Abstract: Plasticizing system for plasticizing solidified resin particle plasticizing system comprising: housing assembly providing: (i) melt channel configured to receive solidified resin particle and (ii) opposite facing surfaces spaced apart from each other and defining at least in part convergence channel configured to receive the solidified resin particle. Opposite facing surfaces and the convergence channel form part of melt channel. Plunger assembly is movable at least in part relative to opposite facing surfaces. Plunger assembly configured to move at least in part solidified resin particle relative to opposite facing surfaces along at least in part convergence channel. In response to relative movement between solidified resin particle and opposite facing surfaces solidified resin particle receives in use plasticization inducing effect from opposite facing surfaces. The plasticization inducing effect is configured to plasticize solidified resin particle into flowable melt and injected into a mold assembly (850).
PLASTICATING AND INJECTION DEVICE
TECHNICAL FIELD
An aspect generally relates to (but is not limited to) a plasticating and injection device.
SUMMARY
The inventors have researched a problem associated with known molding systems that
inadvertently manufacture bad-quality molded articles or parts. After much study, the
inventors believe they have arrived at an understanding of the problem and its solution,
which are stated below, and the inventors believe this understanding is not known to the
public.
According to one aspect, there is provided a plasticizing system (100) for plasticizing a
solidified-resin particle (202), the plasticizing system (100), comprising: a housing assembly
(102) providing: (i) a melt channel (103) being configured to receive the solidified-resin
particle (202), and (ii) opposite-facing surfaces (104) being spaced apart from each other,
and defining, at least in part, a convergence channel (105) being configured to receive the
solidified-resin particle (202), the opposite-facing surfaces (104) and the convergence
channel (105) forming part of the melt channel (103); and a plunger assembly ( 1 11) being
movable, at least in part, relative to the opposite-facing surfaces (104), the plunger
assembly (111) being configured to move, at least in part, the solidified-resin particle (202)
relative to the opposite-facing surfaces (104) along, at least in part, the convergence
channel (105), and in response to relative movement between the solidified-resin particle
(202) and the opposite-facing surfaces (104), the solidified-resin particle (202) receives, in
use, a plasticization-inducing effect from the opposite-facing surfaces (104), and the
plasticization-inducing effect is configured to plasticize the solidified-resin particle (202) into
a flowable melt to fill the cavity of the mold assembly (850).
Other aspects and features of the non-limiting embodiments will now become apparent to
those skilled in the art upon review of the following detailed description of the non-limiting
embodiments with the accompanying drawings.
DETAILED DESCRIPTION OF THE DRAWINGS
The non-limiting embodiments will be more fully appreciated by reference to the following
detailed description of the non-limiting embodiments when taken in conjunction with the
accompanying drawings, in which:
FIGS. 1, 3A, 3B, 4A, 4B, 4C, 4D, 4E, 5A, 5B, 6 depict schematic representations of a
plasticizing system (100).
The drawings are not necessarily to scale and may be illustrated by phantom lines,
diagrammatic representations and fragmentary views. In certain instances, details not
necessary for an understanding of the embodiments (and/or details that render other details
difficult to perceive) may have been omitted.
DETAILED DESCRIPTION OF THE NON-LIMITING EMBODIMENT(S)
FIGS. 1, 3A, 3B, 4A, 4B, 4C, 4D, 4E, 5A, 5B, 6 depict the schematic representations of the
plasticizing system (100). The plasticizing system (100) may include some components that
are known to persons skilled in the art, and these known components will not be described
here; these known components are described, at least in part, in the following reference
books (for example): (i) "Injection Molding Handbook ' authored by
OSSWALD/TURNG/G RAMANN (ISBN: 3-446-21 669-2), (ii) "Injection Molding Handbook
authored by ROSATO AND ROSATO (ISBN: 0-41 2-99381 -3), (iii) "Injection Molding
Systems" 3rd Edition authored by JOHANNABER (ISBN 3-446-1 7733-7) and/or (iv) "Runner
and Gating Design Handbook ' authored by BEAUMONT (ISBN 1-446-22672-9). It will be
appreciated that for the purposes of this document, the phrase "includes (but is not limited
to)" is equivalent to the word "comprising". The word "comprising" is a transitional phrase or
word that links the preamble of a patent claim to the specific elements set forth in the claim
which define what the invention itself actually is. The transitional phrase acts as a limitation
on the claim, indicating whether a similar device, method, or composition infringes the
patent if the accused device (etc) contains more or fewer elements than the claim in the
patent. The word "comprising" is to be treated as an open transition, which is the broadest
form of transition, as it does not limit the preamble to whatever elements are identified in
the claim.
