Abstract: The invention relates to organosilicon compounds of the general formula Q- [S-G-Si (-O-CX1-CXbc3-) 3N] . The organosilicon compounds are prepared by reacting at least one organosilicon compound of the general formula X10S-G-Si (-O-CX-CX3-) 3N and an organic or inorganic acid anhydride, an organic or inorganic acid halide or organic or inorganic ester. The organosilicon compounds are prepared by subjecting a compound of the general formula Q(-SH) to an addition reaction with at least one organosilicon compound containing double bonds and of the general formula CX1X2=CX2-G1-Si(O-CX1X2-CX1X3)3N. The organosilicon compounds are prepared by reacting at least one compound of the general formula Q(-S-X10) with a compound of the general formula halogen-G-Si (O-CX-Cxbc3) 3N. The organosilicon compounds are prepared by reacting silanes of the general formulae Q-[S-G-Si(alkoxy)3] , (alkoxy)3Si-G-S-C(=0)-Z-C(=0)-S-G-Si(alkoxy) 3, (alkoxy)3Si-G-S-C(=S)-Z-C(=S)-S-G-Si(alkoxy)3 or (alkoxy)3Si-G-S-C(=NR)-Z-C(=NR)-S-G-Si(alkoxy)3 with compounds of the general formula (HO-CXV-CX^3-) 3N with elimination of (alkoxy)-H and separating (alkoxy)-H from the reaction mixture. The organosilicon compounds can be used in rubber blends.
Organosilicon compounds, their preparation and their use
The invention relates to organosilicon compounds, their
preparation and their use.
The synthesis of
CH3-C (0) -S-CH2-Si (O-CH2-CH2) 3N,
CH3-C (0) -S-CH2-CH2-Si (O-CH2-CH2) 3N and
CH3-C (0) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
by transesterification of the corresponding methoxy- and
ethoxysilanes with triethanolamine with liberation of
methanol or ethanol is known from J. Gen. Chem. USSR (EN)
45, 1975, 1367 (Voronkov et al.).
US 4,048,206 discloses the synthesis of a compound of the
general formula X*-Zy-Si(OR*) 3N, it being possible for X*
to be R"C(0)M\ for M' to be S, for R" to be alkyl, for
Zy to be a bivalent hydrocarbon and for R* to be
-CH2-CH2- or -CH (CH3)-CH2-. These compounds can be used,
inter alia, as an additive for synthetic polymers.
Furthermore, the synthesis of
RA-S-CH2-CH2-Si(0-CH(CH3)CH2)m'(0-CH2-CH2)3-m'N by a
photochemically supported addition reaction of RXSH with
CH2=CH-Si(0-CH(CH3)CH2)m< (0-CH2-CH2) 3-m'N is known from J.
Gen. Chem. USSR (EN) 49, 1979, 1130-1136
(Voronkov et al.).
Compounds of the formula R*-S- (CH2)n*Si (0-CH (CH3) CH2) 3_m> (0-
CH2-CH2)m'N are known from J. Gen. Chem. USSR (EN), 49,
1979, 529-536.
The synthesis of compounds of the formulae
CH3-C (0) -S-CH2-Si (0-CH2-CH2) 3N,
EtO-C (S) -S-CH2-Si (O-CH2-CH2) 3N and
Et2N-C (S) -S-CH2-Si (0-CH2-CH2) 3N
from the alkali metal salts CH3C(0)S-K, EtO-C(S)-S-K and
Et2N-C(S)-S-Na in o-xylene or DMF is known from J. Gen.
Chem. USSR (EN) 69(3), 1999, 394-398 (Sorokin et al.).
Furthermore, the synthesis of (R*0) 2P (S) SCH2Si (OCH2CH2) 3N
and (R,0)2P(S)S(CH2)3Si (0CH2CH2)3N is known from Bull.
Acad. Sci. USSR Div. Chem. Sci. (EN), 36, 8, 1987,
1745-1747 (Voronkov et al.).
A disadvantage of the known compounds is the processing
behaviour in rubber mixtures, in particular high mixture
viscosities.
It is an object of the invention to provide organosilicon
compounds which cannot release volatile alcohols during
the binding to the filler, at the same time have a high
reactivity to filler and polymer and result in improved
processability, for example a low viscosity of the
mixture, good extrusion behaviour, good flowability, an
appropriate Mooney scorch time or an improved incubation
time, and/or improved dynamic properties in rubber
mixtures.
The invention relates to organosilicon compounds of the
general formula (I),
Q- [S-G-Si (-O-CxV-CX^C3-) 3N] (I)
in which Q is
SiX43_tX5t-, where t = 0, 1 or 2,
Y-C(=O)-Z-C(=O)-, Y-C(=S)-Z-C(=S)-, Y-C(=NR)-Z-C(=NR)-,
Y-C(=O)-, Y-C(=S)-, Y-C(=NR)-, Y-S(=O)-, Y-S(=O)2-,
(X6) (X7)P(=S)-, (X6) (X7)P(=O)-, X8-C(=O)-,
R-C(=S)-, R-C(=NR)-, R-S-C(=NR)-, R-S-C(=O)-,
R-S-C(=S)-, (X9)2N-C(=O)-, (X9)2N-C(=S)-, R-NR-C (=NR) -,
(X8)2N-C(=O)-, (X8)2N-C(=S)-, (X8)HN-C(=O)-, (X8) NH-C (=S) -,
R-O-C(=O)-, X9-O-C(=S)-, R-O-C(=NR)-, R-S(=O)-, R-S(=O)2-,
R-O-S(=O)2-, R-NR-S(=O)2-, R-S-S(=O)2-, R-S-S(=O)-,
R-O-S(=O)-, R-NR-S(=O)-, (R-S-)2P(=O)-, (R-S-)2P(=S)-,
(R-NR-)2P(=S)-, (R-NR-)2P(=O)-, R-(R-S-)P(=O)-,
R-(R-O-)P(=O)-, R-(R-S-)P(=S)-, R-(R-O-)P(=S)-,
R-(R-NR-)P(=O)-, R-(R-NR-)P(=S)-, (R-NR-)(R-S-)P(=O)-,
(R-O-)(R-NR-)P(=O)-, (R-O-)(R-S-)P(=O)-,
(R-O-)(R-S-)P(=S)-, (R-NR-)(R-S-)P(=S)-,
(R-O-) (R-NR-)P(=S)-, (R-O-) (Y)P(-0)-, (R-O-) (Y)P(=S)-,
(R-S-) (Y)P(=O)-, (R-S-) (Y)P(=S)-, (R-NR-)(Y)P(=O)-,
(R-NR-)(Y)P(=S)-, R-(Y)P(=O)-, R-(Y)P(=S)-, Y2P(=O)-,
Y2P(=S)- or Y2P(NR)-,
R are identical or different and are hydrogen (H), a
straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated monovalent
(C1-C24)-, preferably (C3-C24)-, particularly preferably
(C5-C18)-/ very particularly preferably (C8-Ci8)-,
hydrocarbon chain,
an unsubstituted or -NH2, HS-, Cl- or Br-substituted
(C6-C24)-, preferably (Cio-C24)-, particularly preferably
(C14-C24)-, aryl group or
an unsubstituted or -NH2, HS-, Cl- or Br-substituted
(C7-C24)-, preferably (C9-C24)-, particularly preferably
(C12-C24)-, aralkyl group,
Y are identical or different and are
[-S-G-Si (-O-CXb^-CXbc3-) 3N] ,
G are identical or different and
when Q is C6H5-C(=O)-
G is a straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated divalent (C3-C30)-,
preferably (C3-C24)-, particularly preferably C3- or (C5-
C2o)-, very particularly preferably C3- or (C6-Cis)-,
exceptionally preferably C3- or (C7-Ci8)-, hydrocarbon
chain; optionally, the hydrocarbon chains may contain
unsaturated moieties, such as double bonds and/or triple
bonds or alkylaromatics (aralkyl) or aromatics, or may be
substituted by them; the substituted hydrocarbon chains
can preferably be substituted by halogen, for example CI
or Br, -C00R or HS-,
and for all other Q
G is a straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated divalent (C1-C30)-,
preferably (C2-C24)-, particularly preferably (C3-C2o)_f
very particularly preferably C3- or (C5-Cis)-,
exceptionally preferably C3- or (C6-Ci8)-, hydrocarbon
chain; optionally, the hydrocarbon chains may contain
unsaturated moieties, such as double bonds and/or triple
bonds or alkylaromatics (aralkyl) or aromatics, or may be
substituted by them; the substituted hydrocarbon chains
can preferably be substituted by halogen, for example CI
or Br, -COOR or HS-,
Z is a straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated divalent (C1-C24)-,
preferably (C2-C24)-/ particularly preferably (C4-C20)-/'
very particularly preferably (C6-Cis)-, exceptionally
preferably (Ci0-Ci8)-, hydrocarbon chain; optionally, the
hydrocarbon chains may contain unsaturated moieties, such
as double bonds and/or triple bonds or alkylaromatics
(aralkyl) or aromatics or may be substituted by them; the
substituted hydrocarbon chains can preferably be
substituted by halogen, for example CI or Br, -COOR or
HS-, or is a divalent, aliphatic or aromatic, saturated
or unsaturated hydrocarbon chain functionalized with at
least two NH groups, for example -NH-T1-NH- or
-NH-T1-CH2-T2-NH-, where T1 and T2 may be identical or
different and may be a divalent hydrocarbon chain,
aromatic or alkylaromatic, optionally substituted by -CI,
-Br, -NH2, -N02, -O-alkyl (C1-C10) or methyl,
X1, X2 and X3, in each case independently of one another,
denote hydrogen (-H) , (C1-C16) -alkyl, preferably (C1-C8)-
alkyl, particularly preferably methyl or ethyl, or aryl,
preferably phenyl,
X4 and X5, in each case independently of one another,
denote hydrogen (-H), a straight-chain, cyclic or
branched, substituted or unsubstituted, saturated or
unsaturated monovalent (C1-C24)-, preferably (C4-C2o)~r
very particularly preferably (C8-C20)-, hydrocarbon chain,
exceptionally preferably methyl, ethyl, butyl, C8-alkyl,
Ci6-alkyl or Ci8-alkyl,
a (C1-Cie)-alkoxy group, preferably methoxy, ethoxy,
propoxy, C8-alkoxy, Ci2~alkoxy, Ci6-alkoxy or Ci8-alkoxy,
an aryl group, preferably phenyl, an alkylether group 0-
(CRZ2- CRI2)-O-Alk or alkylpolyether group 0-(CRI2- CR^OJy-
Alk, where y = 2-25, preferably y = 2-15, particularly
preferably y = 3-10, very particularly preferably y =
3-6, R1, independently of one another, are H or an alkyl
group, preferably a CH3 group, Alk is a linear or
branched, saturated or unsaturated alkyl chain having
1-30 carbon atoms (C1-C30), preferably C1-C20,
particularly preferably C4-C18, very particularly
preferably C8-C16,
an aralkyl group, preferably -CH2-CH2-phenyl,
a halogen, preferably F-, Cl- or Br-,
a radical Alk-(COO), preferably acetoxy, C11H23 (COO) ,
Ci3H27(COO), C15H3i(COO) or Ci7H35(COO),
or Y, preferably
[-S-CH2-Si (-O-CH2-CH2-) 3N] , [-S-CH2-CH2-Si (-O-CH2-CH2-) 3N] ,
[-S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N] ,
[-S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N] ,
[-S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N] ,
[-S-CH2-Si (-O-CH (CH3) -CH2-) 3N] ,
[-S-CH2-CH2-Si (-O-CH (CH3) ~CH2-) 3N] ,
[-S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] ,
[-S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N] or
[-S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] ,
X6 and X7, in each case independently of one another,
denote
hydrogen (-H), -OH, -SH,
a straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated monovalent
(C1-C24)-, preferably (C3-C20)-, particularly preferably
(C6-C2o)-, very particularly preferably (C8-C2o) -1
hydrocarbon chain, exceptionally preferably methyl,
ethyl, n-propyl, isopropyl, n-butyl, tert-butyl,
C6-alkyl, C6-cycloalkyl, Cs-alkyl, Ci6-alkyl or Cie-alkyl,
a (C4-C24) -alkoxy group, preferably (C6-C24) alkoxy,
particularly preferably (C8-C24) alkoxy, very particularly
preferably (Cio-Ci8) alkoxy, exceptionally preferably
C6~alkoxy, C6-cycloalkoxy, Cs-alkoxy, Ci2-alkoxy,
Ci6-alkoxy or Cie-alkoxy,
an aryl group, preferably phenyl,
an alkylether group 0-(CRI2- CRI2)-O-Alk or
alkylpolyether group 0-(CR1;?- CRI20)y-Alk,
an aralkyl group, preferably -CH2-CH2-phenyl,
a halogen, preferably F-, Cl- or Br-, or
a radical Alk-(COO) , preferably acetoxy, CnH23(COO),
Ci3H27(COO), C15H3i(COO) or C17H35(COO),
X8 are identical or different and denote hydrogen (H) , a
straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated monovalent
(C2-C24)-/ preferably (C7-C24)-, particularly preferably
C7- or (C9-C19)-, exceptionally preferably C7- or (Cn-Ci7)-,
hydrocarbon chain,
a substituted, preferably -NH2-, HS-, C1-, Br-, 0-alkyl-,
-NCO- or -NCS-substituted, (C6-C24)-, preferably
(Ci0-C24)-, particularly preferably (C14-C24)-, aryl group,
an unsubstituted (C6-C24)-, preferably (Cio-C24)-,
particularly preferably (C14-C24)-, aryl group or
an unsubstituted or substituted, preferably -NH2-, HS-,
C1-, Br-, 0-alkyl, -NCO- or -NCS-substituted, (C7-C24)-,
preferably (Cg-C24)-, particularly preferably (Ci2-C24)-,
aralkyl group,
X9 are identical or different and denote hydrogen (H), a
straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated monovalent
(C4-C24)-, preferably (C6-C24)-, particularly preferably
(C7-C18)-, exceptionally preferably (C9-C16)-, hydrocarbon
chain,
a substituted, preferably -NH2-, HS-, C1-, Br-, O-alkyl-,
-NCO- or -NCS-substituted, (C6-C24)-, preferably
(Cio-C24)-^ particularly preferably (Ci4-C24)-, aryl group,
an unsubstituted (C7-C24)-, preferably (C10-C24)-,
particularly preferably (Ci4-C24)-, aryl group or
an unsubstituted or substituted, preferably -NH2-, HS-,
C1-, Br-, O-alkyl, -NCO- or -NCS-substituted, (C7-C24)-,
preferably (C9-C24)-, particularly preferably (C12-C24)-,
aralkyl group.
