Sign In to Follow Application
View All Documents & Correspondence

Oilfield Enhanced In Situ Combustion Process

Abstract: For a fixed amount of steam injection, the average daily oil recovery rate increased with air injection rate. This is not unexpected since the volume of the sweeping fluid is increased. However, it is surprising that the total oil recovered decreases as air rate is increased. This is during the life of the air injection period (time for the combustion front to reach the heel of the horizontal well). Although the disclosure described and illustrates preferred embodiments of the invention, it is to be understood that the invention is not limited to these particular embodiments. Many variations and modifications will now occur to those skilled in the art. For definition of the invention, reference is to be made to the appended claims.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
15 December 2006
Publication Number
33/2007
Publication Type
INA
Invention Field
CIVIL
Status
Email
Parent Application

Applicants

ARCHON TECHNOLOGIES LTD.
SUITE 2600 240-4TH AVENUE S.W CALGARY ALBERTA T2P 4H4 CANADA

Inventors

1. AYASSE, CONRAD
39 LYNX LANE CALGARY ALBERTA T2Z 1B8 CANADA

Specification

FIELD OF THE INVENTION
This invention relates to a process for improved safety and productivity when undertaking oil recovery from an underground reservoir by the toe-to-heel in situ combustion process employing horizontal production wells, such as disclosed in U.S. Patent Nos. 5,626,191 and 6,412,557.
BACKGROUND OF THE INVENTION
U.S. Patents 5,626,191 and 6,412,557, incorporated herein in their entirety, disclose in situ combustion processes for producing oil from an underground reservoir (100) utilizing an injection well (102) placed relatively high in an oil reservoir (100) and a production well (103-106) completed relatively low in the reservoir (100). The production well has a horizontal leg (107) oriented generally perpendicularly to a generally linear and laterally extending upright combustion front propagated from the injection well (102). The leg (107) is positioned in the path of the advancing combustion front. Air, or other oxidizing gas, such as oxygen-enriched air, is injected through wells 102, which may be vertical wells, horizontal wells or combinations of such wells. The process of U.S. Patent 5,626,191 is called "THAI™", an acromym for "toe-to-heel air injection" and the process of U.S. Patent 6,412,557 is called "Capri™", the Trademarks being held by Archon Technologies Ltd., a subsidiary of Petrobank Energy and Resources Ltd., Calgary, Alberta, Canada.
Of concern is the safety of the THAI™ and Capri™ processes with respect to oxygen entry into the horizontal well, which would cause oil burning in the well and extremely high temperatures that would destroy the well. Such oxygen breakthrough will not occur if the
injection rates are kept low, however, high injection rates are very desirable in order to maintain high oil production rates and a high oxygen flux at the combustion front. A high oxygen flux is known to keep the combustion in the high-temperature oxidation (HTO) mode, achieving temperatures of greater than 350 ° C. and combusting the fuel substantially to carbon dioxide. At low oxygen flux, low-temperature oxidation (LTO) occurs and temperatures do not exceed ca. 350 ° C. In the LTO mode, oxygen becomes incorporated into the organic molecules, forming polar compounds that stabilize detrimental water-oil emulsions and accelerate corrosion because of the formation of carboxylic acids. In conclusion, the use of relatively low oxidant injection rates is not an acceptable method to prevent combustion in the horizontal wellbore.
What is needed is a method to increase the oxidizing gas injection rate while preventing oxygen entry into the horizontal wellbore. The present invention provides such a method.
SUMMARY OF THE INVENTION
The THAI™ and Capri™ processes depend upon two forces to move oil, water and combustion gases into the horizontal wellbore for conveyance to the surface. These are gravity drainage and pressure. The liquids, mainly oil, drain into the wellbore under the force of gravity since the wellbore is placed in the lower region of the reservoir. Both the liquids and gases flow downward into the horizontal wellbore under the pressure gradient that is established between the reservoir and the wellbore.
During the reservoir pre-heating phase, or start-up procedure, steam is circulated in the horizontal well through a tube that extends to the toe of the well. The steam flows back to the surface through the annular space of the casing. This procedure is imperative in bitumen reservoirs because cold oil that may enter the well will be very viscous and will flow poorly, possible plugging the wellbore. Steam is also circulated through the injector well and is also injected into the reservoir in the region between the injector wells and the
toe of the horizontal wells to warm the oil and increase its mobility prior to initiating injection of oxidizing gas into the reservoir.
The aforementioned Patents show that with continuous oxidizing gas injection a quasi-vertical combustion front develops and moves laterally from the direction of the toe of the horizontal well towards the heel. Thus two regions of the reservoir are developed relative to the position of the combustion zone. Towards the direction of toe, lies the oil-depleted region that is filled substantially with oxidizing gas, and on the other side lies the region of the reservoir containing cold oil or bitumen. At higher oxidant injection rates, reservoir pressure increases and the fuel deposition rate can be exceeded, so that gas containing residual oxygen can be forced into the horizontal wellbore in the oil-depleted region. The consequence of having oil and oxygen together in a wellbore is combustion and potentially an explosion with the attainment of high temperatures, perhaps in excess of 1000 ° C. This can cause irreparable damage to the wellbore, including the failure of the sand retention screens. The presence of oxygen and wellbore temperatures over 425 ° C. must be avoided for safe and continuous oil production operations.
Several methods of preventing oxygen entry into the producing wellbore are based on reducing the differential pressure between the reservoir and the horizontal wellbore. These are 1. to reduce the injection rate of the oxidizing gas in order to reduce the reservoir pressure, and 2. to reduce the fluid drawdown rate to increase wellbore pressure. Both of these methods result in the reduction of oil rates, which is economically detrimental. Conventional thinking would also state that injecting fluid directly into the wellbore would increase wellbore pressure but would be very detrimental to production rates.