Referring now to the FIGS., and specifically now to FIG. 1, in which there is depicted an
example of the plasticizing system (100) for plasticizing a solidified-resin particle (202). The
plasticizing system (100) includes (by way of example and not limited to): (i) opposite-facing
surfaces (104), and (ii) a plunger assembly (11 1). The opposite-facing surfaces (104) are
spaced apart from each other. The opposite-facing surfaces (104) define, at least in part, a
convergence channel (105). The convergence channel (105) is configured to receive the
solidified-resin particle (202). The plunger assembly (111) is movable, at least in part,
relative to the opposite-facing surfaces (104). The plunger assembly (11 1) is configured to
move, at least in part, the solidified-resin particle (202) relative to the opposite-facing
surfaces (104) along, at least in part, the convergence channel (105). The solidified-resin
particle (202) may include (by way of example and not limited to): a particle, a pellet, a
particle of a powder, a flake, and/or a fiber. The thickness of the solidified-resin particle
(202) may be defined as a height or a width of the solidified-resin particle (202) above a
planar surface supporting the solidified-resin particle (202).
The opposite-facing surfaces (104) may be separated by a width varying from greater than
the width of the solidified-resin particle (202) to less than the width of the solidified-resin
particle (202).
Referring now to FIGS. 1 and 2, the opposite-facing surfaces (104) may be configured to
contact, in use, opposite sides (200A; 200B) of the solidified-resin particle (202). The
opposite sides (200A; 200B) of the solidified-resin particle (202) are depicted in FIG. 2.
More specifically, the opposite-facing surfaces (104) may include (by way of example and
not limited to): (i) a first surface (106), and (ii) a second surface (108) that is set apart from
and facing the first surface (106). The first surface (106) and the second surface (108) may
be configured to contact, in use, the solidified-resin particle (202). The solidified-resin
particle (202) may be pre-heated before being made to move relative to the opposite-facing
surfaces (104). The solidified-resin particle (202) may be dried before being made to move
relative to the opposite-facing surfaces (104). At least one of the opposite-facing surfaces
(104) is configured to contact, in use and at least in part, opposite sides (200A; 200B) of
the solidified-resin particle (202).
The convergence channel (105) may vary from greater than the width of the solidified-resin
particle (202) to less than the width of the solidified-resin particle (202). The plunger
assembly (11 1) may be configured to: (i) linearly move in accordance to a predetermined
speed profile, (ii) transmit, in use, a linearly-applied force (123) to the solidified-resin particle
(202), and (iii) move the solidified-resin particle (202) relative to the opposite-facing surfaces
(104). A direction (121) indicates the direction in which the plunger assembly (111) moves.
In response to relative movement between the solidified-resin particle (202) and the
opposite-facing surfaces (104), the solidified-resin particle (202) may receive, in use, a
plasticization-inducing effect from the opposite-facing surfaces (104). The plasticizationinducing
effect may be configured to plasticize the solidified-resin particle (202) into a
flowable melt. The plasticization-inducing effect may include (and is not limited to): a
cooperative combination of: (i) heat energy, (ii) a drag force, and (iii) a compression force. An
angle of the convergence channel (105) may provide a ratio between the drag force and the
compression force applied, in use, to the solidified-resin particle (202). In this embodiment,
the plunger also pressurizes the melt to fill a mold cavity of a mold assembly (850), which is
depicted in FIG. 3B.
Referring now to FIGS 3A and 3B, the plasticizing system (100) may include (by way of
example and is not limited to) a housing assembly (102). The housing assembly (102) may
provide: (i) a melt channel (103) configured to receive the solidified-resin particle (202), and
(ii) the opposite-facing surfaces (104) being spaced apart from each other, and defining, at
least in part, the convergence channel (105) configured to receive the solidified-resin particle
(202). Example of the first surface (106) and the second surface (108) are depicted in FIG.
3A.