R can preferably be methyl, ethyl, propyl, butyl or
cyclohexyl, C7H15, C9H19, CnH23, Ci3H27, C15H31, phenyl,
p-tolyl, o-tolyl or m-tolyl group. The substituted
hydrocarbon groups R may be substituted by halogen, -COOR
or HS-.
G can preferably be -CH2-, -CH2CH2-, -CH2CH2CH2-,
-CH2CH2CH2CH2-, -CH(CH3)-, -CH2CH(CH3)-, -CH (CH3) CH2-,
-C(CH3)2-, -CH(C2H5)-, -CH2CH2CH(CH3)-, -CH (CH3)-CH2CH2-,
-CH2CH(CH3)CH2-, -CH2-C6H4-CH2-, -CH2-C6H4-CH2-CH2- or
-CH2-CH2-C6H4-CH2-CH2-.
Z can preferably be -CH2-, -CH2CH2-, -CH2CH2CH2-,
-CH2CH2CH2CH2-, -CH2CH2CH2CH2CH2-, -CH2CH2CH2CH2CH2CH2-,
-CH(CH3)-, -CH2CH(CH3)-, -CH (CH3) CH2-, -C(CH3)2-,
-CH(C2H5)-, -CH2CH2CH(CH3)-, -CH (CH3) -CH2CH2-,
-CH2CH (CH3) CH2-, -C4H8-, -C6H12-, -C8H16-, -CioH2o~A ~Ci2H24-,
-C6H4-, -CH2-C6H4-CH2-, -CH2-C6H4-CH2-CH2-, -CH2-CH2-C6H4-CH2-
CH2-, -NH-(CH2)2-NH-, -NH-(CH2) 3-NH-, -NH- (CH2) 4-NH-, -NH-
(CH2) 5-NH-, -NH- (CH2) 6-NH-, -NH- (CH2) 7-NH-, -NH- (CH2) 8-NH-,
-NH-(CH2)9-NH-, -NH-(CH2)i0-NH-, -NH-(CH2) 11-NH-,
-NH-(CH2)X2-NH-,
X4 and X5 can preferably be a methyl, ethyl, propyl,
butyl or cyclohexyl, C7H15, C8Hi7, C9Hi9, CnH23, C13H27,
C15H31, Ci6H33, phenyl, p-tolyl, o-tolyl or m-tolyl group.
X8 can preferably be propyl, butyl or cyclohexyl, C7H15,
C8Hi7, C9H19, C11H23, C13H27, Ci5H31, C17H35, phenyl, p-tolyl,
o-tolyl or m-tolyl group. The substituted hydrocarbon
chains X8 may be substituted by halogen, -COOR or HS-.
X9 can preferably be propyl, butyl or cyclohexyl, C7H15,
C9H19, C11H23, C13H27, Ci5H31, p-tolyl, o-tolyl or m-tolyl
group. The substituted hydrocarbon chains X9 may be
substituted by halogen, -COOR or HS-.
The following substituted aryl groups and aralkyl groups
are particularly preferred for X8 and X9:
1 r
Organosilicon compounds of the general formula (I) may be
mixtures of organosilicon compounds of the general
formulae (I). Organosilicon compounds of the general
formula (I) may be hydrolysis products of the
organosilicon compounds of the general formula (I).
Organosilicon compounds of the general formula (I) where
Q is X8-C(=O)- may be:
C5H11-C (0) -S-CH2-Si (-O-CH2-CH2-) 3N,
C5H11-C (0) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C5H11-C (0) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C5H11-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C5H11-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C7H15-C (0) -S-CH2-Si (-O-CH2-CH2-) 3N,
C7H15-C (0) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C7H15-C (0) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C7H15-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C7H15-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
CgHig-C (0) -S-CH2-Si (-O-CH2-CH2-) 3N,
C9Hi9-C (0) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C9H19-C (0) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C9Hi9-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C9H19-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
CnH23-C (0) -S-CH2-Si (-O-CH2-CH2-) 3N,
C11H23-C (0) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C11H23-C (0) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
CnH23-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
CnH23-C (0) -S-CH (CH3) -CH2-CH2-Si (~0-CH2-CH2-) 3N,
Ci3H27-C (0) -S-CH2-Si (-O-CH2-CH2-) 3N,
C13H27-C (0) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C13H27-C (0) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C13H27-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C13H27-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C15H31-C (O) -S-CHs-Si (-O-CH2-CH2-) 3N,
C15H31-C (0) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C15H31-C (0) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C15H31-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C15H31-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C17H35-C (0) -S-CH2-Si (-O-CH2-CH2-) 3N,
Ci7H35-C (0) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
Ci7H35-C (0) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
Ci7H35-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
Ci7H35-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
phenyl-C (0) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
phenyl-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
phenyl-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C5H11-C (0) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C5H11-C (0) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C5H11-C (0) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C5H11-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C5H11-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7Hi5-C (0) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7Hi5-C (0) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C-7H15-C (0) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7H15-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7H15-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19-C (0) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19-C (0) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19-C (0) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
CgHig-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
CnH23-C (0) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C11H23-C (0) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
CiiH23-C (0) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
CnH23-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C11H23-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C13H27-C (O) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci3H27-C (0) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci3H27-C (0) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci3H27-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C13H27-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci5H3i-C (0) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci5H31-C (0) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci5H3i-C (0) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C15H31-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci5H3i-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci7H35-C (0) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci7H35-C (0) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C17H35-C (0) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci7H35-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci7H35-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
phenyl-C (0) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
phenyl-C (0) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N or
phenyl-C (0) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N.
Organosilicon compounds of the general formula (I) may
be:
Me3Si-S-CH2-Si (-O-CH2-CH2-) 3N,
Me3Si-S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
Me3Si-S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
Me3Si-S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
Me3Si-S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
Me2Si- [S-CH2-Si (-O-CH2-CH2-) 3N] 2,
Me2Si- [S-CH2-CH2-Si (-O-CH2-CH2-) 3N] 2,
Me2Si- [S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N] 2/
Me2Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N] 2,
Me2Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N] 2,
MeSi- [S-CH2-Si (-O-CH2-CH2-) 3N] 3,
MeSi- [S-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
MeSi- [S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
MeSi- [S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N] 3,
MeSi- [S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C3H7Si- [S-CH2-Si (-O-CH2-CH2-) 3N] 3,
C3H7Si- [S-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C3H7Si- [S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C3H7Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N] 3,
C3H7Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C4H9Si- [S-CH2-Si (-O-CH2-CH2-) 3N] 3,
C4H9Si- [S-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C4H9Si- [S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C4H9Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N] 3,
C4H9Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C8Hi7Si- [S-CH2-Si (-O-CH2-CH2-) 3N] 3,
C8Hi7Si- [S-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C8Hi7Si- [S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
C8Hi7Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N] 3,
C8Hi7Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
Ci6H33Si- [S-CH2-Si (-O-CH2-CH2-) 3N] 3,
Ci6H33Si-[S-CH2-CH2-Si(-O-CH2-CH2-)3N]3,
Ci6H33Si- [S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
Ci6H33Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N] 3,
C16H33Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N] 3,
Me3Si-S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Me3Si-S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Me3Si-S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Me3Si-S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
Me3Si-S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Me2Si- [S-CH2-Si (-O-CH (CH3) -CH2-) 3N] 2,
Me2Si- [S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 2,
Me2Si- [S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 2,
Me2Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N] 2,
Me2Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 2,
MeSi- [S-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
MeSi- [S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
MeSi- [S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
MeSi- [S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
MeSi- [S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C3H7Si- [S-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C3H7Si- [S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C3H7Si- [S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C3H7Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C3H7Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C4H9Si- [S-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C4H9Si- [S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C4H9Si- [S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C4H9Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C4H9Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C8H17Si- [S-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C8Hi7Si- [S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C8H17Si- [S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C8H17Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C8Hi7Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C16H33Si- [S-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C16H33Si- [S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C16H33Si- [S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3,
C16H33Si- [S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N] 3 or
C16H33Si- [S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N] 3.
Organosilicon compounds of the general formula (I) where
Q is (X8)2N-C(=O)- and M' = S or 0 may be:
C3H7NH-C (M' ) -S-CH2-Si (-O-CH2-CH2-) 3N,
C3H7NH-C (M' ) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C3H7NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C3H7NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C3H7NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C3H5NH-C (M' ) -S-CH2-Si (-O-CH2-CH2-) 3N,
C3H5NH-C (M' ) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C3H5NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C3H5NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C3H5NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C4H9NH-C (M' ) -S-CH2-Si (-O-CH2-CH2-) 3N,
C4H9NH-C (W ) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C4H9NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C4H9NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C4H9NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C7H15NH-C (M' ) -S-CH2-Si (-O-CH2-CH2-) 3N,
C7H15NH-C (M' ) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C7H15NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C7H15NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C7H15NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C9H19NH-C (M' ) -S-CH2-Si (-O-CH2-CH2-) 3N,
C9H19NH-C (M' ) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C9H19NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C9H19NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C9H19NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
CnH23NH-C (M' ) -S-CH2-Si (-O-CH2-CH2-) 3N,
C11H23NH-C (M' ) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
CnH23NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
CuH23NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C11H23NH-C (W ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
Ci3H27NH-C (W ) -S-CH2-Si (-O-CH2-CH2-) 3N,
C13H27NH-C (M' ) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C13H27NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
Ci3H27NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
Ci3H27NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
Ci5H31NH-C (M' ) -S-CH2-Si (-O-CH2-CH2-) 3N,
C15H31NH-C (M' ) -S-CH2-CH2-Si (-O-CH2-CH2-) 3N,
Ci5H3iNH-C (W ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
C15H31NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
C15H31NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
PhenylNH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
PhenylNH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
PhenylNH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH2-CH2-) 3N,
C4H9NH-C (M' ) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C4H9NH-C (M' ) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C4H9NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C4H9NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C4H9NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7H15NH-C (M' ) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7H15NH-C (M' ) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7H15NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7H15NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C7H15NH-C (W ) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19NH-C (M' ) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19NH-C (M' ) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C9H19NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C11H23NH-C (M' ) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C11H23NH-C (M' ) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C11H23NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C11H23NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
C11H23NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci3H27NH-C (M' ) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C13H27NH-C (M' ) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci3H27NH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci3H27NH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci3H27NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C15H31NH-C (M' ) -S-CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci5H3iNH-C (M' ) -S-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C15H3iNH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
C15H3iNH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N,
Ci5H31NH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
PhenylNH-C (M' ) -S-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
PhenylNH-C (M' ) -S-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) -CH2-) 3N oder
PhenylNH-C (M' ) -S-CH (CH3) -CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N.
Organosilicon compounds of the general formula (I) where
Q is Y-C(=M')-Z-C(C=M')- and M' = S or 0 may be:
N (-CH2-CH2-O-) 3Si-CH2-S-C (M' ) -NH- (ortho) C6H4-NH-C (M' ) -S-
CH2-Si (-O-CH (CH3) -CH2-) 3N,
N (-CH2-CH2-O-) 3Si-CH2-S-C (M' ) -NH- (meta) C6H4-NH-C (M' ) -S-CH2-
Si(-O-CH(CH3)-CH2-)3N,
N (-CH2-CH2-O-) 3Si-CH2-S-C (M' ) -NH- (para) C5H4-NH-C (M' ) -S-CH2-
Si(-O-CH(CH3)-CH2-)3N,
N (-CH2-CH2-O-) 3Si- (CH2) 2-S-C (M' ) -NH- (ortho) C6H4-NH-C (M' ) -S-
(CH2) 2-Si (-O-CH (CH3) -CH2-) 3N,
N (-CH2-CH2-O-) 3Si- (CH2) 2-S-C (M' ) -NH- (meta) C6H4-NH-C (M' ) -S-
(CH2) 2-Si (-O-CH (CH3) -CH2-) 3N,
N (-CH2-CH2-O-) 3Si- (CH2) 2-S-C (M' ) -NH- (para) C6H4-NH-C (M' ) -S-
(CH2) 2-Si (-O-CH (CH3) -CH2-) 3N,
N (-CH2-CH2-O-) 3Si- (CH2) 3-S-C (M' ) -NH- (ortho) C6H4-NH-C (M' ) -S-
(CH2) 3-Si (-O-CH (CH3) -CH2-) 3N,
N (-CH2-CH2-O-) 3Si- (CH2) 3-S-C (M' ) -NH- (meta) C6H4-NH-C (M' ) -S-
(CH2) 3-Si (-O-CH (CH3) -CH2-) 3N,
N (-CH2-CH2-O-) 3Si- (CH2) 3-S-C (M' ) -NH- (para) C6H4-NH-C (M' ) -S-
(CH2) 3-Si (-O-CH (CH3) -CH2-) 3N,
Organosilicon compounds of the general formula (I) may
furthermore be:
N (CH2-CH2-0) 3S1-CH2-S-C (0) -C2H4-C (0) -S-CH2-Si (O-CH2-CH2) 3N,
N (CH2CH20) 3Si- (CH2) 2-S-C (0) -C2H4-C (0) -S- (CH2) 2-Si (OCH2CH2) 3N,
N (CH2CH2O) 3Si- (CH2) 3-S-C (0) -C2H4-C (0) -S- (CH2) 3-Si (OCH2CH2) 3N,
N (CH2-CH2-O) 3Si-CH2-S-C (0) -C4H8-C (0) -S-CH2-Si (0-CH2-CH2) 3N,
N (CH2CH20) 3Si- (CH2) 2-S-C (0) -C4H8-C (0) -S- (CH2) 2-Si (OCH2CH2) 3N,
N (CH2CH20) 3Si- (CH2) 3-S-C (0) -C4H8-C (0) -S- (CH2) 3-Si (OCH2CH2) 3N,
N (CH2-CH2-0) 3Si-CH2-S-C (0) -C6Hi2-C (0) -S-CH2-Si (0-CH2-CH2) 3N,
N (CH2CH20) 3Si- (CH2) 2-S-C (0) -C6H12-C (0) -S- (CH2) 2-Si (OCH2CH2) 3N,
N (CH2CH20) 3Si- (CH2) 3-S-C (0) -C6Hi2-C (0) -S- (CH2) 3-Si (OCH2CH2) 3N,
N (CH2-CH2-O) 3Si-CH2-S-C (0) -C8Hi6-C (0) -S-CH2-Si (0-CH2-CH2) 3N,
N (CH2CH20) 3Si- (CH2) 2-S-C (0) -C8H16-C (0) -S- (CH2) 2-Si (OCH2CH2) 3N,
N (CH2CH20) 3Si- (CH2) 3-S-C (0) -C8H16-C (0) -S- (CH2) 3-Si (OCH2CH2) 3N,
N (CH2-CH2-0) 3Si-CH2-S-C (0) -C10H20-C (0) -S-CH2-Si (0-CH2-CH2) 3N,
N (CH2CH20) 3Si (CH2) 2-S-C (0) -C10H20-C (0) -S- (CH2) 2Si (OCH2CH2) 3N,
N (CH2CH20) 3Si (CH2) 3-S-C (0) -Ci0H20-C (0) -S- (CH2) 3Si (0CH2CH2) 3N,
N (CH2-CH2-0) 3Si-CH2-S-C (0) -C6H4-C (0) -S-CH2-Si (0-CH2-CH2) 3N,
N (CH2CH20) 3Si (CH2) 2-S-C (0) -C6H4-C (0) -S- (CH2) 2Si (OCH2CH2) 3N,
N (CH2CH20) 3Si (CH2) 3-S-C (0) -C6H4-C (0) -S- (CH2) 3Si (OCH2CH2) 3N,
N (CH2CH (CH3) 0) 3SiCH2-S-C (0) -C2H4-C (0) -S-
CH2Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 2-S-C (0) -C2H4-C (0) -S-
(CH2)2Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 3-S-C (0) -C2H4-C (0) -S-
(CH2)3Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3SiCH2-S-C (0) -C4H8-C (0) -S-
CH2Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 2-S-C (0) -C4H8-C (0) -S-
(CH2)2Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 3-S-C (0) -C4H8-C (0) -S-
(CH2)3Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3SiCH2-S-C (0) -C6H12-C (0) -S-
CH2Si(0CH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 2-S-C (0) -C6Hi2-C (0) -S-
(CH2)2Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 3-S-C (0) -C6H12-C (0) -S-
(CH2)3Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3SiCH2-S-C (0) -C8Hi6-C (0) -S-
CH2Si (OCH (CH3) CH2) 3N,
N (CH2CH (CH3) 0) 3Si (CH2) 2~S-C (0) -C8H16-C (0) -S-
(CH2)2Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 3-S-C (0) -C8H16-C (0) -S-
(CH2)3Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3SxCH2-S-C (0) -Ci0H20-C (0) -S-
CH2Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 2-S-C (0) -Ci0H20-C (0) -S-
(CH2)2Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 3-S-C (0) -Ci0H20-C (0) -S-
(CH2)3Si(OCH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3SiCH2-S-C (0) -C6H4-C (0) -S-
CH2Si(0CH(CH3)CH2)3N,
N (CH2CH (CH3) 0) 3Si (CH2) 2-S-C (0) -C6H4-C (0) -S-
(CH2)2Si(OCH(CH3)CH2)3N or
N (CH2CH (CH3) 0) 3Si (CH2) 3-S-C (0) -C6H4-C (0) -S-
(CH2)3Si(OCH(CH3)CH2)3N.
