
thoroughly before being injected. In the 1970s, HENDRY went on to develop the first gasassisted
injection molding process. Injection molding machines consist of a material hopper,
an injection ram or screw-type plunger, and a heating unit. They are also known as presses,
they hold the molds in which the components are shaped. Presses are rated by tonnage, which
expresses the amount of clamping force that the machine can exert. This force keeps the mold
closed during the injection process. Tonnage can vary from less than five tons to 6000 tons,
with the higher figures used in comparatively few manufacturing operations. The amount of
total clamp force is determined by the projected area of the part being molded. This projected
area is multiplied by a clamp force of from two to eight tons for each square inch of the
projected areas. As a rule of thumb, four or five tons per square inch can be used for most
products. If the plastic material is very stiff, more injection pressure may be needed to fill the
mold, thus more clamp tonnage to hold the mold closed. The required force can also be
determined by the material used and the size of the part, larger parts require higher clamping
force. With Injection Molding, granular plastic is fed by gravity from a hopper into a heated
barrel. As the granules are slowly moved forward by a screw-type plunger, the plastic is
forced into a heated chamber, where it is melted. As the plunger advances, the melted plastic
is forced through a nozzle that rests against the mold, allowing it to enter the mold cavity
through a gate and runner system. The mold remains cold so the plastic solidifies almost as
soon as the mold is filled. Mold assembly or die are terms used to describe the tooling used to
produce plastic parts in molding. The mold assembly is used in mass production where
thousands of parts are produced. Molds are typically constructed from hardened steel, etc.
Hot-runner systems are used in molding systems, along with mold assemblies, for the
manufacture of plastic articles. Usually, hot-runners systems and mold assemblies are treated
as tools that may be sold and supplied separately from molding systems.
United States patent Number 6,890,473 discloses a collar for a hot runner nozzle of an
injection molding apparatus includes a generally cylindrical body having a first flange
extending inwardly from a first end thereof. The first flange is provided to abut a nozzle head
and at least a portion of a nozzle body of a nozzle. An alignment flange projects from an inner
wall of the generally cylindrical body and is spaced from the first flange. The alignment flange
contacts the nozzle body to restrict tipping of the collar relative to the nozzle during assembly
of the injection molding apparatus.
SUMMARY
According to one aspect, there is provided a nozzle-locating insulator (300), comprising: a
body assembly (302), having: a spring-facing surface (304) including: spring-contact sections
(306); and spring-noncontact sections (308) interposed between the spring-contact sections
(306).
According to another aspect, there is provided a mold-tool system (100) having the nozzlelocating
insulator (300)
According to yet another aspect, there is provided a molding system (200) having the moldtool
system (100) including the nozzle-locating insulator (300).
Other aspects and features of the non-limiting embodiments will now become apparent to
those skilled in the art upon review of the following detailed description of the non-limiting
embodiments with the accompanying drawings.
DETAILED DESCRIPTION OF THE DRAWINGS
The non-limiting embodiments will be more fully appreciated by reference to the following
detailed description of the non-limiting embodiments when taken in conjunction with the
accompanying drawings, in which:
FIG. 1 depicts a schematic representation of a nozzle-locating insulator (300), a mold-tool
system (100) and a molding system (200); and
FIGS. 2A and 2B depict other schematic representations of the nozzle-locating insulator
(300).
The drawings are not necessarily to scale and may be illustrated by phantom lines,
diagrammatic representations and fragmentary views. In certain instances, details not
necessary for an understanding of the embodiments (and/or details that render other details
difficult to perceive) may have been omitted.
DETAILED DESCRIPTION OF THE NON-LIMITING EMBODIMENT(S)
FIG. 1 depicts the schematic representation (specifically the cross-sectional view) of the
nozzle-locating insulator (300), the mold-tool system (100) and the molding system (200).
The mold-tool system (100) may have the nozzle-locating insulator (300). The molding
system (200) may have the mold-tool system (100). It will be appreciated that the nozzlelocating
insulator (300), the mold-tool system (100) and the molding system (200) may be
sold separately or provided by a single vendor. The molding system (200) includes, for
example, a platen assembly (not depicted but know) having a stationary platen and a movable
platen. The mold-tool system is supported by the platen assembly of the molding system. The
nozzle-locating insulator (300), the mold-tool system (100) and the molding system (200)
each may include (but not limited to) components that are known to persons skilled in the art,
and these known components will not be described here; these known components are
described, at least in part, in the following reference books (for example): (i) "Injection
Molding Handbook" authored by OSSWALD/TURNG/GRAMANN (ISBN: 3-446-21669-2),
(ii) Injection Molding Handbook" authored by ROSATO AND ROSATO (ISBN: 0-412-
99381-3), (iii) "Injection Molding Systems" 3rd Edition authored by JOHANNABER (ISBN 3-
446-17733-7) and/or (iv) "Runner and Gating Design Handbook" authored by BEAUMONT
(ISBN 1-446-22672-9). It will be appreciated that for the purposes of this document, the
phrase "includes (and is not limited to)" is equivalent to the word "comprising". The word
"comprising" is a transitional phrase or word that links the preamble of a patent claim to the
specific elements set forth in the claim which define what the invention itself actually is. The
transitional phrase acts as a limitation on the claim, indicating whether a similar device,
method, or composition infringes the patent if the accused device (etc) contains more or fewer
elements than the claim in the patent. The word "comprising" is to be treated as an open
transition, which is the broadest form of transition, as it does not limit the preamble to
whatever elements are identified in the claim.