The opposite-facing surfaces (104) and the convergence channel (105) may form part of the
melt channel (103). The plunger assembly (1 11) may be movable, at least in part, relative to
the opposite-facing surfaces (104). The plunger assembly (1 11) may be configured to move,
at least in part, the solidified-resin particle (202) relative to the opposite-facing surfaces (104)
along, at least in part, the convergence channel (105). In response to relative movement
between the solidified-resin particle (202) and the opposite-facing surfaces (104), the
solidified-resin particle (202) receives, in use, the plasticization-inducing effect from the
opposite-facing surfaces (104). The plasticization-inducing effect is configured to plasticize
the solidified-resin particle (202) into a flowable melt.
By way of example, the plunger assembly (1 11) may be configured to move the solidifiedresin
particle (202) toward an injection tip (107) of the housing assembly (102). The plunger
assembly (11 1) may be configured to eject the flowable melt from the injection tip (107) of
the housing assembly (102).
According to an option, the plasticizing system (100) may further include (by way of example
and not limited to) a mesh assembly (400) positioned in the melt channel (103) of the
housing assembly (102). The mesh assembly (400) may provide the opposite-facing
surfaces (104). The mesh assembly (400) may be one or many mesh portions that may be
stacked or layered with a mesh like material. In accordance with an option, the mesh
assembly (400) may include (and is not limited to): a solid plate defining openings that
extends from one side to the other of the solid plate, and the openings may provide a viscous
drag effect to skin the outside molten layer of the pellet. The stacks of mesh like materials
may have the same or may have different mesh sizes and thicknesses. The mesh assembly
(400) may be configured to provide a viscous drag (that is, pellet skinning) and to
homogenize the melt.
According to the examples of FIGS. 3A and 3B, the plunger assembly (1 11) permits
simultaneous melting of the solidified-resin particle (202) and injection of the melt or resin. It
will be appreciated that the example depicts a thermal gate. It will be appreciated that a valve
gate (not depicted) may be used as an alternative to the thermal gate. The plasticating action
may occur when the solidified-resin particles (202) are forced between the torpedo assembly
(302) and the externally heated wall of the housing assembly (102). The mesh assembly
(400), such as mesh discs, may be introduced near a tip of the torpedo assembly (302) to
promote mixing, for example, when a colorant is added to the solidified-resin particle (202),
and/or to homogenize the melt.
According to another option, the plasticizing system (100) may be arranged such that the
opposite-facing surfaces (104) are provided by: (i) a wall of the melt channel (103) of the
housing assembly (102), and (ii) an outer wall of a stationary assembly (300) located inside
the melt channel (103) of the housing assembly (102). The opposite-facing surfaces (104)
may be configured to contact, in use and at least in part, opposite sides (200A; 200B) of the
solidified-resin particle (202).
Referring to FIG 3A, the stationary assembly (300) may include (and is not limited to by way
of example): a torpedo assembly (302) positioned in the melt channel (103). The torpedo
assembly (302) may include a torpedo heater (304). The housing assembly (102) may
include, by way of example and not limited to, a heater assembly (101) that may be
configured to provide heat to the housing assembly (102). The housing assembly (102) may
also provide a pellet inlet (109) that leads to the melt channel (103).
Referring to the example depicted in FIG. 3B, the housing assembly (102) may include (by
way of example and is not limited to): an external housing (800), and an internal housing
(802) received in the external housing (800). The stationary assembly (300) may include: (i)
a first stationary pin (310) that extends along the melt channel (103) away from the injection
tip (107), (ii) a second stationary pin (312) that extends towards the injection tip (107), (iii) a
first pin holder (314) that is connected to the housing assembly (102), the first pin holder
(314) configured to hold the first stationary pin (310) in position, and (iv) a second pin
holder (316) that is connected to the housing assembly (102), the second pin holder (316)
configured to hold the second stationary pin (312) in position. A pin heater assembly (318)
may be mounted or supported by the stationary assembly (300). The injection tip (107) may
be in fluid communication (in use) with a mold assembly (850). The mold assembly (850)
may include a runner system. The mold assembly (850) may define at least one or more
mold cavities (852).
Referring now to FIGS. 4A to 4E, the plasticizing system (100) may be adapted or arranged
such that the plunger assembly (11 1) includes: (i) a melting-plunger assembly (500), and (ii)
an injection-plunger assembly (502). The melting-plunger assembly (500) may be movable,
at least in part, relative to the opposite-facing surfaces (104). Once against, examples of the
first surface (106) and the second surface (108) are depicted. The melting-plunger assembly
(500) may be configured to move, at least in part, the solidified-resin particle (202) relative to
the opposite-facing surfaces (104) along, at least in part, the convergence channel (105).