The invention furthermore relates to a process for the
preparation of the organosilicon compounds according to
the invention, which is characterized in that at least
one organosilicon compound of the general formula (II)
X10 [S-G-Si (-O-CXb^-CXbC3-) 3N] (II)
in which G, X1, X2 and X3 have the abovementioned meanings
and X10 is H, alkali metal, for example Li, Na or K,
alkaline earth metal or ammonium cation, for example
alkylammonium cation, dialkylammonium cation,
trialkylammonium cation or tetraalkylammonium cation, is
reacted with at least one organic or inorganic acid
anhydride, one organic or inorganic acid halide or
organic or inorganic ester selected from the group
consisting of
Y-C(=O)-O-C(=O)-Y, Y-C(=S)-O-C(=S)-Y, Y-C(=NR)-O-C(=NR)-Y,
Y-C(=O)-S-C(=O)-Y, Y-C(=S)-S-C(=S)-Y, Y-C(=NR)-S-C(=NR)-Y,
Y-S(=O)-O-S(=O)-Y, Y-S (=O)2-O-S(=O) 2-Y,
X8-C (=O) -O-C (=O) -X8, X8-C (=O) -S-C (=O) -X8,
R-C(=S)-O-C(=O)-R, R-C(=S)-S-C(=O)-R,
R-S-C(=O)-O-C(=O)-S-R, R-S-C(=O)-S-C(=O)-S-R,
R-S-C(=S)-O-C(=S)-S-R, R-S-C(=S)-S-C(=S)-S-R,
R-O-C(=O)-O-C(=O)-OR, R-O-C(=O)-S-C(=O)-OR,
R-O-C(=S)-O-C(=S)-OR, R-O-C(=S)-S-C(=S)-OR,
R-S(=O)-O-S(=O)-R, R-S(=O)-S-S(=O)-R,
R-O-S(=O)-O-S(=O)-O-R, R-O-S(=O)-S-S(=O)-O-R,
R-O-S(=S)-O-S(=S)-O-R, R-O-S(=S)-S-S(=S)-O-R,
R-S-S(=O)-O-S(=O)-S-R, R-S-S(=O)-S-S(=O)-S-R,
R-S-S(=S)-O-S(=S)-S-R, R-S-S(=S)-S-S(=S)-S-R,
R-S(=O)2-O-S(=O)2-R, R-S(=O)2-S-S(=O)2-R,
R-S(=S)2-O-S(=S)2-R, R-S(=S)2-S-S(=S)2-R,
R-O-S(=O)2-O-S(=O)2-O-R, R-O-S(=O)2-S-S(=O)2-O-R,
R-O-S(=S)2-O-S(=S)2-O-R, R-O-S (=S)2-S-S(=S)2-O-R,
R-S-S(=O)2-O-S(=O)2-S-R, R-S-S (=O)2-S-S(=O)2-S-R,
R-S-S(=S)2-O-S(=S)2-S-R, R-S-S(=S)2-S-S(=S)2-S-R,
SiX4sX^2-s(Y)-S-SiX4sX52-s(Y) , SiX43-tX5t-S-SiX43-tX5t, Y2SiX4-S-
SiX5Y2; Y2P(=O)-S-P(=O)Y2, Y2P(=S)-S-P(=S)Y2,
SiX43-tX5t-halogen, halogen-C (=O)-Z-C (=O)-halogen, halogen-
C(=S)-Z-C(=S)-halogen, halogen-C(=NR)-Z-C(=NR)-halogen,
Y-C(=O)-Z-C(=O)-halogen, Y-C(=S)-Z-C(=S)-halogen,
Y-C(=NR)-Z-C(=NR)-halogen, halogen-C(=O)-halogen,
halogen-C(=S)-halogen, halogen-C(=NR)-halogen, halogen-
S (=O) -yhalogen, halogen-S (=O) 2-halogen, Y-C (=O)-halogen,
Y-C(=S)-halogen, Y-C(=NR)-halogen, Y-S(=O)-halogen,
Y-S(=Q) 2-halogen, (X6) (X7) P (=S)-halogen,
(X6) (xf)P(=O)-halogen, X8-C(=O)-halogen, R-C(=S)-halogen,
R-C(=NR)-halogen, R-S-C(=NR)-halogen, R-S-C(=O)-halogen,
R-S-C(=S)-halogen, (X9) 2N-C (=O)-halogen, (X9) 2N-C (=S) -
halogen, R-NR-C(=NR)-halogen, R-O-C(=O)-halogen,
X9-O-C(=S)-halogen, R-O-C(=NR)-halogen, R-S(=O)-halogen,
R-S (=O) 2-halogen, R-O-S (=O)2~halogen, R-NR-S (=O)2-halogen,
R-S-S (=O)2-halogen, R-S-S(=O)-halogen, R-O-S(=O)-halogen,
R-NR-S(=O)-halogen, (R-S-)2P(=O)-halogen, (R-S-)2P(=S)-
halogen, (R-NR-)2P(=S)-halogen, (R-NR-)2P(=O)-halogen,
R-(R-S-)P(=O)-halogen, R-(R-O-)P(=O)-halogen,
R-(R-S-)P(=S)-halogen, R-(R-O-)P(=S)-halogen,
R-(R-NR-)P(=O)-halogen, R-(R-NR-)P(=S)-halogen,
(R-NR-)(R-S-)P(=O)-halogen, (R-O-)(R-NR-)P(=O)-halogen,
(R-O-)(R-S-)P(=O)-halogen, (R-O-)(R-S-)P(=S)-halogen,
(R-NR-)(R-S-)P(=S)-halogen, (R-O-)(R-NR-)P(=S)-halogen,
(R-O-)P(=O)(0-R)2, (R-O-)P(=S)(0-R)2, (R-S-)P(=O)(0-R)2,
(R-S-)P(=S)(0-R)2, (R-NR-)P(=O)(0-R)2, (R-NR-)P(=S)(0-R)2,
R-P(=O)(0-R)2/ R-P(=S)(0-R)2, (R-O-)(Y)P(=O)-halogen,
(R-O-)(Y)P(=S)-halogen, (R-S-)(Y)P(=O)-halogen,
(R-S-)(Y)P(=S)-halogen, (R-NR-)(Y)P(=O)-halogen,
(R-NR-)(Y)P(=S)-halogen, R-(Y)P(=O)-halogen,
R-(Y)P(=S)-halogen, P(=O) (halogen)3, P (=S) (halogen)3,
P(NR)(halogen)3, Y-P(=O)(halogen)2, Y-P(=S)(halogen)2,
Y-P(NR)(halogen)2, Y2P(=O)-halogen, Y2P(=S)-halogen,
Y2P(NR)-halogen,
SiX43-tX5t-O-R, SiX42-(0-R)2, SiX5-(0-R)3, R-O-C(=O)-Z-
C(=O)-O-R, R-O-C(=S)-Z-C(=S)-O-R, R-O-C(=NR)-Z-C(=NR)-O-
R, halogen-C(=O)-Z-C(=O)-O-R, halogen-C(=S)-Z-C(=S)-O-R,
halogen-C(=NR)-Z-C(=NR)-O-R, R-O-C(=O)-Z-C(=O)-O-R, R-O-
C(=S)-Z-C(=S)-O-R, R-O-C(=NR)-Z-C(=NR)-O-R, Y-C(=O)-Z-
C(=O)-O-R, Y-C(=S)-Z-C(=S)-O-R, Y-C(=NR)-Z-C(=NR)-O-R,
halogen-C(=O)-O-R, halogen-C(=S)-O-R, halogen-C(=NR)-O-R,
halogen-S(=O)-O-R, halogen-S(=O)2-O-R, R-O-C(=O)-O-R, R-
0-C(=S)-O-R, R-O-C(=NR)-O-R, R-O-S(=O)-O-R, R-O-S(=O)2-O-
R, Y-C(=O)-O-R, Y-C(=S)-O-R, Y-C(=NR)-O-R, Y-S(=O)-O-R,
Y-S(=O) 2-O-R, (X6) (X7)P(=S)-O-R, (X6) (X7) P (=O)-O-R,
X8-C(=O)-O-R, R-C(=S)-O-R, R-C(=NR)-O-R, R-S-C(-NR)-O-R,
R-S-C(=O)-O-R, R-S-C(=S)-O-R, (X9) 2N-C(=O)-O-R,
(X9)2N-C(=S)-O-R, R-NR-C(=NR)-O-R, X9-O-C (=S)-O-R,
R-S(=O)-O-R, R-S(=O)2-O-R, R-NR-S(=O)2-O-R,
R-S-S(=O)2-O-R, R-S-S(=O)-O-R, R-NR-S(=O)-O-R,
(R-NR-)2P(=S)-O-R, (R-NR-)2P(=O)-O-R, R-(R-S-) P (=O)-O-R,
R-(R-S-)P(=S)-O-R, R-(R-NR-)P(=O)-O-R,
R-(R-NR-)P(=S)-O-R, (R-NR-)(R-S-)P(=O)-O-R,
(R-O-)(R-NR-)P(=O)-O-R, (R-NR-)(R-S-)P(=S)-O-R,
(R-S-)P(=O) (0-R)2, (R-S-)P(=S) (0-R)2, (R-NR-) P (=O) (0-R) 2,
(R-NR-)P(=S) (0-R) 2, R-P(=O) (0-R)2, R-P (=S) (0-R) 2,
(R-S-)(Y)P(=O)-O-R, (R-S-)(Y)P(=S)-O-R,
(R-NR-)(Y)P(=O)-O-R, (R-NR-)(Y)P(=S)-O-R, R-(Y)P(=O)-O-R,
R-(Y)P(=S)-O-R, P(=O)(0-R)3, P(=S)(0-R)3, P(NR)(0-R)3,
Y-P(=O) (0-R)2, Y-P(=S) (0-R)2, Y-P(NR) (0-R)2, Y2P(=O)-O-R,
Y2P(=S)-O-R or Y2P(NR)-O-R, SiX43-tX5t-S-R, SiX42- (S-R) 2,
SiX5-(S-R)3, R-O-C(=O)-Z-C(=O)-S-R, R-O-C(=S)-Z-C(=S)-S-
R, R-O-C(=NR)-Z-C(=NR)-S-R, halogen-C(=O)-Z-C(=O)-S-R,
halogen-C(=S)-Z-C(=S)-S-R, halogen-C(=NR)-Z-C(=NR)-S-R,
R-S-C(=O)-Z-C(=O)-S-R, R-S-C(=S)-Z-C(=S)-S-R,
R-S-C(=NR)-Z-C(=NR)-S-R, Y-C(=O)-Z-C(=O)-S-R,
Y-C(=S)-Z-C(=S)-S-R, Y-C(=NR)-Z-C(=NR)-S-R,
halogen-C(=O)-S-R, halogen-C(=S)-S-R, halogen-C(=NR)-S-R,
halogen-S(=O)-S-R, halogen-S(=O)2-S-R, R-S-C(=O)-S-R,
R-S-C(=S)-S-R, R-S-C(=NR)-S-R, R-S-S(=O)-S-R,
R-S-S(=O)2-S-R, Y-C(=O)-S-R, Y-C(=S)-S-R, Y-C(=NR)-S-R,
Y-S(=O)-S-R, Y-S(=O) 2-S-R, (X6) (X7) P (=S)-S-R,
(X6) (X7)P(=O)-S-R, X8-C(=O)-S-R, R-C(=S)-S-R,
R-C(=NR)-S-R, (X9)2N-C(=O)-S-R, (X9) 2N-C (=S) -S-R,
R-NR-C(=NR)-S-R, X9-O-C(=S)-S-R, R-S(=O)-S-R,
R-S(=O) 2-S-R, R-NR-S(=O)2-S-R, R-NR-S(=O)-S-R,
(R-NR-)2P(=S)-S-R, (R-NR-)2P(=O)-S-R, R-(R-O-)P(=O)-S-R,
R-(R-O-)P(=S)-S-R, R-(R-NR-)P(=O)-S-R,
R-(R-NR-)P(=S)-S-R, (R-O-)(R-NR-)P(=O)-S-R,
(R-O-)(R-NR-)P(=S)-S-R, (R-O-)P(=O)(S-R)2,
(R-O-)P(=S) (S-R)2, (R-S-)P(=O) (S-R)2, (R-NR-) P (=O) (S-R) 2,
(R-NR-)P(=S) (S-R) 2, R-P(=O) (S-R) 2, R-P (=S) (S-R) 2,
(R-O-)(Y)P(=O)-S-R, (R-O-)(Y)P(=S)-S-R,
(R-NR-)(Y)P(=O)-S-R, (R-NR-)(Y)P(=S)-S-R, R-(Y)P(=O)-S-R,
R-(Y)P(=S)-S-R, P(=O)(S-R)3, P(=S)(S-R)3, P(NR)(S-R)3,
Y-P(=O) (S-R)2, Y-P(=S) (S-R)2, Y-P(NR) (S-R)2,
Y2P(=O)-S-R, Y2P(=S)-S-R or Y2P(NR)-S-R, in which R, Y, Z,
X4, X5, X6, X7, X8, X9 and t have the abovementioned
meanings and s is 1 or 2.