FIGS. 2A and 2B depict other schematic representations of the nozzle-locating insulator
(300). The nozzle-locating insulator (300) includes (and is not limited to): a body assembly
(302) that includes (and is not limited to) a spring-facing surface (304). The spring-facing
surface (304) includes (and is not limited to): (i) spring-contact sections (306), and (ii) springnoncontact
sections (308) that are interposed between the spring-contact sections (306). For
the case where the mold-tool system (100) has the nozzle-locating insulator (300), then the
mold-tool system (100) may include (and is not limited to): (i) a molding-nozzle assembly
(102); and (ii) a spring assembly (112). The body assembly (302) of the nozzle-locating
insulator (300) may define a central passageway (309) that is configured to receive the
molding-nozzle assembly (102). The spring-contact sections (306) of the spring-facing surface
(304) contact the spring assembly (112). The spring-noncontact sections (308) of the springfacing
surface (304) may be set apart from the spring assembly (112) so that there is no
contact or reduced contact between the spring assembly (112) and the spring-noncontact
sections (308). The spring-noncontact sections (308) reduce (and/or eliminate at least in part)
surface contact with a spring assembly (112) so that thermal losses are reduced from the
molding-nozzle assembly (102) through the nozzle-locating insulator (300) and the spring
assembly (112). The molding-nozzle assembly (102) may include a nozzle housing (106) and
a heater (104) that is attached to the nozzle housing (106). The nozzle-locating insulator (300)
may be made of titanium with raised surfaces on an outside flat surface that the spring
assembly (112) may be in contact with. The spring-contact sections (306) may be referred to
as raised surfaces that are located on an outside flat surface of the nozzle-locating insulator
(300). The spring-noncontact sections (308) are interposed between the spring-contact
sections (306) so that the spring-contact sections (306) create a reduced surface contact area
with the spring assembly (112) thus reducing thermal losses from the molding-nozzle
assembly (102) through the nozzle-locating insulator (300) and the spring assembly (112) to a
manifold plate (110). The mold-tool system (100) may also include known components such
as but not limited to: a mold gate (116) and a stem (114). The advantage of the nozzlelocating
insulator (300) is reduced heat transfer, in use, from the molding-nozzle assembly
(102) through the nozzle-locating insulator (300) and the spring assembly (112) to the
manifold plate (110).
It is understood that the scope of the present invention is limited to the scope provided by the
independent claim(s), and it is also understood that the scope of the present invention is not
limited to: (i) the dependent claims, (ii) the detailed description of the non-limiting
embodiments, (iii) the summary, (iv) the abstract, and/or (v) description provided outside of
this document (that is, outside of the instant application as filed, as prosecuted, and/or as
granted). It is understood, for the purposes of this document, the phrase "includes (and is not
limited to)" is equivalent to the word "comprising". It is noted that the foregoing has outlined
the non-limiting embodiments (examples). The description is made for particular non-limiting
embodiments (examples). It is understood that the non-limiting embodiments are merely
illustrative as examples.
CLAIMS
WHAT IS CLAIMED IS:
A nozzle-locating insulator (300), comprising:
a body assembly (302), having:
a spring-facing surface (304) including:
spring-contact sections (306); and
spring-noncontact sections (308) interposed between the
contact sections (306).
A mold-tool system (100) having the nozzle-locating insulator (300) of claim 1, the
-tool system (100) comprising:
a molding-nozzle assembly (102);
a spring assembly (112);
the body assembly (302) defines a central passageway (309) is configured to
receive the molding-nozzle assembly (102);
the spring-contact sections (306) of the spring-facing surface (304) contact the
spring assembly (112);
the spring-noncontact sections (308) of the spring-facing surface (304) set apart
from the spring assembly (112), the spring-noncontact sections (308) reducing surface
contact with the spring assembly (112) so that thermal losses are reduced from the
molding-nozzle assembly (102) through the nozzle-locating insulator (300) and the
spring assembly (112).
3 . A molding system (200) having the mold-tool system (100) of claim 2 .

Documents