Accordingly, in order to overcome the disadvantages of the prior art, and to improve the safety or productivity of hydrocarbon recovery from an underground reservoir, the present invention in a first broad embodiment comprises a process for extracting liquid hydrocarbons from an underground reservoir comprising the steps of:
(a) providing at least one injection well for injecting an oxidizing gas into the
underground reservoir;
(b) providing at least one production well having a substantially horizontal leg
and a substantially vertical production well connected thereto, wherein the
substantially horizontal leg extends toward the injection well, the horizontal
leg having a heel portion in the vicinity of its connection to the vertical
production well and a toe portion at the opposite end of the horizontal leg,
wherein the toe portion is closer to the injection well than the heel portion;
(c) injecting an oxidizing gas through the injection well to conduct in situ
combustion, so that combustion gases are produced so as to cause the
combustion gases to progressively advance as a front, substantially
perpendicular to the horizontal leg, in the direction from the toe portion to
the heel portion of the horizontal leg, and fluids drain into the horizontal
leg;
(d) providing a tubing inside the production well for the purpose of injecting
steam, water or non-oxidizing gas into said horizontal leg portion of said
production well;
(e) injecting a medium selected from the group of mediums comprising steam,
water, or non-oxidizing gas, into said tubing so that said medium is
conveyed proximate said toe portion of said horizontal leg portion via said
tubing ; and
(f) recovering hydrocarbons in the horizontal leg of the production well from
said production well.
In a further broad embodiment of the invention, the present invention comprises A process for extracting liquid hydrocarbons from an underground reservoir, comprising the steps of:
(a) providing at least one injection well for injecting an oxidizing gas into an
upper part of an underground reservoir;
(b) providing at least one injection well for injecting steam, a non-oxidizing
gas , or water which is subsequently heated to steam, into a lower part of an
underground reservoir;
(c) providing at least one production well having a substantially horizontal leg
and a substantially vertical production well connected thereto, wherein the
substantially horizontal leg extends toward the injection well, the horizontal
leg having a heel portion in the vicinity of its connection to the vertical
production well and a toe portion at the opposite end of the horizontal leg,
wherein the toe portion is closer to the injection well than the heel portion;
(d) injecting an oxidizing gas through the injection well for in situ combustion,
so that combustion gases are produced , wherein the combustion gases
progressively advance as a front, substantially perpendicular to the
horizontal leg, in the direction from the toe portion to the heel portion of the
horizontal leg, and fluids drain into the horizontal leg;
(e) injecting a medium, wherein said medium is selected from the group of
mediums comprising steam, water or a non-oxidizing gas, into said
injection well; and
(f) recovering hydrocarbons in the horizontal leg of the production well from said production well.
In a still further embodiment of the invention, the present comprises the combination of the above steps of injecting a medium to the formation via the injection well, and as well injecting a medium via tubing in the horizontal leg . Accordingly, in this further embodiment the present invention comprises a method for extracting liquid hydrocarbons from an underground reservoir, comprising the steps of:
a) providing at least one injection well for injecting an oxidizing gas into an
upper part of an underground reservoir;
b) providing at least one injection well for injecting steam, a non-oxidizing gas,
or water which is subsequently heated to steam, into a lower part of an
underground reservoir;
c) providing at least one production well having a substantially horizontal leg
and a substantially vertical production well connected thereto, wherein the
substantially horizontal leg extends toward the injection well, the horizontal leg
having a heel portion in the vicinity of its connection to the vertical production
well and a toe portion at the opposite end of the horizontal leg, wherein the toe
portion is closer to the injection well than the heel portion;
d) providing a tubing inside the production well for the purpose of injecting
steam, water or non-oxidizing gas into said horizontal leg portion of said
production well;
e) injecting an oxidizing gas through the injection well for in situ combustion,
so that combustion gases are produced , wherein the combustion gases
progressively advance as a front, substantially perpendicular to the horizontal leg, in the direction from the toe portion to the heel portion of the horizontal leg, and fluids drain into the horizontal leg;
f) injecting a medium, wherein said medium is selected from the group of mediums comprising steam, water or a non-oxidizing gas, into said injection well and into said tubing; and
(g) recovering hydrocarbons in the horizontal leg of the production well from said production well.
If the medium is steam, it is injected into the reservoir/formation, via either or both the injection well or the production well via tubing therein, in this state, typically under a pressure of TOOOKpA.
Alternatively, where the injected medium is water, such method contemplates that the water become heated at the time of supply to the reservoir to become steam. The water, when it reaches the formation, via either or both the injection well and/or the tubing in the production well, may be heated to steam during such travel, or immediately upon its exiting of the injection well and/or tubing in the production well and its entry into the formation.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a schematic of the THAI™ in situ combustion process with labeling as follows:
Item A represents the top level of a heavy oil or bitumen reservoir, and B represents the bottom level of such reservoir/formation.
C represents a vertical well with D showing the general injection point of a oxidizing gas such as air.
E represents a general location for the injection of steam or a non-oxidizing gas into the reservoir. This is part of the present invention.