Carboxylic acid chlorides, dicarboxylic acid chlorides,
dicarboxylic acid dichlorides, halogen-containing
phosphorus compounds, particularly preferably P(=O)C13 or
P(=S)C13, or halogen-containing organosilicon compounds
of the form X4X5X4SiCl, X4X5X4SiBr, X4X5SiCl2, X4X5SiBr2,
X4SiCl3 or X4SiBr3, particularly preferably Me3SiCl,
C3H7-SiCl3, C4H9-SiCl3, C8H17-SiCl3 or Ci6H33-SiCl3, can
preferably be used as organic or inorganic acid
chlorides.
The reaction can be effected in the presence of an
auxiliary base in a suitable solvent.
For example, amines, preferably dialkyl-substituted
amines, particularly preferably trialkyl-substituted
amines, can be used as an auxiliary base.
Solvents used may be aprotic solvents. Alkanes,
preferably pentane, cyclohexane or heptane, aromatics or
substituted aromatics, preferably benzene, toluene,
xylene or mesitylene, can be used as aprotic solvents.
Examples of organosilicon compounds of the formula (II)
may be:
HS-CH2-Si (-O-CH2-CH2-) 3N,
HS-CH2-CH2-Si (-O-CH2-CH2-) 3N,
HS-CH2-CH2-CH2-Si (-O-CH2-CH2-) 3N,
HS-CH2-CH (CH3) -CH2-Si (-O-CH2-CH2-) 3N,
HS-CH2-Si (-O-CH (CH3) -CH2-) 3N,
HS-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N,
HS-CH2-CH2-CH2-Si (-O-CH (CH3) -CH2-) 3N or
HS-CH2-CH (CH3) -CH2-Si (-O-CH (CH3) ~CH2-) 3N.
The organosilicon compounds of the general formula (II)
can be prepared by reacting compounds of the general
formula (III),
N ( (CX^-CX^-O) 3Si-G-Su-G-Si (O-CXb^-CX^C3) 3N (III)
in which u is > 2, with alkali metals, alkaline earth
metals or hydride compounds thereof, with the aim of
forming compounds of the general formula
alkali metal-S-G-Si (O-CXV-CX^C3) 3N or N (CXb^-CXb^-O) 3Si-
G-S-alkaline earth metal-S-G-Si (O-CXb^-CXbc3) 3N.
The invention furthermore relates to a process for the
preparation of the organosilicon compounds according to
the invention, which is characterized in that a compound
of the general formula (IV),
Q(-SH) (IV)
in which Q has the abovementioned meaning, is subjected
to an addition reaction with an organosilicon compound
containing at least one double bond (=) and of the
general formula (V)
CX1X2=CX2-G1-Si (O-CX^-CX^3) 3N (V)
in which X1, X2 and X3 have the abovementioned meanings
and -CX1X2-CHX2-G1 or HCX^-CX2 (-) -G1 is G.
The addition reaction can be initiated by free radicals
or catalysed. The addition reaction can be accelerated
and/or controlled by UV light.
Preferred compounds of the general formula (IV) Q(-SH)
may be thiocarboxylic acids of the general formula
X8-C(=O)-SH. Preferred thiocarboxylic acids may be
compounds X8-C(=O)-SH where X8 is (C3-C24) -alkyl,
particularly preferably (C7-C24)-alkyl, very particularly
preferably (Cn-Ci?) -alkyl, aralkyl, preferably tolyl or
aryl, preferably phenyl. Preferred organosilicon
compounds of the general formula (V) may be CH2=CH-CH2-
Si (O-CXb^-CXbc3) 3N, CH2=CH-CH2-CH2-Si (O-CX^-CXbc3) 3N,
CH(CH3)=CH-CH2-Si(0-CX1X2-CX1X3)3N or CH2=CH-Si (O-CXbC2-
CXbc3)^, very particularly preferably CH2=CH-CH2-Si(0-CH2-
CH2)3N, CH2=CH-CH2-CH2-Si(0-CH2-CH2)3N, CH (CH3) =CH-CH2-Si (0-
CH2-CH2)3N or CH2=CH-Si (0-CH2-CH2) 3N.
The invention furthermore relates to a process for the
preparation of the organosilicon compounds according to
the invention, which is characterized in that a compound
of the general formula (VI)
Q(-S-X10) (VI)
in which Q and X10 have the abovementioned meanings, is
reacted with a compound of the general formula (VII),
halogen-G-Si (O-CXb^-CXbc3) 3N (VII)
in which G, X1, X2 and X3 have the abovementioned
meanings.
Preferred halogen may be CI, Br and I.
Preferably, compounds of the general formula (VI) may be
Q-(S-alkali metal) and compounds of the general formula
(VII) may be Cl-G-Si(0-CH2-CH2) 3N. Very particularly
preferably, compounds of the general formula (VI)
X8-C(0)-S-alkali metal or R-C(S)-S-alkali metal can be
reacted with compounds of the general formula (VII)
C1~CH2-Si(0-CH2-CH2)3N, Cl-CH2-CH2-Si (0-CH2-CH2) 3N, Cl-CH2-
CH2-CH2-Si (0-CH2-CH2) 3N, Cl-CH2-CH (CH3) -CH2-Si (0-CH2-CH2) 3N
or Cl-CH(CH3)-CH2-CH2-Si(0-CH2-CH2)3N. The preparation of
the compound of the general formula (VI) Q(~S-X10) or the
reaction thereof with compounds of the general
formula (VII) halogen-G-Si (O-CXb^-CXbc3) 3N can be carried
out by means of phase-transfer catalysis.
The invention furthermore relates to a process for the
preparation of the organosilicon compounds according to
the invention, which is characterized in that at least
one silane of the general formulae VIII-XI,
Q-[S-G-Si(alkoxy)3] (VIII)
(alkoxy) 3Si-G-S-C(=O)-Z-C(=O)-S-G-Si(alkoxy)3 (IX)
(alkoxy)3Si-G-S-C(=S)-Z-C(=S)-S-G-Si(alkoxy)3 (X)
(alkoxy)3Si-G-S-C(=NR)-Z-C(=NR)-S-G-Si(alkoxy)3 (XI)
in which G, Q, and Z have the abovementioned meanings and
alkoxy, independently of one another, are (C1-C24) -alkoxy,
preferably methoxy, ethoxy or propoxy, is reacted with
compounds of the general formula XII,
(HO-CX^-CX^-hN (XII)
in which X1, X2, and X3 have the abovementioned meanings,
with elimination of (alkoxy)-H, and (alkoxy)-H is
separated from the reaction mixture.
The reaction can be effected with or without catalysis.
The (alkoxy)-H can be separated continuously or batchwise
from the reaction mixture.
Examples of compounds of the general formula XII may be:
triethanolamine, triisopropanolamine and
[HO-CH (phenyl) CH2] 3N.
A low water content of the compounds of the formula XII
which are used may have an advantageous effect on the
composition and the product properties of the compounds
according to the invention. Preferably, the compounds of
the formula XII can have a water content of less than 1%
by weight, particularly preferably of less than 0.5% by
weight, very particularly preferably of less than 0.3% by
weight, exceptionally preferably of less than 0.2% by
weight.
The reaction can be carried out in typical organic
solvents having a boiling point of less than 200°C,
preferably less than 160°C, particularly preferably less
than 130°C, very particularly preferably less than 100°C.
A reaction in the absence of organic solvents may be
preferred.
One of the starting compounds may be present as a melt,
suspension or solution.
One or more of the reaction products may be present as a
melt, suspension or solution.
The reaction in the absence of organic solvents may be
preferred owing to the higher yields achieved compared
with the reactions in solvents.
The reaction in the absence of organic solvents may be
preferred owing to the higher purity achieved for the
products obtained compared with the reactions in
solvents.
The reaction in the absence of organic solvents may be
preferred owing to the absence of traces of solvent in
the products obtained.
The reaction in the absence of organic solvents may be
preferred owing to the minimization of volatile organic
compounds (VOC) in the products obtained.
The reaction in the absence of organic solvents may be
preferred owing to the omission of a drying step in the
process, for removing traces of solvent, compared with
the reaction in organic solvents.
In the process according to the invention, metal-free or
metal-containing catalysts can be used as a catalyst.
Metal compounds of the 3rd-7th group, of the 13th-14th
group and/or of the lanthanide group may be used as
metal-containing catalysts.
Transition metal compounds may be used as metal-
containing catalysts.
The metal-containing catalysts may be metal compounds,
such as, for example, metal chlorides, metal oxides,
metal oxychlorides, metal sulphides, metal
sulphochlorides, metal alcoholates, metal thiolates,
metal oxyalcoholates, metal amides, metal imides or
transition metal compounds having multiple bound ligands.
For example metal compounds used may be
halides, amides or alcoholates of the 3rd main group
(M3+= B,Al,Ga,In,Tl: M3+(OMe)3, M3+(OEt)3, M3+(OC3H7)3,
M3+(OC4H9)3),
halides, oxides, sulphides, imides, alcoholates, amides,
thiolates and combinations of said substituent classes
with multiple bound ligands to compounds of the
lanthanide group (rare earth metals, atomic numbers 58 to
71 in the Periodic Table of the Elements),
halides, oxides, sulphides, imides, alcoholates, amides,
thiolates and combinations of said substituent classes
with multiple bound ligands to compounds of the 3rd
subgroup (M3+= Sc,Y,La: M3+(OMe)3, M3+(OEt)3, M3+(OC3H7)3,
M3+(OC4H9)3, cpM3+(Cl)2, cp cpM3+(OMe)2, cpM3+(OEt)2,
cpM3+(NMe2)2 where cp = cyclopentadienyl) ,
halides, sulphides, amides, thiolates or alcoholates of
the 4th main group (M4+=Si, Ge, Sn, Pb: M4+(OMe)4, M4+(OEt)4,
M4+(OC3H7)4, M4+(OC4H9)4; M2+=Sn,Pb: M2+(OMe)2, M2+(OEt)2,
M2+(OC3H7)2, M2+(OC4H9)2) , tin dilaurate, tin diacetate,
Sn(OBu)2,
halides, oxides, sulphides, imides, alcoholates, amides,
thiolates and combinations of said substituent classes
with multiple bound ligands to compounds of the 4th
subgroup (M4+=Ti, Zr, Hf: M4+(F)4, M4+(C1)4, M4+(Br)4, M4+(I)4,
M4+(OMe)4, M4+(OEt)4, M4+(OC3H7)4, M4+(OC4H9)4, cp2Ti(Cl)2,
cp2Zr(Cl)2, cp2Hf(Cl)2, cp2Ti(OMe)2, cp2Zr(OMe)2,
cp2Hf(OMe)2, cpTi(Cl)3, cpZr(Cl)3, cpHf(Cl)3, cpTi(OMe)3,
cpZr(OMe)3, cpHf(OMe)3, M4+(NMe2)4, M4+(NEt2)4, M4+(NHC4H9) 4) ,
halides, oxides, sulphides, imides, alcoholates, amides,
thiolates and combinations of said substituent classes
with multiple bound ligands to compounds of the 5th
subgroup (M5+, M4+ or M3+=V,Nb,Ta: M5+(OMe)5, M5+(OEt)5,
M5+(OC3H7)5, M5+(OC4H9)5, M3+0(OMe)3, M3+0(OEt)3, M3+0 (OC3H7) 3,
M3+0(OC4H9)3, cpV(OMe)4, cpNb(OMe)3, cpTa(OMe)3, cpV(OMe)2,
cpNb(OMe)3, cpTa(OMe)3),
halides, oxides, sulphides, imides, alcoholates, amides,
thiolates and combinations of said substituent classes
with multiple bound ligands to compounds of the 6th
subgroup (M6+, M5+ or M4+=Cr,Mo,W: M6+(OMe)6, M6+(OEt)6,
M6+(OC3H7)6, M6+(OC4H9)6, M6+0(OMe)4, M6+0(OEt)4, M6+0 (OC3H7)4,
M6+0(OC4H9)4, M6+02(OMe)2, M6+02(OEt)2, M6+02 (OC3H7) 2,
M6+02(OC4H9)2, M6+02(OSiMe3)2) or
halides, oxides, sulphides, imides, alcoholates, amides,
thiolates and combinations of said substituent classes
with multiple bound ligands to compounds of the 7th
subgroup (M7+, M6+, M5+ or M4+=Mn,Re: M7+0 (OMe)5,
M7+0(OEt)5, M7+0 (OC3H7)5, M7+0(OC4H9)5, M7+02(OMe)3,
M7+02(OEt)3, M7+02(OC3H7)3, M7+02(OC4H9)3, M7+02 (OSiMe3) 3,
M7+03 (OSiMe3) , M7+03 (CH3) ) .
The metal and transition metal compounds may have a free
coordination site on the metal.
Metal or transition metal compounds which are formed by-
addition of water to hydrolysable metal or transition
metal compounds can also be used as catalysts.
For example, titanium alkoxides can be used as metal-
containing catalysts.
In a particular embodiment titanates, such as, for
example, tetra-n-butyl orthotitanate, tetraethyl
orthotitanate, tetra-n-propyl orthotitanate or tetra-
isopropyl orthotitanate, can be used as catalysts.
Organic acids can be used as metal-free catalysts.
For example, trifluoroacetic acid, trifluoromethane-
sulphonic acid, p-toluenesulphonic acid, trialkylammonium
compounds R3NH+X~ or bases, such as, for example,
trialkylamines NR3 can be used as organic acids.
The process according to the invention can be carried out
at atmospheric pressure or reduced pressure, preferably
between 1 and 600 mbar, particularly preferably between 5
and 400 mbar, very particularly preferably between 5 and
200 mbar.
The process according to the invention can be carried out
in the temperature range between 50°C and 200°C,
preferably between 70°C and 180°C, particularly
preferably between 90°C and 150°C.
Substances which promote the transport of water through
the product by formation of azeotropic mixtures can be
added to the reaction mixture before or during the
reaction. The corresponding substances may be cyclic or
straight-chain aliphatics, aromatics, mixed aromatic-
aliphatic compounds, ethers, alcohols or acids. For
example, hexane, cyclohexane, benzene, toluene, ethanol,
propanol, isopropanol, butanol, ethylene glycol,
tetrahydrofuran, dioxane, formic acid, acetic acid, ethyl
acetate or dimethylformamide may be used.
