Abstract: The invention relates to a shaped block (304) for positioning and/or holding a plurality of line sections (310) of one or more electric lines along the track of a vehicle wherein the shaped block (304) comprises a plurality of recesses (315) and/or projections wherein edges of the recesses (315) and/or the projections each delimit a space for the line sections (310) into which one of the line sections (310) can be introduced so that said line section extends through the space in a longitudinal direction of the space and wherein the longitudinal directions of the spaces delimited by the edges of the recesses (315) and/or by the projections extend essentially mutually parallel in a common plane.
Positioning andlor holding a plurality of line sections of electric lines along a drive way of a
vehicle
The invention relates to positioning andlor holding a plurality of line sections of one or
more electric lines along a drive way of a vehicle. The vehicle can be, for example, a
track-bound vehicle such as a railway vehicle. In the case of a railway vehicle, rails are
provided on which the vehicle travels.
Track-bound vehicles, in particular, such as conventional railway vehicles, monorail
vehicles, trolleybuses and vehicles which are guided by other means along a track, for
example, mechanical means other than rails, magnetic means, electronic means andlor
optical means, require electrical energy for drive along the track and to power auxiliary
equipment which does not produce drive of the vehicle. Such auxiliary equipment
includes, for example, lighting systems, heating and/or air-conditioning systems,
ventilation and passenger information systems. In general, the invention concerns the
transfer of electrical energy to the vehicle, wherein the vehicle is not necessarily (but is
preferably) a track-bound vehicle. Generally speaking, the vehicle may be, for example, a
vehicle having an electrically operated drive motor. The vehicle may also be a vehicle
having a hybrid drive system, e.g. a system which can be operated by electric energy or
by other energy, such as erectrochemically stored energy or fuel (e.g. natural gas, diesel
fuel or petrol).
Track-bound vehicles, in particular vehicles for public passenger transport, usually
comprise a contact element for mechanically and electrically contacting a conductor along
the track, such as an electric rail or an overhead line. At least one drive motor on board
the vehicle is fed with the electrical power from the external track or line and produces
mechanical drive energy.
Trams and other local or regional trains are operated within cities, usually via overhead
lines. However, especially in historic parts of cities, overhead lines are undesirable. On
the other hand, conductor rails in the ground or near the ground cause safety problems.
WO 95130556 A2 describes a system wherein electric vehicles are supplied with energy
from the roadway. The all-electric vehicle has one or more on-board energy storage
elements or devices that can be rapidly charged or supplied with energy obtained from an
electrical current, for example a network of ejectromechanical batteries. The energy
storage elements may be charged while the vehicle is in operation. The charging occurs
through a network of power coupling elements, e.g. coils, embedded in the track.
Induction coils are located at passenger stops in order to increase passenger safety.
Arranging the coils at selected locations along the length of the path of travel has the
disadvantage that the energy stores on board the vehicle need a large storage capacity.
In addition, if the vehicle does not reach the next coil in time, the energy needed for drive
or other purposes might run out. Therefore, at least for some applications, it is preferable
to transfer energy to the vehicle continuously along the path of travel, i.e. along the track.
Inductively transferring energy from the track to the vehicle, i.e. producing electromagnetic
fields, particularly alternating fields, is subject to restrictions regarding EMC
(electromagnetic compatibility). Firstly, electromagnetic fields can interfere with other
technical equipment. Secondly, people and animals should not be permanently exposed
to electromagnetic fields. At least, the respective limit values for field intensity must be
observed.
It is an object of the present invention to provide a component, an arrangement and a
method for positioning and/or holding a pluralify of electric line sections which enable the
transfer of electric energy to a vehicle, in particular to a track-bound vehicle, which allows
for continuous transfer of electric energy during travel and which facilitates meeting the
respective limits for EMC.
According to a basic concept of the present invention, energy is transferred from an
arrangement of electrical conductors, which is arranged along the track, to the vehicle
while the vehicle is travelling along the track. There is no electrical contact between the
vehicle and the conductor arrangement. The conductor arrangement carries an alternating
current which generates a corresponding alternating electromagnetic field and the
electromagnetic field is used to transfer the electrical energy to the vehicle.
The arrangement of electrical conductors along the track can be realised in a variety of
ways. For example, the conductor or lines can be cables laid in the ground as usual in
road construction or underground engineering. The opening in the ground is then filled
and provided with a suitable covering over which the vehicle can travel. For example, in
the case of railways, the conductor arrangement can first be laid and then the track
bedding for the rails can be made thereupon.
However, too large distance between the conductor arrangement and the vehicle has the
disadvantage that the energy is transferred at a low level of efficiency. The closer the
conductor arrangement is to a corresponding receiver on or in the vehicle, the better is the
inductive coupling. A shaped block is therefore proposed with the help of which one or
more electric lines can be positioned and/or held along the track of the vehicle. The
shaped block has a plurality of recesses and/or projections, wherein edges of the
recesses and/or the projections each delimit a space for the line sections into which one
of the line sections can be introduced, so that the line section extends through the space
in a longitudinal direction of the space. In other words, a plurality of spaces is defined by
the form of the shaped block, said spaces having a longitudinal direction, wherein a line
section extending in the longitudinal direction can be introduced into each of the spaces.