The melting-plunger assembly (500) may be configured to move the solidified-resin particle
(202) toward the injection tip (107) of the housing assembly (102). The injection-plunger
assembly (502) may be slidably movable along the melt channel (103) toward the injection
tip (107) of the housing assembly (102). The injection-plunger assembly (502) may be
configured to inject the flowable melt from the injection tip (107) of the housing assembly
(102) toward the mold assembly (850).
In FIG. 4A, the solidified-resin particle (202) may be introduced into the pellet inlet (109),
which then enter into the melt channel (103). In FIG. 4B, the melting-plunger assembly
(500) is translated toward the injection tip (107), so that the pellets may be converted into
the resin. In FIG. 4C, the shut-off assembly (504) is translated away from the injection tip
(107), so that the injection tip (107) changes from a closed state to an open state so that
the injection tip (107) is in fluid communication with the mold assembly (850). In FIG. 4D,
the injection-plunger assembly (502) is translated toward the injection tip (107), so that the
resin may be injected out from injection tip (107) and into the mold assembly (850). In FIG.
4E, the shut-off assembly (504) is translated toward the injection tip (107), so that the
injection tip (107) changes from the open state to the closed state so that the injection tip
(107) is no longer in fluid communication with the mold assembly (850), thereby stopping
the flow of the resin into the mold assembly (850). The resin may be solidified in the mold
assembly (850). The process may be repeated as often as required.
According to an option, the plasticizing system (100) may be adapted such that the meltingplunger
assembly (500) and the injection-plunger assembly (502) may be coaxially
positioned relative to each other; it will be appreciated that other arrangements may be
possible, such as the melting-plunger assembly (500) and the injection-plunger assembly
(502) may be psotioned perpendicular to each other, or side by side, or opposite to each
other.
According to another option, the plasticizing system (100) may further include (by way of
example and is not limited to) a shut-off assembly (504). The shut-off assembly (504) may be
coaxially movable along the injection-plunger assembly (502). The shut-off assembly (504)
may be configured to selectively shut off and turn on a flow of a melted resin at the injection
tip (107) of the housing assembly (102). As well, the shut-off assembly (504) may be
coaxially movable along the injection-plunger assembly (502). It will be appreciated that the
shut-off assembly (504) may include for example a movable pin that is coaxially movable
along the central portion or central axis of the injection-plunger assembly (502)..
According to another option, the plasticizing system (100) may further include (and is not
limited to) a heater assembly (101). The heater assembly (101) may be configured to: (i) be
positioned relative to the housing assembly (102), and (ii) apply, in use, heat to the resin
material located in the housing assembly (102). The heater assembly (101) may be mounted
to the housing assembly (102) or to the injection-plunger assembly (502). The heater
assembly (101) may provide, in use, thermal energy to a converging transition portion of the
melt channel (103) of the housing assembly (102). The melt channel (103) extends from the
pellet inlet (109) to the injection tip (107) of the housing assembly (102).
Generally referring once again to FIGS. 4A to 4E, the solidified-resin particle (202) may be
introduced to a metering section of the housing assembly (102), which may be formed by
an outer diameter of the injection-plunger assembly (502) and an inner diameter of the
housing assembly (102). The melting-plunger assembly (500) may be annular. A stroke
may drive an amount of melted resin that may fill an injection section of the housing
assembly (102). The injection-plunger assembly (502) may also guide the shut-off
assembly (504) to open and close a gate that leads to the mold assembly (850). The melt
may be created by heat conduction, drag and compression forces caused by actuating the
melting-plunger assembly (500) and forcing the solidified-resin particle (202) through a
converging annular channel formed between the housing assembly (102) and the injectionplunger
assembly (502). During a melting stroke, the injection-plunger assembly (502) may
be retracted to an adjustable stop defining a shot size. The shut-off assembly (504), which
is depicted as a valve stem by way of example, may be in a closed position to prevent the
melt from drooling in the cavity of the mold assembly (850). Once a desired shot size has
been reached, the shut-off assembly (504) may be opened and the injection-plunger
assembly (502) may be actuated. The melting-plunger assembly (500) may be retracted
and the solidified-resin particle (202) may be conveyed into a melting zone of the housing
assembly (102) during this time. An advantage of this arrangement may be that the melt
may be produced just before the melt is injected and precisely metered in a first in first out
(FIFO) manner and therefore, waste and variability associated with transporting the melt
over long distances may be reduced. Another advantage may be that there is a reduction in
wasted energy to maintain melt temperature, since the melt may be injected immediately
into the mold cavity. It may be also more energy efficient to convey the solidified-resin
particle (202) to multiple cavities in the mold assembly (850), rather than distribute and
maintain melt homogeneity and balance. Another possible advantage may be that any
leakage from the injection-plunger assembly (502) may be pushed back into an injection
section of the housing assembly (102) with the next melting cycle. Another advantage may
be that since the volume of the resin between the injection-plunger assembly (502) and the
mold cavity may be reduced to a minimum, detrimental effects due to compressibility of the
resin (such as cycle time lags) may be minimized.