The reaction can be carried out continuously or
batchwise.
In the process according to the invention, additives can
be added to the reaction mixture before, during or after
the reaction. The additives can preferably be added
before the reaction. The additives may reduce
electrophilic or nucleophilic cleavage of the Q-S bond in
formula I.
For avoiding condensation reactions, it may be
advantageous to carry out the reaction in an anhydrous
environment, ideally in an inert gas atmosphere.
The organosilicon compounds according to the invention
can be used as adhesion promoters between inorganic
materials (for example glass fibres, metals, oxidic
fillers, silicas) and organic polymers (for example
thermosetting plastics, thermoplastics, elastomers) or as
crosslinking agents and surface-modifying agents. The
organosilicon compounds according to the invention can be
used as coupling reagents in filled rubber mixtures, for
example tyre treads.
The invention furthermore relates to rubber mixtures
which are characterized in that they contain rubber,
filler, such as, for example, precipitated silica,
optionally further rubber auxiliaries, and at least one
of the organosilicon compounds according to the invention
and of the general formula (I).
The organosilicon compounds according to the invention
and of the general formula (I) can be used in amounts of
from 0.1 to 50% by weight, preferably from 0.1 to 25% by
weight, particularly preferably from 1 to 20% by weight,
based on the amount of the rubber used.
The addition of the organosilicon compounds according to
the invention and of the general formula (I) and the
addition of the fillers can be effected at material
temperatures of from 100 to 200°C. However, they can also
be effected at lower temperatures of from 40 to 100°C,
for example together with further rubber auxiliaries.
The organosilicon compounds according to the invention
can be added to the mixing process both in pure form and
after application to an inert organic or inorganic
support, and after a preliminary reaction with an organic
or inorganic support. Preferred support materials may be
precipitated or pyrogenic silicas, waxes, thermoplastics,
natural or synthetic silicates, natural or synthetic
oxides, preferably alumina, or carbon blacks.
Furthermore, the organosilicon compounds according to the
invention can also be added to the mixing process after
preliminary reaction with the filler to be used.
The organosilicon compounds according to the invention
can be added to the mixing process after being physically
mixed with an organic substance or with a mixture of
organic substances. The organic substance or the mixture
of organic substances may contain polymers or oligomers.
The polymers or oligomers may be heteroatom-containing
polymers or oligomers, for example ethylene-vinyl
alcohol, ethylene-vinyl acetate, polyvinyl acetate and/or
polyvinyl alcohols. Polymers or oligomers may be
saturated or unsaturated elastomers, preferably emulsion
SBR and/or solution SBR. The melting point of the mixture
of organosilicon compounds according to the invention and
organic substance or a mixture of organic substances may
be between 50 and 200°C, preferably between 70 and 180°C,
particularly preferably between 70 and 150°C, very
particularly preferably between 70 and 130°C,
exceptionally preferably between 90 and 110°C. The
organic substance or the mixture of organic substances
may contain at least one olefinic wax and/or long-chain
carboxylic acids.
Fillers which may be used for the rubber mixtures
according to the invention are the following fillers:
Carbon blacks: the carbon blacks to be used can be
prepared by the flame black, furnace, gas black or
thermal black process. The carbon blacks may have a
BET surface area of from 20 to 200 m2/g. The carbon
blacks can optionally also be doped, such as, for
example, with Si.
Amorphous silicas, prepared, for example, by
precipitation of solutions of silicates (precipitated
silicas) or flame hydrolysis of silicon halides
(pyrogenic silicas). The amorphous silicas may have a
specific surface area of from 5 to 1000 m2/g,
preferably from 20 to 400 m2/g (BET surface area) and
a primary particle size of from 10 to 400 nm. The
silicas can optionally also be present as mixed
oxides with other metal oxides, such as Al, Mg, Ca,
Ba, Zn and titanium oxides.
Synthetic silicates, such as aluminium silicate or
alkaline earth metal silicates, for example magnesium
silicate or calcium silicate. The synthetic silicates
may have BET surface areas of from 20 to 400 m2/g and
primary particle diameters of from 10 to 400 nm.
Synthetic or natural aluminas and aluminium
hydroxides.
Natural silicates, such as kaolin and other naturally
occurring silicas.
Glass fibres and glass fibre products (mats,
extrudates) or glass microspheres.
Amorphous silicas, prepared by precipitation of solutions
of silicates (precipitated silicas), having BET surface
areas of from 20 to 400 m2/g in amounts of from 5 to
150 parts by weight, based in each case on 100 parts of
rubber, can preferably be used.
Said fillers can be used alone or as a mixture. In a
particularly preferred embodiment of the process, from 10
to 150 parts by weight of light fillers, optionally
together with from 0 to 100 parts by weight of carbon
black, and from 1 to 20 parts by weight of a compound of
the organosilicon compounds according to the invention,
based in each case on 100 parts by weight of rubber, can
be used for the preparation of the mixtures.
In addition to natural rubber, synthetic rubbers are also
suitable for the preparation of the rubber mixtures
according to the invention. Preferred synthetic rubbers
are described, for example, in W. Hofmann,
Kautschuktechnologie [Rubber technology], Genter Verlag,
Stuttgart 1980. They comprise, inter alia,
polybutadiene (BR),
polyisoprene (IR),
styrene/butadiene copolymers, for example emulsion
SBR (E-SBR) or solution SBR (S-SBR), preferably
having a styrene content of from 1 to 60% by weight,
particularly preferably from 2 to 50% by weight,
based on the total polymer,
chloroprene (CR),
isobutylene/isoprene copolymers (IIR),
butadiene/acrylonitrile copolymers, preferably having
an acrylonitrile content of from 5 to 60% by weight,
preferably from 10 to 50% by weight, based on the
total polymer (NBR),
partly hydrogenated or completely hydrogenated NBR
rubber (HNBR),
ethylene/propylene/diene copolymers (EPDM) or
abovementioned rubbers which additionally have
functional groups, such as, for example, carboxyl,
silanol or epoxy groups, for example epoxidized NR,
carboxy-functionalized NBR or silanol-(-SiOH) or
silyloxy-functionalized (-Si-OR) SBR,
and blends of these rubbers. For the preparation of car
tyre treads, anionically polymerized S-SBR rubbers
(solution SBR) having a glass transition temperature
above -50°C and blends thereof with diene rubbers are of
particular interest.
The rubber vulcanizates according to the invention may
contain further rubber auxiliaries, such as reaction
accelerators, antiageing agents, heat stabilizers, light
stabilizers, antiozonants, processing auxiliaries,
plasticizers, tackifiers, blowing agents, dyes, pigments,
waxes, extenders, organic acids, retardants, metal oxides
and activators, such as diphenylguanidine,
triethanolamine, polyethylene glycol, alkoxy-terminated
polyethylene glycol alkyl-O- (CH2-CH2-0) yi-H where y1 =
2-25, preferably y1 = 2-15, particularly preferably y1 =
3-10, very particularly preferably y1 = 3-6, or
hexanetriol, which are known to the rubber industry.
The vulcanization of the rubber mixtures according to the
invention can be carried out without addition of
nitrogen-containing activators, such as, for example,
guanidines and amines. In a preferred embodiment, the
rubber vulcanizate may be free of guanidine derivatives.
The rubber auxiliaries can be used in known amounts which
depend, inter alia, on the intended use. Customary
amounts may be, for example, amounts of from 0.1 to 50%
by weight, based on rubber. Sulphur or sulphur-donating
substances may be used as crosslinking agents. Over and
above this, the rubber mixtures according to the
invention may contain vulcanization accelerators.
Examples of suitable vulcanization accelerators may be
mercaptobenzothiazoles, sulphenamides, guanidines,
thiurams, dithiocarbamates, thioureas and thiocarbonates.
The vulcanization accelerators and sulphur can be used in
amounts of from 0.1 to 10% by weight, preferably from 0.1
to 5% by weight, based on rubber.
The vulcanization of the rubber mixtures according to the
invention can be effected at temperatures of from 100 to
200°C, preferably from 130 to 180°C, optionally under
pressure of from 10 to 200 bar. The mixing of the rubbers
with the filler, optionally rubber auxiliaries and the
organosilicon compound according to the invention can be
carried out in known mixing units, such as roll mills,
internal mixers and mixing extruders.
The rubber mixtures according to the invention can be
used for the production of mouldings, for example for the
production of pneumatic tyres, tyre treads, cable
sheaths, hoses, drive belts, conveyor belts, roll
coverings, tyres, shoe soles, sealing rings and damping
elements.
The organosilicon compounds according to the invention
have the advantage that no readily volatile alcohol,
usually methanol or ethanol, is liberated during the
hydrolysis of the Si-O-R bonds and at the same time the
reactivity with the inorganic filler and the organic
polymer is still high. The processing properties of the
raw mixtures and the dynamic properties of the
vulcanizates give a very good, balanced set of values
overall.
Examples
The HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N used is synthesized from
HS-CH2-CH2-CH2-Si(0-CH2-CH3)3 with triethanolamine in the
presence of Ti(OBu)4 at temperatures of 110-130°C under
reduced pressure and in a reaction time of 180-360 min by
transesterification in the absence of a solvent.
The HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N contains between 1 and
6% by weight of Cl-CH2-CH2-CH2-Si (0-CH2-CH2) 3N, depending
on the quality of the HS-CH2-CH2-CH2-Si (0-CH2-CH3) 3 used.
Cl-CH2-CH2-CH2-Si (0-CH2-CH3)3 is present as a secondary
constituent in the HS-CH2-CH2-CH2-Si (0-CH2-CH3) 3 used and
is converted into Cl-CH2-CH2-CH2-Si (0-CH2-CH2) 3N under the
reaction conditions.
Comparative Example 1
Preparation of CH3-C (0) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
38.5 g of triethylamine are added at 0°C to a solution of
100 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N in 1000 ml of
toluene. The mixture is stirred for 10 min at 0°C. 29.4 g
of acetyl chloride are added dropwise to the mixture at a
temperature between -5°C and 0°C. After stirring for
60 min at between 0° and room temperature, the suspension
formed is heated to 80°C for 3 h. Thereafter, the
suspension is filtered, the filtercake is washed with
toluene, the filtrates obtained are combined and the
solvent is removed on a rotary evaporator. 114 g of
viscous product are obtained. According to NMR analyses,
the product contains 87 mol% of CH3-C (0) -S-CH2-CH2-CH2-
Si(0-CH2-CH2)3N, 9 mol% of HS-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
and 3 mol% of Cl-CH2-CH2-CH2-Si (0-CH2-CH2) 3N, based on the
silicon-containing constituents.
Example 1
Preparation of C7H15-C (0) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
40.6 g of triethylamine are added at 0°C to a solution of
100 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N in 1000 ml of
toluene. The mixture is stirred for 10 min at 0°C. 65.3 g
of octanoyl chloride are added dropwise to the mixture at
a temperature between -5°C and 0°C. After stirring for
60 min at between 0° and room temperature, the suspension
obtained is filtered, the filtercake is washed, the
filtrates obtained are combined and the solvent is
removed on a rotary evaporator. 141.6 g of viscous
product are obtained. According to NMR analyses, the
product contains 93 mol% of C7H15-C (0) -S-CH2-CH2-CH2-Si (0-
CH2-CH2)3N, 5 mol% of HS-CH2-CH2-CH2-Si (0-CH2-CH2) 3N and 2
mol% of Cl-CH2-CH2-CH2-Si(0-CH2-CH2)3N, based on the
silicon-containing constituents.
Example 2
Preparation of CuH23-C (0) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
38.5 g of triethylamine are added at 0°C to a solution of
100 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N in 1000 ml of
toluene. The mixture is stirred for 10 min at 0°C. 83.2 g
of dodecanoyl chloride are added dropwise to the mixture
at a temperature between -5°C and 0°C. After stirring for
15 h at between 0° and room temperature, the suspension
obtained is filtered, the filtercake is washed, the
filtrates obtained are combined and the solvent is
removed on a rotary evaporator. 162.4 g of viscous
product are obtained. According to NMR analyses, the
product contains >86 mol% of CnH23-C (0)-S-CH2-CH2-CH2-
Si (0-CH2-CH2)3N, 9 mol% of HS-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
and 3 mol% of Cl-CH2-CH2-CH2-Si (0-CH2-CH2) 3N, based on the
silicon-containing constituents.
Example 3
Preparation of C15H31-C (0) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
38.5 g of triethylamine are added at 0°C to a solution of
100 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N in 1000 ml of
toluene. The mixture is stirred for 15 min at 0°C.
104.5 g of palmitoyl chloride are added dropwise to the
mixture at a temperature between -10°C and 0°C. After
stirring for 18 h at room temperature the suspension
obtained is filtered, the filtercake is washed, the
filtrates obtained are combined and the solvent is
removed on a rotary evaporator. 18 6.3 g of viscous
product are obtained. According to NMR analyses, the
product contains 88 mol% of Ci5H3i-C (0) -S-CH2-CH2-CH2-Si (0-
CH2-CH2)3N, 8 mol% of HS-CH2-CH2-CH2-Si (0-CH2-CH2) 3N and 3
mol% of Cl-CH2-CH2-CH2-Si(0-CH2-CH2)3N, based on the
silicon-containing constituents.
Example 4
Preparation of N (CH2CH2-0) 3Si (CH2) 3S-C (0)-C4H8-C (0) -
S(CH2)3Si(0-CH2CH2)3N
4 0.5 g of triethylamine are added at 0°C to a solution of
100 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N in 1000 ml of
toluene. The mixture is stirred for 15 min at 0°C. 53.5 g
of adipoyl dichloride are added dropwise to the mixture
at a temperature between -10°C and 0°C. After stirring
for 2 h at room temperature, the suspension formed is
heated to 70°C for 2 h. The suspension obtained is
filtered, the filtercake is washed, the filtrates
obtained are combined and the solvent is removed on a
rotary evaporator. 98.4 g of viscous product are
obtained. According to NMR analyses, the product contains
93 mol% of N(CH2CH2-0)3Si(CH2)3S-C(0)-C4H8-C(0)-S(CH2)3Si(0-
CH2CH2)3N, 2 mol% of HS-CH2-CH2-CH2-Si (0-CH2-CH2) 3N and
4 mol% of Cl-CH2-CH2-CH2-Si(0-CH2-CH2)3N, based on the
silicon-containing constituents.