F represents a partially perforated horizontal well casing. Fluids enter the casing and are typically conveyed directly to the surface by natural gas lift through another tubing located at the heel of the horizontal well (not shown).
G represents a tubing placed inside the horizontal leg. The open end of the tubing may be located near the end of the casing, as represented, or elsewhere. The tubing can be 'coiled tubing' that may be easily relocated inside the casing. This is part of the present invention.
The elements E and G are part of the present invention and steam or non-oxidizing gas may be injected at E and/or at G. E may be part of a separate well or may be part of the same well used to inject the oxidizing gas. These injection wells may be vertical, slanted or horizontal wells or otherwise and each may serve several horizontal wells.
For example, using an array of parallel horizontal leg as described in U.S. Patents 5,626,191 and 6,412,557, the steam, water or non-oxidizing gas may be injected at any position between the horizontal legs in the vicinity of the toe of the horizontal legs.
Figure 2 is a schematic diagram of the Model reservoir. The schematic is not to scale. Only an 'element of symmetry' is shown. The full spacing between horizontal legs is 50 meters but only the half-reservoir needs to be defined in the STARS™ computer software. This saves computing time. The overall dimensions of the Element of Symmetry are:
length A-E is 250 m; width A-F is 25 m; height F-G is 20 m. The positions of the wells are as follows:
Oxidizing gas injection well J is placed at B in the first grid block 50 meters (A-B) from a corner A. The toe of the horizontal well K is in the first grid block between A and F and is 15 m (B-C) offset along the reservoir length from the injector well J. The heel of the horizontal well K lies at D and is 50 m from the corner of the reservoir, E. The horizontal section of the horizontal well K is 135 m (C-D) in length and is placed 2.5 m above the base of the reservoir (A-E) in the third grid block.
The Injector well J is perforated in two (2) locations. The perforations at H are injection points for oxidizing gas, while the perforations at I are injection points for steam or non-oxidizing gas. The horizontal leg (C-D) is perforated 50% and contains tubing open near the toe (not shown, see Figure 1).
DESCRIPTION OF THE PREFERRED EMBODIMENT
The operation of the THAI™ process has been described in U.S Patents 5,626,191 and 6,412,557 and will be briefly reviewed. The oxidizing gas, typically air, oxygen or oxygen-enriched air, is injected into the upper part of the reservoir. Coke that was previously laid down consumes the oxygen so that only oxygen-free gases contact the oil ahead of the coke zone. Combustion gas temperatures of typically 600 °C. and as high as 1000 °C. are achieved from the high-temperature oxidation of the coke fuel. In the Mobile Oil Zone (MOZ), these hot gases and steam heat the oil to over 400 °C, partially cracking the oil, vaporizing some components and greatly reducing the oil viscosity. The heaviest components of the oil, such as asphaltenes, remain on the rock and will constitute the coke
fuel later when the burning front arrives at that location. In the MOZ, gases and oil drain downward into the horizontal well, drawn by gravity and by the low- pressure sink of the well. The coke and MOZ zones move laterally from the direction from the toe towards the heel of the horizontal well. The section behind the combustion front is labeled the Burned Region. Ahead of the MOZ is cold oil.
With the advancement of the combustion front, the Burned Zone of the reservoir is depleted of liquids (oil and water) and is filled with oxidizing gas. The section of the horizontal well opposite this Burned Zone is in jeopardy of receiving oxygen which will combust the oil present inside the well and create extremely high wellbore temperatures that would damage the steel casing and especially the sand screens that are used to permit the entry of fluids but exclude sand. If the sand screens fail, unconsolidated reservoir sand will enter the wellbore and necessitate shutting in the well for cleaning-out and remediation with cement plugs. This operation is very difficult and dangerous since the wellbore can contain explosive levels of oil and oxygen.
In order to quantify the effect of fluid injection into the horizontal wellbore, a number of computer numerical simulations of the process were conducted. Steam was injected at a variety of rates into the horizontal well by two methods: 1. via tubing placed inside the horizontal well, and 2. via a separate well extending near the base of the reservoir in the vicinity of the toe of the horizontal well. Both of these methods reduced the prediliction of oxygen to enter the wellbore but gave surprising and counterintuitive benefits: the oil recovery factor increased and build-up of coke in the wellbore decreased. Consequently, higher oxidizing gas injection rates could be used while maintaining safe operation.
It was found that both methods of adding steam to the reservoir provided advantages regarding the safety of the THAI™ Process by reducing the tendency of oxygen to enter the horizontal wellbore. It also enabled higher oxidizing gas injection rates into the reservoir, and higher oil recovery.
Extensive computer simulation of the THAI™ Process was undertaken to evaluate the consequences of reducing the pressure in the horizontal wellbore by injecting steam or non-oxidizing gas. The software was the STARS™ In Situ Combustion Simulator provided by the Computer Modelling Group, Calgary, Alberta, Canada.
Table 4. List the Model Parameters.
Simulator: STARS ™ 2003.13, Computer Modelling Group Limited
Model dimensions:
Length 250 m, 100 grid blocks, eac
Width 25 m, 20 grid blocks
Height 20 m, 20 grid blocks
Grid Block dimensions: 2.5 m x 2.5 m x 1.0 m (LWH).
Horizontal Production Well:
A discrete well with a 135 m horizontal section extending from grid block 26,1, 3 to 80,1,3 The toe is offset by 15 m from the vertical air injector..
Vertical Injection Well:
Oxidizing gas(air) injection points: 20, 1, 1:4 (upper 4-grid blocks) Oxidizing gas injection rates: 65,000 m3/d, 85,000 m3/d or 100,000 m3/d Steam injection points: 20, 1, 19:20 (lower 2-grid blocks)
Rock/fluid Parameters:
Components: water, bitumen, upgrade, methane, CO2, CO/ N2, oxygen, coke
Heterogeneity: Homogeneous sand.
Permeability: 6.7 D (h), 3.4 D (v)
Porosity: 33 %
Saturations: Bitumen 80%, water 20%, gas Mole fraction 0.114
Bitumen viscosity: 340,000 cP at 10 °C.