FIGS. 5A and 5B depict another example. FIG. 5A depicts the arrangement in which a
melting operation may occur. FIG. 5B depicts the arrangement in which an injecting
operation may occur. A sequence of operation includes (and is not limited to): (i) the shutoff
assembly (504) is opened (that is, the shut-off assembly (504) is retracted), (ii) the
injection-plunger assembly (502) is moved forward, (iii) the injection-plunger assembly (502)
is on hold or is held in position, (iv) the shut-off assembly (504) is closed (that is the shut-off
assembly (504) is moved so close and prevent flow of the resin into the mold assembly
(850), (v) the melting-plunger assembly (500) is retracted, (vi) the pellets or solidified resin
particles are feed to the housing assembly (102), (vii) the injection-plunger assembly (502)
is retracted, (viii) the melting-plunger assembly (500) is moved forward pushing the melted
resin in front of the injection-plunger assembly (502), thus building the next shot to be
injected into the mold cavity.
FIG. 6 depicts another example of embodiment, in which the melting-plunger assembly
(500) and the injection-plunger assembly (502) are not aligned coaxial relative to each
other. The melting-plunger assembly (500) and the injection-plunger assembly (502) may
be arranged to be positioned perpendicular to each other. More specifically, FIG. 6 depicts
a perpendicular arrangement between the melting-plunger assembly (500) and the
injection-plunger assembly (502). The housing assembly (102) may receive the meltingplunger
assembly (500). The convergence channel (105) is provided by the housing
assembly (102) in the melt channel that receives the melting-plunger assembly (500). The
melting-plunger assembly (500) is in fluid communication with a melt channel that leads to a
tip of the shut-off assembly (504). The housing assembly (102) also supports a stem
actuator (505) that may be attached to the shut-off assembly (504). The injection-plunger
assembly (502) is aligned perpendicular relative to the melting-plunger assembly (500), and
the injection-plunger assembly (502) acts on the melt channel defined by the housing
assembly (102). The melting-plunger assembly (500) moves resin into the melt channel of
the housing assembly (102). While the melting-plunger assembly (500) is held in steady
position, the injection-plunger assembly (502) moves the resin through the melt channel of
the housing assembly (102) toward the outlet where the shut-off assembly (504) has been
retracted so as to permit exit of the resin from the melt channel of the housing assembly
(102), so the resin may flow into the mold assembly (850).
It will be appreciated that the assemblies and modules described above may be connected
with each other as may be required to perform desired functions and tasks that are within
the scope of persons of skill in the art to make such combinations and permutations without
having to describe each and every one of them in explicit terms. It is understood that the
scope of the present invention is limited to the scope provided by the independent claim(s),
and it is also understood that the scope of the present invention is not limited to: (i) the
dependent claims, (ii) the detailed description of the non-limiting embodiments, (iii) the
summary, (iv) the abstract, and/or (v) description provided outside of this document (that is,
outside of the instant application as filed, as prosecuted, and/or as granted). It is
understood, for the purposes of this document, the phrase "includes (and is not limited to)"
is equivalent to the word "comprising". It is noted that the foregoing has outlined the nonlimiting
embodiments (examples). The description is made for particular non-limiting
embodiments (examples). It is understood that the non-limiting embodiments are merely
illustrative as examples.