Example 5
Preparation of N (CH2CH2-0) 3Si (CH2) 3S-C (0)-C10H20-C (0)-
S(CH2)3Si(0-CH2CH2)3N
38.5 g of triethylamine are added at 0°C to a solution of
100 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N in 1000 ml of
toluene. The mixture is stirred for 15 min at 0°C. 50.8 g
of dodecanedioyl chloride are added dropwise to the
mixture at a temperature between -10°C and 0°C. After
stirring for 2 h at room temperature, the suspension
formed is heated to 70°C for 3 h. The suspension obtained
is cooled and filtered, the filtercake is washed with
toluene, the filtrates obtained are combined and the
solvent is removed on a rotary evaporator. 132.4 g of
viscous product are obtained. According to NMR analyses,
the product contains 91 mol% of N (CH2CH2-0) 3Si (CH2) 3S-
C(O)-Ci0H20-C(O)-S(CH2)3Si(O-CH2CH2)3N, 2 mol% of HS-CH2-
CH2-CH2-Si(0-CH2-CH2)3N and 4 mol% of Cl-CH2-CH2-CH2-Si (0-
CH2-CH2)3N, based on the silicon-containing constituents.
Example 6
Rubber investigations
The formulation used for the rubber mixtures is stated in
Table 1 below. There, the unit phr denotes parts by-
weight based on 100 parts of the raw rubber used. The
organosilicon compounds according to the invention are
used in equimolar amounts, i.e. in an amount of substance
identical to the amount of the silane of Comparative
Example 1. The following coupling agents are
investigated:
Mixture 1: Comparative Example 1
Mixture 2: 3-octanoylthio-l-propyltriethoxysilane,
Trade name: NXT from General Electric
Mixture 3: Example 1
Mixture 4: Example 2
Mixture 5: Example 3
The general process for the preparation of rubber
mixtures and the vulcanizates thereof is described in the
book: "Rubber Technology Handbook", W. Hofmann, Hanser
Verlag 1994.
The polymer VSL 5025-1 is a solution-polymerized SBR
copolymer from Bayer AG, having a styrene content of 25%
by weight and a butadiene content of 7 5% by weight. The
copolymer contains 37.5 phr of oil and has a Mooney
viscosity (ML l+4/100°C) of 50.
The polymer Buna CB 24 is a cis-1,4-polybutadiene
(neodymium grade) from Bayer AG, having a cis-1,4 content
of at least 96% and a Mooney viscosity of 44±5.
Ultrasil 7000 GR is a readily dispersible silica from
Degussa AG and has a BET surface area of 170 m2/g.
Naftolen ZD from Chemetall is used as an aromatic oil,
Vulkanox 4020 is PPD from Bayer AG and Protektor G3108 is
an antiozonant wax from Paramelt B.V. Vulkacit CZ (CBS)
is a commercial product from Bayer AG. Perkacit TBzTD
(tetrabenzylthiuram tetrasulphide) is a product from
Flexsys N.V.
The rubber mixtures are prepared in an internal mixer
according to the mixing method in Table 2.
Table 4 shows the results of the rubber test. The
mixtures are vulcanized to t99% of the rheometer test but
for not longer than 30 min at 165°C.
The results of Table 4 show that the viscosity of the
mixture can be reduced by lengthening the blocking group
from acetyl through octanoyl to palmityl. Comparison of
the mixture 2 with the mixture 3 shows that the viscosity
too is reduced by the modification of the silane. Thus,
the silanes according to the invention are distinguished
by better processability compared with the prior art.
On consideration of the vulcanizate results, it is
evident that both the ball rebound and the heat build-up
of the mixtures 3, 4 and 5 comprising the silanes
according to the invention are substantially improved
compared with the mixtures 1 and 2.
Thus, it is found that advantages both in the
processability and in the dynamic behaviour can be
produced exclusively by the combination of the
modification of the silica-active coupling group and
simultaneous blocking of the sulphur group.
Both the higher ball rebound and the lower heat build-up
indicate that tyre treads comprising the silanes
according to the invention lead to a lower rolling
resistance and hence fuel consumption. In addition, the
dynamic heat build-up is lower, which increases the
longevity of the tyre. By means of the organosilicon
compounds according to the invention, the processability
of the rubber mixture and at the same time the dynamic
behaviour can therefore be improved.
In addition, the organosilicon compounds according to the
invention are distinguished in that no volatile alcohol
is liberated during the mixing.
Example 7
Preparation of C4H9-NH-C (0)-S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
70 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N and 44.5 g of
0=C=N-C4Hg (from Sigma-Aldrich) are combined in 100 g of
toluene (Seccosolv) under inert gas at 25°C in a flask
and are stirred for 24 h. Stirring is then effected for
5 h at 60°C. The solution obtained is freed from volatile
constituents on a rotary evaporator at 80°C in vacuo.
100 g of a viscous dark, orange oil are obtained.
Example 8
Preparation of C8Hi7-NH-C (0) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
40 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N and 25 g of
0=C=N-C8Hi7 (from Sigma-Aldrich) are combined in 100 g of
toluene (Seccosolv) under inert gas at 25°C in a flask
and are stirred for 24 h. Stirring is then effected for
5 h at 60°C. The solution obtained is freed from volatile
constituents on a rotary evaporator at 80°C in vacuo.
65 g of a viscous yellow oil are obtained.
Example 9
Preparation of C6H5-NH-C (0) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
75 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N and 55 g of
0=C=N-C6H5 (from VWR) are combined in 100 g of toluene
(Seccosolv) under inert gas at 25°C in a flask and are
stirred for 48 h. A colourless precipitate forms. The
suspension obtained is filtered and the filtercake is
washed with 500 ml of pentane. The filtercake is then
dried at 80-90°C in vacuo. 110 g of a colourless solid
are obtained.
Example 10
Preparation of C4H9-NH-C (S)-S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
70 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N and 50 g of
S=C=N-C4H9 (from KMF-Laborchemie) are combined in 100 g
of toluene (Seccosolv) under inert gas at 25°C in a flask
and are stirred for 48 h. Stirring is then effected for
5 h at 60°C. The solution obtained is freed from volatile
constituents on a rotary evaporator at 80°C in vacuo.
102 g of a viscous orange-brown oil are obtained.
Example 11
Preparation of C8Hi7-NH-C (S) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
30 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N and 25 g of
S=C=N-C8Hi7 (from KMF-Laborchemie) are combined in 100 g
of toluene (Seccosolv) under inert gas at 25°C in a flask
and are stirred for 24 h. Stirring is then effected for
5 h at 60°C. The solution obtained is freed from volatile
constituents on a rotary evaporator at 80°C in vacuo.
55 g of a viscous yellow-orange oil are obtained.
Example 12
Preparation of C6H5-NH-C (S) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
75 g of HS-CH2-CH2-CH2-Si(0-CH2-CH2)3N and 50 g of
S=C=N-C6H5 (from VWR) are combined in 100 g of toluene
(Seccosolv) under inert gas at 25°C in a flask and are
stirred for 48 h. A wax-coloured precipitate, which does
not dissolve even in an additional 235 g of toluene,
forms. Stirring is then effected for 5 h at 60°C. The
suspension obtained is filtered and the filtercake is
washed with 700 ml of pentane. The filtercake is then
dried at 80-90°C in vacuo. 100 g of a colourless solid
are obtained.
Example 13
Preparation of Me3Si-S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
44.5 g of triethylamine are added at 1°C to a cooled
solution of 100 g of HS-CH2-CH2-CH2-Si (0-CH2-CH2) 3N in
1000 ml of toluene (Seccosolv). The mixture is stirred
for 10 min at 3-6°C. 47.8 g of trimethylsilyl chloride
are added dropwise to the mixture at a temperature
between 1°C and 10°C. After stirring for 60 min, the
suspension formed is heated to 70°C for 5 h, then cooled
and then filtered. The filtercake is washed, the
filtrates obtained are combined and the solvent is
removed on a rotary evaporator. 129 g of orange viscous
product are obtained.
Example 14
Preparation of Ci6H33-Si-[S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N] 3
44.5 g of triethylamine are added at 0°C to a cooled
solution of 100 g of HS-CH2-CH2-CH2-Si (0-CH2-CH2) 3N in
1000 ml of toluene (Seccosolv). The mixture is stirred
for 10 min at 2-4 °C. 46.8 g of Ci6H33-SiCl3 are added
dropwise to the mixture at a temperature between 2°C and
10°C. After stirring for 60 min, the suspension formed is
heated to 70°C for 5 h, then cooled and then filtered.
The filtercake is washed, the filtrates obtained are
combined and the solvent is removed on a rotary
evaporator. 130 g of orange viscous product are obtained.
Example 15
Preparation of C6H5-(C=0)-S-CH2-CH2-CH2-Si (O-CH (CH3)-CH2) 3N
36 g of triethylamine are added at 2°C to a cooled
solution of 100 g of HS-CH2-CH2-CH2-Si (O-CH (CH3)-CH2) 3N in
1000 ml of toluene (Seccosolv). The mixture is stirred
for 10 min at 2-4°C. 49.2 g of benzoyl chloride are added
dropwise to the mixture at a temperature between 2°C and
10°C. After stirring for 60 min, the suspension formed is
heated to 65°C for 5 h, then cooled and then filtered.
The filtercake is washed, the filtrates obtained are
combined and the solvent is removed on a rotary
evaporator. 138 g of orange viscous product are obtained.
Example 16
Preparation of C7H15-(C=0)-S-CH2-CH2-CH2-Si (O-CH (CH3)-CH2) 3N
35.4 g of triethylamine are added at 3°C to a cooled
solution of 100 g of HS-CH2~CH2-CH2-Si (O-CH (CH3)-CH2) 3N in
1000 ml of toluene (Seccosolv). The mixture is stirred
for 10 min at 2-4°C. 56.9 g of octanoyl chloride are
added dropwise to the mixture at a temperature between
2°C and 10°C. After stirring for 60 min, the suspension
formed is heated to 65-70°C for 5 h, then cooled and then
filtered. The filtercake is washed, the filtrates
obtained are combined and the solvent is removed on a
rotary evaporator. 150 g of orange viscous product are
obtained.
Example 17
Preparation of CuH23- (C=0) -S-CH2-CH2-CH2-Si (O-CH (CH3) -
CH2)3N
35.4 g of triethylamine are added at 3°C to a cooled
solution of 100 g of HS-CH2-CH2-CH2-Si (O-CH (CH3) -CH2) 3N in
1000 ml of toluene (Seccosolv). The mixture is stirred
for 10 min at 2-4°C. 76.6 g of dodecanoyl chloride are
added dropwise to the mixture at a temperature between
2°C and 10°C. After stirring for 60 min, the suspension
formed is heated to 68-72°C for 5 h, then cooled and then
filtered. The filtercake is washed, the filtrates
obtained are combined and the solvent is removed on a
rotary evaporator. 163 g of orange viscous product are
obtained.
Example 18: Rubber investigations
The formulation used for the rubber mixtures is stated in
Table 5 below. There, the unit phr denotes parts by
weight based on 100 parts of the raw rubber used. The
organosilicon compounds according to the invention are
used in equimolar amounts, i.e. in an amount of substance
identical to the amount of the silane of Comparative
Example 1.
The rubber mixtures are prepared in an internal mixer
according to the mixing method in Table 6. Table 3 lists
the methods for rubber testing.
As is evident from the results, mixtures 7 to 9
comprising the organosilicon compounds according to the
invention have a lower viscosity and hence better
processing properties. At the same time, they also have a
smaller heat build-up and permanent set and hence
advantageous dynamic properties.
Example 19
Preparation of C7H15-C (0)-S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
100 g of S-[3-(triethoxysilyl)propyl] octanethioate [CAS
No. 220727-26-4], 41 g of triethanolamine (from BASF AG)
and 1 g of NaOH are combined under inert gas at 25°C in
an appartus and are heated to 130°C. Thereafter, stirring
is effected for 3 h at 130°C and 50-200 mbar and the
ethanol liberated is distilled off. 125 g of product are
obtained.
Example 20
Preparation of C6H5-C (0)-S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
91 g of Cl-CH2-CH2-CH2-Si (0-CH2-CH2)3N, 50 g of thiobenzoic
acid and 250 g of dry DMF are combined under inert gas at
25°C in a flask. 36.5 g of triethylamine are added
dropwise to the mixture, and the solution obtained is
stirred for 120 min at room temperature and then for
240 min at 140°C. Cooling is effected and 300 ml of dry
toluene are added. The precipitate is separated off by
filtration and washed with toluene, and the filtrate is
as far as possible freed from the solvent'on a rotary
evaporator. 142 g of a viscous, dark red product are
obtained.
Example 21
Preparation of C6H5-C (0) -S-CH2-CH2-CH2-Si (0-CH2-CH2) 3N
91 g of Cl-CH2-CH2-CH2-Si(0-CH2-CH2)3N, 50 g of thiobenzoic
acid and 300 g of dry toluene are combined under inert
gas at 25°C in a flask. 36.5 g of triethylamine are added
dropwise to the mixture, and the solution obtained is
stirred for 120 min at room temperature and then for
240 min at 108°C. The suspension is cooled, the
precipitate is separated off by filtration and washed
with toluene, and the filtrate is freed from the solvent
on a rotary evaporator. 127 g of a viscous, dark red
product are obtained.