Bitumen average molecular weight: 550 AMU Upgrade viscosity: 664 cP at 10 °C. Upgrade average molecular weight: 330 AMU
Physical Conditions:
Reservoir temperature: 20 °C. Native reservoir pressure: 2600 kPa. Bottomhole pressure: 4000 kPa.
Reactions:
1. 1.0 Bitumen —> 0.42 Upgrade + 1.3375 CH4 + 20 Coke
2. 1.0 Bitumen + 16 O2A0.05 > 12.5 water + 5.0 CH4 + 9.5 CO2 + 0.5 CO/N2 + 15 Coke
3. 1.0 Coke + 1.225 O2 —-> 0.5 water + 0.95 CO2 + 0.05 CO/N2
EXAMPLES
Example 1
Table la shows the simulation results for an air injection rate of 65,000 m3/day (standard temperature and pressure) into a vertical injector (E in Figure 1). The case of zero steam injected at the base of the reservoir at point I in well J is not part of the present invention. At 65,000 m3/day air rate , there is no oxygen entry into the horizontal wellbore even with no steam injection and the maximum wellbore temperature never exceeds the target of 425
However, as may be seen from the data below, injection of low levels of steam at levels of 5 and 10 m3/day (water equivalent) at a point low in the reservoir (E in Figure 1) provides substantial benefits in higher oil recovery factors, contrary to intuitive expectations. Where
the injected medium is steam, the data below provides the volume of the water equivalent of such steam, as it is difficult to otherwise determine the volume of steam supplied as such depends on the pressure at the formation to which the steam is subjected to. Of course, when water is injected into the formation and subsequently becomes steam during its travel to the formation, the amount of steam generated is simply the water equivalent given below, which typically is in the order of about lOOOx (depending on the pressure) of the volume of the water
Example 2(Table Remove)
Table Ib shows the results of injecting steam into the horizontal well via the internal tubing, G, in the vicinity of the toe while simultaneously injecting air at 65,000 m3/day (standard temperature and pressure) into the upper part of the reservoir. The maximum wellbore temperature is reduced in relative proportion to the amount of steam injected and the oil recovery factor is increased relative to the base case of zero steam. Additionally, the maximum volume percent of coke deposited in the wellbore decreases with increasing amounts of injected steam. This is beneficial since pressure drop in the wellbore will be
lower and fluids will flow more easily for the same pressure drop in comparison to wells
Example 3
In this example, the air injection rate was increased to 85,000 m3/day (standard temperature and pressure) and resulted in oxygen breakthrough as shown in Table 2a. An 8.8% oxygen concentration was indicated in the wellbore for the base case of zero steam injection. Maximum wellbore temperature reached 1074 °C and coke was deposited decreasing wellbore permeability by 97%. Operating with the simultaneous injection of 12 m3/day (water equivalent) of steam at the base of the reservoir via vertical injection well C (see Fig. l)provided an excellent result of zero oxygen breakthrough, acceptable coke and good oil recovery.
Example 5
In order to further test the effects of high air injection rates, several runs were conducted with 100,000 m3/day air injection. Results in Table 3a indicate that with simultaneous steam injection at the base of the reservoir (ie at location B-E in vertical well C-ref. Fig. 1), 20 m3/day (water equivalent) of steam was required to stop oxygen breakthrough into the horizontal leg, in contrast to only 10 m3/day steam (water equivalent) at an air injection rate of 85,000 m3/day.
(Table Remove)Example 6
Table 3b shows the consequence of injecting steam into the well tubing G(ref. Fig. 1) while injecting 100,000 m3/day air into the reservoir. Identically with steam injection at the reservoir base, a steam rate of 20 m3/day (water equivalent) was required in order to prevent oxygen entry into the horizontal leg. (Table Remove)