The form of the shaped block therefore defines at least how line sections will be laid. A
plurality of the shaped blocks can therefore be made in serial production and arranged
along the track. Subsequently, the electric line or lines can be laid in the manner defined
by the shaped blocks. Errors in the positioning of the line sections can therefore easily be
avoided.
However, depending on the material from which it is made, the shaped block has other
possible functions. In particular, the shaped block can be made from a material which is
able to support the vehicle, so that the vehicle can travel over the shaped block integrated
into the track. Concrete can be considered as a suitable material for this purpose.
Alternatively or additionally, the shaped block can be made from electrically insulating
material, so that it serves a protective function against short-circuit and unintentional
4-
contacting by objects and persons. Again, concrete is a suitable material, as well as
plastics with electrically insulating properties. For example, it is known from railway track
construction to arrange components between the rails and above the anchoring of the
rails for the purpose of sound damping. These components can be produced by
appropriate shaping as shaped blocks according to the invention.
A shaped block should therefore not be understood exclusively as a component made
from solid, essentially incompressible material. The shaped block can also be made from
elastically deformable material. The shaped block can also have regions connected to one
another and made from different materials. If concrete is used for the shaped block, the
concrete is preferably free from reinforcement made from metal. Rather, concrete of a
different type, for example, with fibre components (e.g. glass fibres) is preferred. Polymer
concrete can also be used. Instead of concrete, grout can be used as material for the
shaped block, which may be reinforced by fibres, such as glass fibres.
The lack of reinforcement made from metal prevents the occurrence of unintended
interactions with the conductor arrangement or the reinforcement even shielding the
alternating electromagnetic field from the region traversed by an inductive receiver of the
vehicle when the vehicle travels along the route. However, it is also possible for the
shaped block to comprise electrically conductive material in pre-determined regions in
order to achieve shielding of the surroundings against the alternating electromagnetic
fields generated by the conductor arrangement in these regions. For example, a shaped
block which is to be arranged beneath the track route in or on the ground can have such
shielding in its lower region. The spaces for laying the electrical line or lines are then
situated above the shielding. Alternatively or additionally, shielding of this type can also be
integrated in the shaped block laterally of the spaces for laying the electric lines.
The shaped block is preferably cast, as is known per se from the manufacturing of precast
concrete or grout parts or plastics elements for building use. The spaces for
accommodating the line sections can be made in the casting process and/or subsequently
introduced into the shaped block. The spaces formed by the shaped block are preferably
situated at the surface of the shaped block. The invention essentially also includes the
case that the shaped block comprises at least one space which comprises a closed
peripheral edge with the exception of an entry aperture and an exit aperture through which
the electric line is fed, in order to position the line section in the space. However, the
construction with the spaces formed on the upper surface to accommodate the line
sections is preferred since the laying of the electric line or lines is simpler and it is also
possible to exchange the electric line or the shaped block at a later time from above.
The spaces formed in the shaped block for accommodating the line sections serve to
position andlor hold the line sections. In particular, if the dimensions of the spaces are
matched with little play to the dimensions of the electric line to be laid, the line section is
precisely positioned by the form of the shaped block. The edges of the recess and/or the
projections formed on the shaped block serve to hold the line sections if and to the extent
that the laid electric line lies against the edges or the projections. At least a movement of
the electric line and thus a change in the predetermined placement of the electric line is
hindered or prevented with this type of mechanical contact.
According to a further feature of the shaped block, the longitudinal directions of the
spaces bordered by the edges of the recesses andlor by the projections extend
essentially parallel to one another in a common plane. It is preferred that this common
plane essentially extends in horizontal direction under the drive way of the vehicle. In
particular, the recesses may extend with their longitudinal directions essentially mutually
parallel at the upper surface of the shaped block.
Deviations from an arrangement of the spaces oriented exactly parallel to one another are
possible particularly if the shaped block is to be laid at a curve of the track of the vehicle.
In this case, the longitudinal directions of mutually adjacent spaces can be oriented other
than parallel, depending on their separation and the radius of curvature of the track.
However, given a typically small mutual separation of the spaces (preferably at least 0.1
m and not more than 1 m) and the normally much larger radius of curvature of the tracks
for vehicles, the longitudinal directions are approximately parallel.
The scope of the invention also includes an arrangement with the shaped block in one of
the embodiments described in this description and also with the line sections which
extend through the spaces. If the line sections are first sections of a continuous electric
line which has no transitions to other electric lines during operation of the electric line,
then the whole electric line belongs to the arrangement. Since the first line sections
extend essentially mutually parallel in the spaces, the electric line also has other, second
line sections which connect the first line sections. In a particularly preferred embodiment,
which will be considered in greater detail based on the accompanying figures, the second
line sections are situated alternately at opposing sides of the shaped block, so that the
electric line follows a meandering path overall. The first line sections extend transversely
to the direction of travel of the vehicle or the track and the second line sections extend
approximately in the direction of travel.