WE CLAIM:
1. Organosilicon compounds of the general formula (I),
Q-[S-G-Si(-O-CX1X2-CX1X3-)3N] (I)
in which Q is
SiX43.tX5t-, where t = 0, 1 or 2,
Y-C(=O)-Z-C(=O)-, Y-C(=S)-Z-C(=S)-,
Y-C(=NR)-Z-C(=NR)-, Y-C(=O)-, Y-C(=S)-, Y-C(=NR}-, Y-S{=0)-, Y-S(=O)2-, (X6) (X7)P(=S)-, (X6) (X7)P(=O)-,
X8-C(=O)-, R-C(=S)-, R-C(=NR)-, R-S-C(=NR)-,
R-S-'C(=O)-/ R-S-C(=S)-, (X9)2N-C(=O)-, .-(X9)2N-C(=S)-,
R-NR-C(=NR)-, (X8)2N-C(=O)-, (X8) 2N-C (=S) -,
(X8)HN-C(=O)-, (.X8).NH-C(=S)-,R-O-C(=O)-, X9-O-C(=S)-,
R-O-C(=NR)-, R-S(=O)-, R-S(=O)2-, R-O-S(=O)2-,
R-NR-S(=O)2-, R-S-S(=O)2-, R-S-S(=O)-, R-O-S(=O)-,
R-NR-S(=O)-, (R-S-)2P(=O)-, (R~S-)2P(=S)-,
(R-NR-)2P(=S)-, (R-NR-)2F(=O)-, R-(R-S-) P (=O)-,
R-(R-O-)P(=O)-, R-(R-S-)P(=S)-, R-(R-O-)P(=S)-, R-
(R-NR-)P(=O)-, R-(R-NR-)P(=S)-, (R-NR-)(R-S-)P(=O)-,
(R-O-)(R-NR-)P(=O)-, (R-O-)(R-S-)P(=O)-,
(R-O-)(R-S-)P(=S)-, (R-NR-)(R-S-)P(=S)-,
(R-O-)(R-NR-)P(-S)-, (R-O-) (Y)P(=O)-, (R-O-)(Y)P(=S)-,
(R-S-) (Y) P (=O) -, (R-S-) (Y) P (=S).-, (R-NR-) (Y) P (=O) -,
(R-NR-) (Y)P{=S)-, R-(Y)P(=O)-, R-(Y)P(=S)-, Y2P(=O)-,
Y2P(=S)- or Y2P(NR)-,
R are identical or different and are hydrogen (H), a
straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated monovalent
(C1-C24) -hydrocarbon chain,
an unsubstituted or -NH2, HS-, Cl- or Br-substituted
(C6-C24) -aryl group or
an unsubstituted or -NH2, HS-, Cl- or Br-substituted
(C7-C24) -aralkyl group,
Y are identical or different and are [-S-G-Si(-O-CX1X2-
CX1X3-)3N]f
G are identical or different and
when Q is C6H5-C(=O)-
G is a straight-chain, cyclic or" branched, substituted
or unsubstituted, saturated or unsaturated divalent
(C3-C30)-hydrocarbon chain; optionally, the hydrocarbon
chains may contain unsaturated moieties or may be
substituted by them,
and for' all other Q
G is a straight-chain, cyclic or branched, substituted
or unsubstituted, saturated or unsaturated divalent
(C1-C30) -hydrocarbon chain; optionally, the hydrocarbon
chains may contain unsaturated moieties or may be
substituted by them,
Z is a straight-chain, cyclic or branched, substituted
or unsubstituted, saturated or unsaturated divalent
(C1-C24)-hydrocarbon chain; optionally, the hydrocarbon
chains may contain unsaturated moieties or may be
substituted by them, or is a divalent, aliphatic or
aromatic, saturated or unsaturated hydrocarbon chain
functionalized with at least two NH groups,
X , X and X , in each case independently of one
another, denote hydrogen (-H), (C1-C16)-alkyl or aryl,
X4 and X5, in each case independently of one another,
denote hydrogen (-H), a straight-chain, cyclic or
branched, substituted or unsubstituted, saturated or
unsaturated monovalent (C1-C24)-hydrocarbon chain,
a (C1-C18)-alkoxy group, an aryl group, an alkylether
group 0-(CRI2-'CRI2)-O-Alk or alkylpolyether group
0- (CRI2- CRI2O)y-Alk, where y = 2-25, R1, independently
of one another, are H or an alkyl group,
Alk is a linear or branched, saturated or unsaturated
alkyl chain having 1-30 carbon atoms (C1-C30),
an aralkyl group,
a halogen,
a radical Alk-(COO) ,
or Y,
X6 and X7, in each case independently of one another,
denote
hydrogen (-H), -OH, -SH,
a straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated monovalent
(C1-C.24) -hydrocarbon chain,
a (C4-C24)-alkoxy group, an aryl group, an alkylether
group O-CRI2-CRI2-O-Alk or
alkylpolyether group 0-(GRI2- CRI2O)y-Alk,
an aralkyl group,
a halogen or
a radical Alk-(COO) ,
X8 are identical or different and denote hydrogen (H),
a straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated monovalent
(C2-C24)-hydrocarbon chain,
an -NH2, HS-, C1-, Br-substituted (C6-C24) -aryl group,
an unsubstituted (C6-C24) -aryl group or
an unsubstituted or -NH2, HS-, Cl- or Br-substituted
(C7-C24) -aralkyl group,
X9 are identical or different and denote hydrogen (H),
a straight-chain, cyclic or branched, substituted or
unsubstituted, saturated or unsaturated monovalent
(C4-C24)-hydrocarbon chain,
an -NH2/ HS-, Cl- or Br-substituted (C6-C24) -aryl
group,
an unsubstituted (C7-C24) -aryl group or
an unsubstituted or -NH2, HS-, Cl- or Br-substituted
(C7-C24)-aralkyl group.
2. Organosilicon compounds as claimed in Claim 1,
wherein they are applied or mixed to an
inert organic or inorganic support or are subjected to
preliminary reaction with,an organic or inorganic
support.
3. Process for the preparation of the organosilicon
compounds as claimed in Claim 1, wherein
at least one organosilicon compound of the general
formula (II),
X10[S-G-Si(-O-CX1X2-CX1X3-)3N] (II)
in which R, Y, Z,'X4, X5, X6, X7, X8, X9' and t have the
same meanings as in formula (I) and X10 is H, alkali
metal, alkaline earth metal or ammonium cation, is
reacted with at least one compound selected from the
group consisting of
Y-C(=O)--O-C(=O)-Y, Y-C(=S)-O-C(=S)-Y, Y-C (=NR) -O-C (=NR) -
Y, Y-C (=O)-S-C (=O)-Y, Y-C(=S)-S-C(-S)-Y, Y-C(=NR)-S-
C(=NR)-Y, Y-S(=O)-O-S(=O)-Y, Y-S (=O)2-O-S (=O) 2-Y, X8-
C (=O) -O-C (=O) -X8, X8-C (=O) -S-C (=O) -X8,
R-C(=S)-O-C{=0)-R, R-C(=S)-S-C(=O)-R,
R-S-C(=O)-O-C(=O)-S-R, R-S-C(=O)-S-C(=O)-S-R,
R-S-C(=S)-O-C(=S)-S-R, R-S-C(=S)-S-C(=S) -S-R,
R-O-C(=O)-O-C(=O)-OR, R-O-C(=O)-S-C(=O)-OR,
R-O-C(=S)-O-C(=S)-OR, R-O-C(=S)-S-C(=S) -OR,
R-S(=O)-O-S(=O)-R, R-S(=O)-S-S(=O) -R,
R-O-S(=O)-O-S(=O)-O-R, R-O-S(=O)-S-S(=O)-O-R,
R-O-S(=S)-O-S(=S)-O-R, R-O-5i=S)-S-S(=S)-O-R,
R-S-S(=O)-O-S(=O)-S-R, R-S-S(=O)-S-S(=O)-S-R,
R-S-S(=S)-O-S(=S)-S-R, R-S-S (=S)-S-S(=S)--S-R,
R-S(=O)2-O-S(=O)2-R, R-S(=O)2-S-S(=O)2-R,
R-S(=s)2-o-s(=s)2-R; R-S(=S)2-S-S(=S)2-R,
R-O-S (=O) 2-O-S (=O) 2-O-R, R-O-S (=O) 2-S-S (=O) 2-O-R,
R-O-S (=S)2-O-S(=S)2-O-R, R-O-S (=S) 2-S-S (=S)2-O-R,
R-S-S(=O) 2-O-S (=O)2-S-R, R-S-S(=O) 2-S-S (=O)2-S-R,
R-S-S (=S)2-O-S(=S)2-S-R, R-S-S (=S) 2-S-S (=S)2-S-R,
SiX4sX52-s (Y) -S-SiX4sX52-s (Y) , SixVtX5t-S-SixVtX5t,
Y2SiX4-S-SiX5Y2, Y2P(=O)-S-P(=O)Y2, Y2P (=S) -S-P (=S) Y2,
SiX43-tX5t-halogen, halogen-C (=O)-Z-C (=O)-halogen, halogen-
C(=S)-Z-C(=S)-halogen, halogen-C (=NR)-Z-C(=NR)-halogen,
Y-C(=O)-Z-C(=O)-halogen, Y-C(=S)-Z-C(=S)-halogen,
Y-C(=NR)-Z-C(=NR)-halogen, halogen-C(=O)-halogen,
halogen-C(=S)-halogen, halogen-C(=NR)-halogen, halogen-
S (=O)-halogen, halogen-S (==0)2-halogen, Y-C (=O)-halogen,
Y-C(=S)-halogen, Y-C(=NR)-halogen, Y-S(=O)-halogen,
Y-S(=O)2-halogen, (X6) (X7) P (=S)-halogen,
(X6) (X7)P(=O)-halogen, X8-C (=O)-halogen, R-C (=S) -halogen,
R-C(=NR)-halogen, R-S-C(=NR)-halogen, R-S-C(=O)-halogen,
R-S-C(=S)-halogen, (X9) 2N-C (=O)-halogeh, (X9) 2N-C (=S) -
halogen, R-NR-C(=NR)-halogen, R-O-C(=O)-halogen, X9-O-
C(=S)-halogen, R-O-C(=NR)-halogen, R-S(=O)-halogen,
R-S(=O)2-halogen, R-O-S(=O)2-halogen, R-NR-S(=O)2-
halogen, R-S-S (=O) 2-halogen, R-S-S(=O)-halogen, R-O-
S(=O)-halogen, R-NR-S(=O)-halogen, (R-S-)2P(=O)-halogen,
(R-S-) 2P (=S) -halogen, (R-NR-) 2P (=S) ,-halogen,
(R-NR-)2P(=O)-halogen, R-(R-S-)P(=O)-halogen,
R-(R-O-)P(=O)-halogen, R-(R-S-)P (=S)-halogen,
R- (R-O-)P(=S)-halogen, R-(R-NR-)P(=O)-halogen,
R-(R-NR-)P(=S)-halogen, (R-NR-) (R-S-)P (=O)-halogen,
(R-O-) (R-NR-)P(=O)-halogen, (R-O-) (R-S-)P{=0)-halogen,
(R-O-)(R-S-)P(=S)-halogen, (R-NR-)(R-S-)P(=S)-halogen,
(R-O-) (R-NR-)P(=S)-halogen, (,R-O-)P(=O) (0-R)2,
(R-O-)P(=S) (0-R)2, (R-S-)P(=O) (0-R)2, (R-S-) P(=S) (0-R)2,
(R-NR-)P(=O) (0-R)2, (R-NR-)P(=S) (0-R)2, R-P (=O) (0-R) 2,
R-P(=S)(0-R)2, (R-O-)(Y)P(=O)-halogen,
(R-O-) (Y)P(=S)-halogen, (R-S-) (Y) P(=O)-halogen,
(R-S-) (Y)P(=S)-halogen, (R-NR-) (Y) P(=O)-halogen, (R-NR-)(Y)P(=S)-halogen, R-(Y)P(=O)-halogen,
R-(Y)P(=S) -halogen, P (=O) (halogen) 3, P (=S) (halogen) 3,
P(NR)(halogen)3, Y-P(=O)(halogen)2, Y-P(=S)(halogen)2,
Y-P(NR)(halogen)2, Y2P(=O)-halogen, Y2P(=S)-halogen,
Y2P(NR)-halogen,
SiX43-tX5t-O-R, SixV(0-R)2, SiX5-(0-R)3, R-O-C(=O)-Z-
C(=O)-O-R, R-O-C(=S)-Z-C(=S)-O-R, R-O-C(=NR)-Z-C(=NR)-
0-R, halogen-C(=O)-Z-C(=O)-O-R, halogen-C(=S)-Z-C(=S)-
0-R, halogen-C(=NR)-Z-C(=NR)-O-R, R-O-C(=O)-Z-C(=O)-O-R,
R-O-C(=S)-Z-C(=S) -O-R, R-O-C(=NR)-Z-C(=NR)-O-R, Y-C(=O)-
Z-C(=O)-O-R, Y-C(=S)-Z-C(=S)-O-R, Y-C(=NR)-Z-C(=NR)-O-R,
halogen-C(=O)-O-R, halogen-C(=S)-O-R, halogen-C(=NR)-O-
R, halogen-S(=O)-O-R, halogen-S(=O)2-O-R, R-O-C(=O)-O-R,
R-O-C(=S)-O-R, R-O-C(=NR)-O-R, R-O-S(=O)-O-R, R-O-S{=0)2-
0-R, Y-C(=O)-O-R, Y-C(=S)-O-R, Y-C(=NR)-O-R, Y-S(=O)-O-
R, Y-S (=O) 2-O-R, (X6) (X7)P(=S)-O-R, (X>6) (X7) P (=O)-O-R, X8-
C(=O)-O-R, R-C(=S)-O-R, R-C (=NR) -O-R, R-S-C (=*NR) -O-R, R-
S-C(=O)-O-R, R-S-C (=S)-O-R, (X9) 2N-C (=O) -O-R, (X9)2N-
C(=S)-O-R, R-NR-C(=NR)-O-R, X9-O-C(=S)-O-R, R-S(=O)-O-R,
R-S(=O) 2-O-R, R-NR-S(=O) 2-O-R, .R-S-S (=O)-2-O-R, R-S-S(=O)-
0-R, 'R-NR-S(=O)-O-R, (R-NR-) 2P (=S)-O-R, (R-NR-) 2P (=O) -O-
R, R-(R-S-)'P(=O)-O-R, R-(R-S-)P(=S)-O-R, R-(R-NR-)P(=O)-
0-R, R-(R-NR-)P('=S)-O-R, (R-NR-) (R-S-) P (=O)-O-R,
(R-O-)(R-NR-)P(=O)-O-R, (R-NR-)(R-S-)P(=S)-O-R,
(R-S-)P(=O) (0-R) 2, (R-S-)P(=S) (0-R) 2, (R-NR-)P(=O) (0-R)2,
(R-NR-)P(=S) (0-R)2, R-P(=O) (0-R)2, R-P (=S) (0-R) 2,
(R-S-) (Y)P(=O)-O-R, (R-S-) (Y)P(=S)T0-R,
(R-NR-)(Y)P(=O)-O-R, (R-NR-)(Y)P(=S)-O-R,
R-(Y)P(=O)-O-R, R-(Y)P(=S)-O-R, P(=O)(0-R)3, P(=S)(0-R)3,
P,;(NR) (0-R) 3, Y-P(=0} (0-R) 2, Y-P(=S) (0-R)2, Y-P(NR) (0-R)2,
Y2'P(=O)-O-R, Y2P(=S)-O-R or Y2P(NR)-O-R, SiX43_tX5t-S-R,
SiX42-(S-R)2, SIX5- (S~R)3, R-O-C(=O)-Z-C(=O)-S-R,
R-O-C (=S) -Z-C {-::•;■ -S-R, R-O-C(=NR)-Z-C(=NR)-S-R, halogen-
C(=O)-Z-C(=O)-S-R, halogen-C(=S)-Z-C(=S)-S-R, halogen-
C(=NR)-Z-C(=NR)-S-R, R-S-C(=O)-Z-C(=O)-S-R, R-S-C(=S)-Z-
C(=S)-S-R, R-S-C (=NR)-Z-C (=NR)-S-R, Y-C (=O) -Z-C (=O) -S-R,
Y-C(=S)-Z-C(=S)-S-R, Y-C(=NR)-Z-C(=NR)-S-R, halogen-
C(=O)-S-R, halogen-C(=S)-S-R, halogen-C(=NR)-S-R,
halogen-S(=O)-S-R, halogen-S(=O)2-S-R, R-S-C(=O)-S-R,
R-S-C(=S)-S-R, R-S-C(=NR)-S-R, R-S-S(=O)-S-R,
R-S-S(=O)2-S-R,' Y-C(=O)-S-R, Y-C(=S)-S-R, Y-C(=NR)-S-R,
Y-S(=O)-S-R, Y-S(=O)2-S-R, (X6) (X7) P (==S)-S-R,
(X6) (X7)P(=O)-S-R,iX8-C(=O)-S-R, R-C(=S)-S-R,
R-C (=NR)-S-R, (X9)2N-C(=O)-S-R, (X9) 2N-C (=S) -S-R,
R-NR-C(=NR)-S-R, X9-O-C(=S)-S-R, R-S(=O)-S-R,
R-S(=O)2-S-R, R-NR-S(=O)2-S-R, R-NR-S (=O)-S-R,
(R-NR-)2P(=S)-S-R, (R-NR-)2P(=O)-S-R, R-(R-O-) P (=O)-S-R,
R-(R-O-)P(=S)-S-R, R-(R-NR-)P(=O)-S-R, R-(R-NR-)P(=S)-
S-R, (R-O-) (R-NR-)P(=O)-S-R, (R-O-) (R-NR-) P (=S.)-S-R,
(R-O-)P(=O) (S-R)2, (R-O-)P(=S) (S-R) 2/ (R-S-) P (=O) (S-R) 2,
(R-NR-)P(=O)(S-R)2, (R-NR-)P(=S)(S-R)2, R-P(=O)(S-R)2,
R-P(=S) (S-R) 2, (R-O-) (Y)P(=O)-S-R, (R-O-) (Y) P(=S)-S-R,
(R-NR-)(Y)P(=O)-S-R, (R-NR-)(Y)P(=S)-S-R,
R-(Y)P(=O)-S-R, R-(Y)P(=S)-S-R, P(=O)(S-R)3, P(=S)(S-R)3,
P(NR)(S-R)3, Y-P(=O) (S-R)2, Y-P(=S) (S-R)2, Y-P (NR) (S-R) 2,
Y2P(=O)-S-R, Y2P(=S)-S-R or Y2P (NR)-S-R, in which R, Y,
Z, X4, X5, X6,. X7, X8, X9 and t have the same meanings as
in formula (I) and s is 1 or 2.