WE CLAIM:
1. A process for extracting liquid hydrocarbons from an underground reservoir comprising the steps of:
(a) providing at least one injection well for injecting an oxidizing gas into
the underground reservoir;
(b) providing at least one production well having a substantially horizontal
leg and a substantially vertical production well connected thereto,
wherein the substantially horizontal leg extends toward the injection
well, the horizontal leg having a heel portion in the vicinity of its
connection to the vertical production well and a toe portion at the
opposite end of the horizontal leg, wherein the toe portion is closer to
the injection well than the heel portion;
(c) injecting an oxidizing gas through the injection well to conduct in situ
combustion, so that combustion gases are produced so as to cause the
combustion gases to progressively advance as a front, substantially
perpendicular to the horizontal leg, in the direction from the toe portior
to the heel portion of the horizontal leg, and fluids drain into the
horizontal leg;
(d) providing a tubing inside the production well within said vertical leg
and at least a portion of said horizontal leg for the purpose of injecting
steam, water or non-oxidizing gas into said horizontal leg portion of
said production well proximate a combustion front formed at a
horizontal distance along said horizontal leg of said production well;
(e) njecting a medium selected from the group of mediums comprising
steam, water, or non-oxidizing gas, into said tubing so that said
medium is conveyed proximate said toe portion of said horizontal leg
portion via said tubing ; and
(f) recovering hydrocarbons in the horizontal leg of the production well
from said production well.