CLAIMS
WHAT IS CLAIMED IS:
1. A plasticizing system (100) for plasticizing a solidified-resin particle (202), the plasticizing
system (100), comprising:
a housing assembly (102) providing:
(i) a melt channel (103) being configured to receive the solidified-resin
particle (202), and
(ii) opposite-facing surfaces (104) being spaced apart from each other,
and defining, at least in part, a convergence channel (105) being configured to
receive the solidified-resin particle (202), the opposite-facing surfaces (104)
and the convergence channel (105) forming part of the melt channel (103); and
a plunger assembly (111) being movable, at least in part, relative to the
opposite-facing surfaces (104), the plunger assembly (111) being configured to move,
at least in part, the solidified-resin particle (202) relative to the opposite-facing
surfaces (104) along, at least in part, the convergence channel (105), and in response
to relative movement between the solidified-resin particle (202) and the oppositefacing
surfaces (104), the solidified-resin particle (202) receives, in use, a
plasticization-inducing effect from the opposite-facing surfaces (104), and the
plasticization-inducing effect is configured to plasticize the solidified-resin particle
(202) into a flowable melt injected into a mold assembly (850).
2. The plasticizing system (100) of claim 1, wherein:
the plunger assembly (11 1) being configured to move the solidified-resin
particle (202) toward an injection tip (107) of the housing assembly (102),
the plunger assembly (11 1) being configured to inject the flowable melt from
the injection tip (107) of the housing assembly (102).
3. The plasticizing system (100) of claim 1, further comprising:
a mesh assembly (400) being positioned in the melt channel (103), the mesh
assembly (400) providing the opposite-facing surfaces (104).
4. The plasticizing system (100) of claim 1, wherein:
the opposite-facing surfaces (104) are provided by:
a wall of the melt channel (103) of the housing assembly (102), and
an outer wall of a stationary assembly (300) being located inside the
melt channel (103) of the housing assembly (102),
the opposite-facing surfaces (104) is configured to contact, in use and at least
in part, opposite sides (200A; 200B) of the solidified-resin particle (202).
5. The plasticizing system (100) of claim 1, wherein:
the plunger assembly (11 1) includes:
a melting-plunger assembly (500); and
an injection-plunger assembly (502),
wherein:
the melting-plunger assembly (500) is movable, at least in part, relative to the
opposite-facing surfaces (104),
the melting-plunger assembly (500) is configured to move, at least in part, the
solidified-resin particle (202) relative to the opposite-facing surfaces (104) along, at
least in part, the convergence channel (105),
the melting-plunger assembly (500) is configured to move the solidified-resin
particle (202) toward an injection tip (107) of the housing assembly (102),
the injection-plunger assembly (502) is slidably movable along the melt channel
(103) toward the injection tip (107) of the housing assembly (102), and
the injection-plunger assembly (502) is configured to inject the flowable melt
from the injection tip (107) of the housing assembly (102) into the mold assembly
(850).
6. The plasticizing system (100) of claim 5, wherein:
the melting-plunger assembly (500) and the injection-plunger assembly (502)
are coaxially positioned relative to each other.
7. The plasticizing system (100) of claim 5, further comprising:
a shut-off assembly (504) being coaxially movable along the injection-plunger
assembly (502), and the shut-off assembly (504) being configured to selectively shut
off and turn on a flow of a melted resin at the injection tip (107) of the housing
assembly (102).
8. The plasticizing system (100) of claim 5, further comprising:
a shut-off assembly (504) being coaxially movable along the injection-plunger
assembly (502), and the shut-off assembly (504) being configured to selectively shut
off and turn on a flow of a melted resin at the injection tip (107) of the housing
assembly (102), and
the shut-off assembly (504) being coaxially movable along the injection-plunger
assembly (502).
9. The plasticizing system (100) of claim 5, further comprising:
a heater assembly (101) being configured to: (i) be positioned relative to the
housing assembly (102), and (ii) apply, in use, heat to a resin located in the housing
assembly (102).
10. The plasticizing system (100) of claim 5, further comprising:
a heater assembly (101) being mounted to the housing assembly (102) (to the
injection-plunger assembly (502), and providing, in use, thermal energy to a
converging transition portion of the melt channel (103) to the housing assembly (102)
and the melting-plunger assembly (500),
the melt channel (103) extending from a pellet inlet (109) to the injection tip
(107) of the housing assembly (102).
11 . The plasticizing system (100) of claim 5, wherein:
the melting-plunger assembly (500) and the injection-plunger assembly (502)
are not aligned coaxial relative to each other
12. The plasticizing system (100) of claim 5, wherein:
the melting-plunger assembly (500) and the injection-plunger assembly (502)
are arranged to be perpendicular to each other.