4. Process for the preparation of the' organosilicon
compounds as cU4fl\£el ' to Claim 1, IPMe.r.&ift .
a compound of the general formula (IV),
Q(-SH) (IV)
in which Q has the same meaning as in formula (I), is
subjected to an addition reaction with ah organo-
silicon compound containing at least one double bond
(=) and of the general formula (V),
CX1X2=CX2-G1-Si (0-CX1X2-CX1X3)3N (V)
in which X1, X2 and X3 have the same meanings as in
formula (I), -CX1X2-CHX2-G1 or HCxV-CX2 (-) -G1 being G.
5. Process for the preparation of the organosilicon
compounds a~S CjU^iweA- in Claim 1, U)h&f^.ir\ ■- -
a compound of' the general formula (VI),
Q(-S-X10) (VI)
in which Q has the same meaning as in formula (I) and
X10 has the same meaning as in formula (II), is reacted
with a compound of the general formula (VII),
halogen-G-Si(0-CX1X2-CX1X3)3.N . . (VII)
in which X1, X2, X3 and G have the same meanings as in
formula (I).
6. Process for the preparation of the organosilicon
compounds CLS ClpufweA. Jh Claim 1, Wh/L-r&K -'--
at least one silane of the general formulae VIII - XI,
Q-[S-G-Si(alkoxy)3] (VIII) '
(alkoxy)3Si-G-S-C(=O)-Z-C(=O)-S-G-Si(alkoxy)3 (IX)
(alkoxy)3Si-G-S-C(=S)-Z-C(=S)-S-G-Si(alkoxy)3 (X)
(alkoxy) 3Si-G-S-C(=NR)-Z-C(=NR)-S-G-Si(alkoxy)3 (XI)
in which G, Q, and Z have the same meanings as in
formula (I) and alkoxy, independently of one another,
are (C1-C24) -alkoxy,
is reacted with compounds of the general formula XII,
('HO-CX1X2-CX1X3-)3N (XII)
in which X1, X2, and X3 have the same meanings as in
formula (I),
with elimination of (alkoxy) -H, and (alkoxy)-H is
separated from the'reaction mixture.
7. Rubber mixtures, wherein they contain
rubber, filler, optionally further rubber auxiliaries,
and at least one organosilicon compound as claimed in
Claim 1 or 2.
Abstract
Title:— Organosilicon compounds, their preparation and their use
The invention relates to organosilicon compounds of the
general formula Q-[S-G-Si (-O-CX1X2-CX1X3-) 3N] .
The organosilicon compounds are prepared by reacting at
least one organosilicon compound of the general formula
X10S-G-Si (-O-CX1X2-CX1X3-) 3N
and an organic or inorganic acid anhydride, an organic or
inorganic acid halide or organic or inorganic ester.
The organosilicon compounds are prepared by subjecting a
compound of the general formula Q(-SH) to an addition
reaction with at least one organosilicon compound
containing double bonds and of the general formula
CX1X2=CX2-G1-Si (O-CX1X2-CX1X3) 3N.
The organosilicon compounds are prepared by reacting at
least one compound of the general formula Q(-S-X10) with
a compound of the general formula
halogen-G-Si (O-CX1X2-CX1X3) 3N.
The organosilicon compounds are prepared by reacting
silanes of the general formulae Q-[S-G-Si(alkoxy) 3] ,
(alkoxy) 3Si-G-S-C (=O) -Z-C (=O) -S-G-Si (alkoxy) 3,
(alkoxy) 3Si-G-S-C (=S) -Z-C (=S) -S-G-Si (alkoxy) 3 or
(alkoxy) 3Si-G-S-C (=NR) -Z-C (=NR) -S-G-Si (alkoxy) 3 with
compounds of the general formula (HO-CX1X2-CX1X3-) 3N with
elimination of (alkoxy)-H and separating (alkoxy)-H from
the reaction mixture.
The organosilicon compounds can be used in rubber
mixtures.
| # | Name | Date |
|---|---|---|
| 1 | 772-KOL-2006-(19-04-2010)-FORM 13.pdf | 2010-04-19 |
| 1 | 772-KOL-2006-22-02-2023-RELEVANT DOCUMENTS.pdf | 2023-02-22 |
| 2 | 772-KOL-2006_EXAMREPORT.pdf | 2016-06-30 |
| 2 | 772-KOL-2006-(19-04-2010)-FORM 13.2.pdf | 2010-04-19 |
| 3 | 772-KOL-2006-Correspondence-090315.pdf | 2015-04-11 |
| 3 | 772-KOL-2006-(19-04-2010)-FORM 13.1.pdf | 2010-04-19 |
| 4 | 772-KOL-2006-Form 27-090315.pdf | 2015-04-11 |
| 4 | 772-KOL-2006-CORRESPONDENCE.pdf | 2011-10-07 |
| 5 | 772-KOL-2006-CORRESPONDENCE-1.1.pdf | 2014-06-10 |
| 5 | 00772-kol-2006-correspondence-1.1.pdf | 2011-10-07 |
| 6 | 772-KOL-2006-EXAMINATION REPORT.pdf | 2014-06-10 |
| 6 | 00772-kol-2006 priority document.pdf | 2011-10-07 |
| 7 | 772-KOL-2006-FORM 13.pdf | 2014-06-10 |
| 7 | 00772-kol-2006 form-5.pdf | 2011-10-07 |
| 8 | 772-KOL-2006-FORM 18.pdf | 2014-06-10 |
| 8 | 00772-kol-2006 form-3.pdf | 2011-10-07 |
| 9 | 772-KOL-2006-GPA.pdf | 2014-06-10 |
| 9 | 00772-kol-2006 form-2.pdf | 2011-10-07 |
| 10 | 00772-kol-2006 form-1.pdf | 2011-10-07 |
| 10 | 772-KOL-2006-GRANTED-ABSTRACT.pdf | 2014-06-10 |
| 11 | 00772-kol-2006 description (complete).pdf | 2011-10-07 |
| 11 | 772-KOL-2006-GRANTED-CLAIMS.pdf | 2014-06-10 |
| 12 | 00772-kol-2006 correspondence others.pdf | 2011-10-07 |
| 12 | 772-KOL-2006-GRANTED-DESCRIPTION (COMPLETE).pdf | 2014-06-10 |
| 13 | 00772-kol-2006 claims.pdf | 2011-10-07 |
| 13 | 772-KOL-2006-GRANTED-FORM 1.pdf | 2014-06-10 |
| 14 | 00772-kol-2006 assignment.pdf | 2011-10-07 |
| 14 | 772-KOL-2006-GRANTED-FORM 2.pdf | 2014-06-10 |
| 15 | 772-KOL-2006-(27-08-2013)-PETITION UNDER RULE 137.pdf | 2013-08-27 |
| 15 | 772-KOL-2006-GRANTED-FORM 3.pdf | 2014-06-10 |
| 16 | 772-KOL-2006-(27-08-2013)-OTHERS.pdf | 2013-08-27 |
| 16 | 772-KOL-2006-GRANTED-FORM 5.pdf | 2014-06-10 |
| 17 | 772-KOL-2006-(27-08-2013)-FORM-5.pdf | 2013-08-27 |
| 17 | 772-KOL-2006-GRANTED-SPECIFICATION-COMPLETE.pdf | 2014-06-10 |
| 18 | 772-KOL-2006-(27-08-2013)-FORM-3.pdf | 2013-08-27 |
| 18 | 772-KOL-2006-OTHERS.pdf | 2014-06-10 |
| 19 | 772-KOL-2006-PA.pdf | 2014-06-10 |
| 19 | 772-KOL-2006-(27-08-2013)-FORM-2.pdf | 2013-08-27 |
| 20 | 772-KOL-2006-(27-08-2013)-FORM-1.pdf | 2013-08-27 |
| 20 | 772-KOL-2006-PRIORITY DOCUMENT.pdf | 2014-06-10 |
| 21 | 772-KOL-2006-(27-08-2013)-CORRESPONDENCE.pdf | 2013-08-27 |
| 21 | 772-KOL-2006-REPLY TO EXAMINATION REPORT.pdf | 2014-06-10 |
| 22 | 772-KOL-2006-(27-08-2013)-CLAIMS.pdf | 2013-08-27 |
| 22 | 772-KOL-2006-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf | 2014-06-10 |
| 23 | 772-KOL-2006-(27-08-2013)-ABSTRACT.pdf | 2013-08-27 |
| 24 | 772-KOL-2006-(27-08-2013)-CLAIMS.pdf | 2013-08-27 |
| 24 | 772-KOL-2006-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf | 2014-06-10 |
| 25 | 772-KOL-2006-REPLY TO EXAMINATION REPORT.pdf | 2014-06-10 |
| 25 | 772-KOL-2006-(27-08-2013)-CORRESPONDENCE.pdf | 2013-08-27 |
| 26 | 772-KOL-2006-PRIORITY DOCUMENT.pdf | 2014-06-10 |
| 26 | 772-KOL-2006-(27-08-2013)-FORM-1.pdf | 2013-08-27 |
| 27 | 772-KOL-2006-(27-08-2013)-FORM-2.pdf | 2013-08-27 |
| 27 | 772-KOL-2006-PA.pdf | 2014-06-10 |
| 28 | 772-KOL-2006-(27-08-2013)-FORM-3.pdf | 2013-08-27 |
| 28 | 772-KOL-2006-OTHERS.pdf | 2014-06-10 |
| 29 | 772-KOL-2006-(27-08-2013)-FORM-5.pdf | 2013-08-27 |
| 29 | 772-KOL-2006-GRANTED-SPECIFICATION-COMPLETE.pdf | 2014-06-10 |
| 30 | 772-KOL-2006-(27-08-2013)-OTHERS.pdf | 2013-08-27 |
| 30 | 772-KOL-2006-GRANTED-FORM 5.pdf | 2014-06-10 |
| 31 | 772-KOL-2006-(27-08-2013)-PETITION UNDER RULE 137.pdf | 2013-08-27 |
| 31 | 772-KOL-2006-GRANTED-FORM 3.pdf | 2014-06-10 |
| 32 | 00772-kol-2006 assignment.pdf | 2011-10-07 |
| 32 | 772-KOL-2006-GRANTED-FORM 2.pdf | 2014-06-10 |
| 33 | 00772-kol-2006 claims.pdf | 2011-10-07 |
| 33 | 772-KOL-2006-GRANTED-FORM 1.pdf | 2014-06-10 |
| 34 | 00772-kol-2006 correspondence others.pdf | 2011-10-07 |
| 34 | 772-KOL-2006-GRANTED-DESCRIPTION (COMPLETE).pdf | 2014-06-10 |
| 35 | 00772-kol-2006 description (complete).pdf | 2011-10-07 |
| 35 | 772-KOL-2006-GRANTED-CLAIMS.pdf | 2014-06-10 |
| 36 | 00772-kol-2006 form-1.pdf | 2011-10-07 |
| 36 | 772-KOL-2006-GRANTED-ABSTRACT.pdf | 2014-06-10 |
| 37 | 772-KOL-2006-GPA.pdf | 2014-06-10 |
| 37 | 00772-kol-2006 form-2.pdf | 2011-10-07 |
| 38 | 772-KOL-2006-FORM 18.pdf | 2014-06-10 |
| 38 | 00772-kol-2006 form-3.pdf | 2011-10-07 |
| 39 | 772-KOL-2006-FORM 13.pdf | 2014-06-10 |
| 39 | 00772-kol-2006 form-5.pdf | 2011-10-07 |
| 40 | 772-KOL-2006-EXAMINATION REPORT.pdf | 2014-06-10 |
| 40 | 00772-kol-2006 priority document.pdf | 2011-10-07 |
| 41 | 772-KOL-2006-CORRESPONDENCE-1.1.pdf | 2014-06-10 |
| 41 | 00772-kol-2006-correspondence-1.1.pdf | 2011-10-07 |
| 42 | 772-KOL-2006-Form 27-090315.pdf | 2015-04-11 |
| 42 | 772-KOL-2006-CORRESPONDENCE.pdf | 2011-10-07 |
| 43 | 772-KOL-2006-(19-04-2010)-FORM 13.1.pdf | 2010-04-19 |
| 43 | 772-KOL-2006-Correspondence-090315.pdf | 2015-04-11 |
| 44 | 772-KOL-2006-(19-04-2010)-FORM 13.2.pdf | 2010-04-19 |
| 44 | 772-KOL-2006_EXAMREPORT.pdf | 2016-06-30 |
| 45 | 772-KOL-2006-(19-04-2010)-FORM 13.pdf | 2010-04-19 |
| 45 | 772-KOL-2006-22-02-2023-RELEVANT DOCUMENTS.pdf | 2023-02-22 |