2. The process of Claim 1 wherein said medium is water, and said water is heated at
the time of supply to the reservoir to become steam.
3. The process of Claim 1 wherein the injection well is a vertical, slant or horizontal
well.
4. The process of Claim 1, said step of injecting said medium further serving to
pressurize said horizontal well to a pressure to permit injection of said medium into
the underground reservoir.
5. The process of claiml wherein a non-oxidizing gas is injected into said tubing
alone or in combination with steam or water.
6. The process of claim 1 wherein an open end of the tubing is in the vicinity of the
toe of the horizontal section so as to permit delivery of steam or heated non-
oxidizing gas to said toe.
7. The process of claim 1 or 6 wherein the tubing is partially pulled back or otherwise
repositioned for the purpose of altering a point of injection of the steam, water or
non-oxidizing gas along the horizontal leg.

8. The process of Claim 1 wherein the steam, water or non-oxidizing gas or gases are
injected continuously or periodically.
9. A process for extracting liquid hydrocarbons from an underground reservoir,
comprising the steps of:

(a) providing at least one injection well for injecting an oxidizing gas into an
upper part of an underground reservoir;
(b) said at least one injection well further adapted for injecting steam, a non-
oxidizing gas , or water which is subsequently heated to steam, into a lower
part of an underground reservoir;
(c) providing at least one production well having a substantially horizontal leg
and a substantially vertical production well connected thereto, wherein the
substantially horizontal leg extends toward the injection well, the horizontal
leg having a heel portion in the vicinity of its connection to the vertical
production well and a toe portion at the opposite end of the horizontal leg,
wherein the toe portion is closer to the injection well than the heel portion;
(d) injecting an oxidizing gas through the injection well for in situ combustion,
so that combustion gases are produced , wherein the combustion gases
progressively advance as a front, substantially perpendicular to the
horizontal leg, in the direction from the toe portion to the heel portion of the
horizontal leg, and fluids drain into the horizontal leg;
(e) injecting a medium, wherein said medium is selected from the group of
mediums comprising steam, water or a non-oxidizing gas, into said
injection well; and
(f) recovering hydrocarbons in the horizontal leg of the production well from
said production well.
10. A process for extracting liquid hydrocarbons from an underground reservoir, comprising the steps of:
(a) providing at least one oxidizing gas injection well for injecting an oxidizing
gas into an upper part of an underground reservoir;
(b) providing at least one other injection well for injecting steam, a non-
oxidizing gas, or water which is subsequently heated to steam, into a lower
part of an underground reservoir;
(c) providing at least one production well having a substantially horizontal leg
and a substantially vertical production well connected thereto, wherein the
substantially horizontal leg extends toward the injection well, the horizontal
leg having a heel portion in the vicinity of its connection to the vertical
production well and a toe portion at the opposite end of the horizontal leg,
wherein the toe portion is closer to the oxidizing gas injection well than the
heel portion;
(d) injecting an oxidizing gas through the oxidizing injection well for in situ
combustion, so that combustion gases are produced , wherein the
combustion gases progressively advance as a front, substantially
perpendicular to the horizontal leg, in the direction from the toe portion to
the heel portion of the horizontal leg, and fluids drain into the horizontal
leg;
(e) injecting a medium, wherein said medium is selected from the group of
mediums comprising steam, water or a non-oxidizing gas, into said other
injection well; and
(f) recovering hydrocarbons in the horizontal leg of the production well from
said production well.

11. The process of Claim 9 or 10 wherein said medium is water, and said water is
subsequently heated to become steam and said steam is provided to said lower part
of the formation via a distal end of said injection well.
12. A method for extracting liquid hydrocarbons from an underground reservoir,
comprising the steps of:

(a) providing at least one injection well for injecting an oxidizing gas into an
upper part of an underground reservoir;
(b) said at least one injection well further adapted for injecting steam, a non-
oxidizing gas , or water which is subsequently heated to steam, into a lower
part of an underground reservoir;
(c) providing at least one production well having a substantially horizontal leg
and a substantially vertical production well connected thereto, wherein the
substantially horizontal leg extends toward the injection well, the horizontal
leg having a heel portion in the vicinity of its connection to the vertical
production well and a toe portion at the opposite end of the horizontal leg,
wherein the toe portion is closer to the injection well than the heel portion;
(d) providing a tubing inside the production well within said vertical leg and at
least a portion of said horizontal leg for the purpose of injecting steam,
water or non-oxidizing gas into said horizontal leg portion of said
production well;
(e) injecting an oxidizing gas through the injection well for in situ combustion,
so that combustion gases are produced , wherein the combustion gases
progressively advance as a front, substantially perpendicular to the
horizontal leg, in the direction from the toe portion to the heel portion of the
horizontal leg, and fluids drain into the horizontal leg;
(f) injecting a medium, wherein said medium is selected from the group of
mediums comprising steam, water or a non-oxidizing gas, into said
injection well and into said tubing; and
(g) recovering hydrocarbons in the horizontal leg of the production well from
said production well.
13. The method of claim 12 wherein said medium is water, and said water is heated at the time of supply to the reservoir to become steam.
14. The method of claim 12 wherein the injection well is a vertical, slant or horizontal well.
15. A method for extracting liquid hydrocarbons from an underground reservoir, comprising the steps of:
(a) providing at least one injection well for injecting an oxidizing gas into an
upper part of an underground reservoir;
(b) providing at least one other injection well for injecting steam, a non-
oxidizing gas , or water which is subsequently heated to steam, into a lower
part of an underground reservoir;
(c) providing at least one production well having a substantially horizontal leg
and a substantially vertical production well connected thereto, wherein the
substantially horizontal leg extends toward the injection well, the horizontal
leg having a heel portion in the vicinity of its connection to the vertical
production well and a toe portion at the opposite end of the horizontal leg,
wherein the toe portion is closer to the injection well than the heel portion;
(d) providing a tubing inside the production well within said vertical leg and at
least a portion of said horizontal leg for the purpose of injecting steam,
water or non-oxidizing gas into said horizontal leg portion of said
production well;
(e) injecting an oxidizing gas through the injection well for in situ combustion,
so that combustion gases are produced , wherein the combustion gases
progressively advance as a front, substantially perpendicular to the
horizontal leg, in the direction from the toe portion to the heel portion of the
horizontal leg, and fluids drain into the horizontal leg;
(f) injecting a medium, wherein said medium is selected from the group of
mediums comprising steam, water or a non-oxidizing gas, into said other
injection well and into said tubing; and
(g) recovering hydrocarbons in the horizontal leg of the production well from
said production well.
16. The method of claim 15 wherein said medium is water, and said water is heated at
the time of supply to the reservoir to become steam.
17. The method of claim 15 wherein the injection well is a vertical, slant or horizontal
well.
18. Oilfield enhanced in situ combustion process substantially as described and shown
in the description and drawings.

Documents

Orders

Section Controller Decision Date

Application Documents

# Name Date
1 7616-delnp-2006-Form-3-(31-03-2010).pdf 2010-03-31
1 7616-DELNP-2006_EXAMREPORT.pdf 2016-06-30
2 7616-delnp-2006-Correspondence-Others-(26-09-2014).pdf 2014-09-26
2 7616-delnp-2006-Correspondence-Others-(31-03-2010).pdf 2010-03-31
3 7616-delnp-2006-Form-3-(26-09-2014).pdf 2014-09-26
3 7616-delnp-2006-Form-3-(06-01-2011).pdf 2011-01-06
4 7616-delnp-2006-Correspondence-Others-(06-01-2011).pdf 2011-01-06
4 7616-delnp-2006-Abstract-(10-06-2014).pdf 2014-06-10
5 7616-delnp-2006-form-5.pdf 2011-08-20
5 7616-delnp-2006-Claims-(10-06-2014).pdf 2014-06-10
6 7616-DELNP-2006-Form-3.pdf 2011-08-20
6 7616-delnp-2006-Correspondence-Others-(10-06-2014).pdf 2014-06-10
7 7616-delnp-2006-form-26.pdf 2011-08-20
7 7616-delnp-2006-Description (Complete)-(10-06-2014).pdf 2014-06-10
8 7616-delnp-2006-form-2.pdf 2011-08-20
8 7616-delnp-2006-Drawings-(10-06-2014).pdf 2014-06-10
9 7616-DELNP-2006-Form-1.pdf 2011-08-20
9 7616-delnp-2006-Form-2-(10-06-2014).pdf 2014-06-10
10 7616-delnp-2006-drawings.pdf 2011-08-20
10 7616-delnp-2006-Petition-137-(10-06-2014).pdf 2014-06-10
11 7616-delnp-2006-Correspondence Others-(26-03-2014).pdf 2014-03-26
11 7616-delnp-2006-description (complete).pdf 2011-08-20
12 7616-delnp-2006-Correspondence Others-(11-03-2014).pdf 2014-03-11
12 7616-delnp-2006-correspondence-others.pdf 2011-08-20
13 7616-delnp-2006-claims.pdf 2011-08-20
13 7616-delnp-2006-Form-3-(11-03-2014).pdf 2014-03-11
14 7616-delnp-2006-abstract.pdf 2011-08-20
14 7616-delnp-2006-Correspondence Others-(09-10-2013).pdf 2013-10-09
15 7616-delnp-2006-Correspondence Others-(03-10-2013).pdf 2013-10-03
15 7616-DELNP-2006-Form-3-(21-11-2011).pdf 2011-11-21
16 7616-DELNP-2006-Correspondence Others-(21-11-2011).pdf 2011-11-21
16 7616-delnp-2006-Correspondence Others-(23-09-2013).pdf 2013-09-23
17 7616-delnp-2006-Form-3-(23-09-2013).pdf 2013-09-23
17 7616-delnp-2006-Correspondence-Others-(08-08-2013).pdf 2013-08-08
18 7616-delnp-2006-Correspondence Others-(13-09-2013).pdf 2013-09-13
18 7616-delnp-2006-GPA-(23-08-2013).pdf 2013-08-23
19 7616-delnp-2006-Correspondence-Others-(23-08-2013).pdf 2013-08-23
19 7616-delnp-2006-Form-3-(13-09-2013).pdf 2013-09-13
20 7616-delnp-2006-Correspondence-Others-(23-08-2013).pdf 2013-08-23
20 7616-delnp-2006-Form-3-(13-09-2013).pdf 2013-09-13
21 7616-delnp-2006-Correspondence Others-(13-09-2013).pdf 2013-09-13
21 7616-delnp-2006-GPA-(23-08-2013).pdf 2013-08-23
22 7616-delnp-2006-Correspondence-Others-(08-08-2013).pdf 2013-08-08
22 7616-delnp-2006-Form-3-(23-09-2013).pdf 2013-09-23
23 7616-DELNP-2006-Correspondence Others-(21-11-2011).pdf 2011-11-21
23 7616-delnp-2006-Correspondence Others-(23-09-2013).pdf 2013-09-23
24 7616-DELNP-2006-Form-3-(21-11-2011).pdf 2011-11-21
24 7616-delnp-2006-Correspondence Others-(03-10-2013).pdf 2013-10-03
25 7616-delnp-2006-abstract.pdf 2011-08-20
25 7616-delnp-2006-Correspondence Others-(09-10-2013).pdf 2013-10-09
26 7616-delnp-2006-claims.pdf 2011-08-20
26 7616-delnp-2006-Form-3-(11-03-2014).pdf 2014-03-11
27 7616-delnp-2006-Correspondence Others-(11-03-2014).pdf 2014-03-11
27 7616-delnp-2006-correspondence-others.pdf 2011-08-20
28 7616-delnp-2006-Correspondence Others-(26-03-2014).pdf 2014-03-26
28 7616-delnp-2006-description (complete).pdf 2011-08-20
29 7616-delnp-2006-drawings.pdf 2011-08-20
29 7616-delnp-2006-Petition-137-(10-06-2014).pdf 2014-06-10
30 7616-DELNP-2006-Form-1.pdf 2011-08-20
30 7616-delnp-2006-Form-2-(10-06-2014).pdf 2014-06-10
31 7616-delnp-2006-form-2.pdf 2011-08-20
31 7616-delnp-2006-Drawings-(10-06-2014).pdf 2014-06-10
32 7616-delnp-2006-form-26.pdf 2011-08-20
32 7616-delnp-2006-Description (Complete)-(10-06-2014).pdf 2014-06-10
33 7616-DELNP-2006-Form-3.pdf 2011-08-20
33 7616-delnp-2006-Correspondence-Others-(10-06-2014).pdf 2014-06-10
34 7616-delnp-2006-form-5.pdf 2011-08-20
34 7616-delnp-2006-Claims-(10-06-2014).pdf 2014-06-10
35 7616-delnp-2006-Correspondence-Others-(06-01-2011).pdf 2011-01-06
35 7616-delnp-2006-Abstract-(10-06-2014).pdf 2014-06-10
36 7616-delnp-2006-Form-3-(26-09-2014).pdf 2014-09-26
36 7616-delnp-2006-Form-3-(06-01-2011).pdf 2011-01-06
37 7616-delnp-2006-Correspondence-Others-(26-09-2014).pdf 2014-09-26
37 7616-delnp-2006-Correspondence-Others-(31-03-2010).pdf 2010-03-31
38 7616-delnp-2006-Form-3-(31-03-2010).pdf 2010-03-31
38 7616-DELNP-2006_EXAMREPORT.pdf 2016-06-30