The shaped block can optionally also comprise, with its form, pre-defined spaces for
accommodating the second line sections. However, it is also possible that the second line
sections lie on another object or hang free from the first line sections which they connect
to one another.
As previously mentioned, the at least one electric line of the conductor arrangement
preferably extends along the track or route in a meandering manner, i.e. sections of the
electric line which extend in the direction of travel are followed in the course of the
conductor by sections which extend transversely to the direction of travel, etc. In the case
of a multi-phase system with at least two electric lines, this preferably applies to all the
electric lines.
The expression "meandering" used above covers both the laying of an electric line with
smoothly curved transitions (having large radii of curvature) between straight electric line
sections as well as configurations with sharp, angular transition regions between adjacent
straight sections. The longest possible straight sections are preferable, since they
generate homogeneous fields. In case of a standard railway for trams having a narrow
gauge of 1000 mm, the radius of curvature of the curved transitions between straight
electric line sections is preferably above or equal to 18 m. However, this is only an
example. The basic principle of the shaped blocks according to the present invention can
be applied to different types of railways and other vehicle paths.
The lengths of the shaped block in the direction of travel may be in the range of 80 - 100
cm, although other lengths are also possible. The width of the block is preferably slightly
smaller than the distance between the rails, in case of a railway. In case of other types of
vehicle tracks, the width is preferably at least half the width of the vehicles travelling on
the track. The height of the shaped block depends on the size of the electric line or lines
and on the type of material of the block. The height should be sufficient to ensure
mechanical stability during construction and operation of the vehicles track.
Where, in this description, it is stated that line sections are introduced into the spaces
formed by the shaped block or are accommodated therein, this also includes the case that
the line sections are entirely accommodated, so that an imaginary shell surface with
planar or approximately planar surface segments which connect existing outer contours of
the shaped block in the region of the spaces lying on the surface of the shaped block, also
contains the line sections accommodated in the spaces. However, it is also possible for
the cross-sections of the line sections not to be entirely accommodated in the spaces in
this sense. In this case, particularly, a covering can also be provided which also has a
space for accommodating the line sections or has a plurality of such spaces. A covering of
this type can be, in particular, a cover for covering the line sections extending through the
spaces, in particular, on the upper side of the shaped block.
A plurality of shaped blocks can be arranged behind one another to be positioned along
the drive way of the vehicle or along the track of the vehicle. In particular, the longitudinal
directions of the spaces formed by the different shaped blocks for accommodating the line
sections extend essentially parallel to one another, wherein the longitudinal directions
extend transversely to the direction of travel of the vehicle. The mutually adjacent shaped
blocks arranged directly behind one another can abut one another at end surfaces or have
gaps. By this means, it can be defined by the shaped blocks over relatively long sections
of the track how electric lines are to be laid.
The track can, in particular, be a railway track for railway vehicles. In this case, it is
preferable if the shaped blocks arranged behind one another are arranged between the
rails of the railway track so that the longitudinal directions of the spaces for
accommodating the line sections extend in an essentially horizontal plane and
transversely to the direction of the travel of the vehicle. The expression "essentially
horizontal" should be understood here to mean that the longitudinal directions are not
inclined substantially differently from any existing transverse inclination of the railway
track, e.g. in a curve of the railway track.
The railway track can be configured in any per se known manner in order to position and
hold the rails. For example, sleepers such as concrete sleepers which extend transversely
to the direction of travel and to which rails extending in the direction of travel are fastened
can be provided. However, as also per se known, the rails can also be fastened to a
8
concrete platform which is continuous in the direction of travel, or intermediate spaces
between fastening sites of the rails can be filled with concrete or another material of stable
form or elastomer. Particularly in inner city areas, the rails can also be set into the ground
so that only the usual recesses which are necessary for the engagement of the wheels of
the railway vehicle remain in the ground. In all cases, it is preferable that the spaces for
accommodating the line sections are arranged only a few centimetres below the height
level of the upper edge of the rails. In particular, the lower edge of the spaces for
accommodating the line sections which are defined by the material of the shaped block or
blocks is located only a maximum of 10 cm, and preferably only a maximum of 5 cm,
below the height level of the upper edge of the rails. By this means a very good inductive
coupling is enabled between the conductor arrangement at the track and the receiver on
or in the vehicle. For example, the distance between the electric line or lines in the track
and the receiver of the vehicle is less than 10 cm and is preferably not greater than 7.5 cm
if the receiver is situated on the underside of the railway vehicle.
If the railway has sleepers as mentioned above or has a continuous concrete platform to
which the rails are fastened, the shaped blocks are preferably laid on the upper surfaces
of the sleepers or the concrete platform. For example, a shaped block extends in the
direction of travel approximately from the centre of a sleeper to the centre of the following
sleeper, i.e. it bridges the intermediate space between two sleepers.
It is not only in the case of a railway track that the shaped blocks arranged behind one
another in the direction of travel can be linked to one another to secure said blocks
against unintended slipping or displacement. For example, in the region of their end
surfaces facing forwards and backwards in the direction of travel, the shaped blocks have
means for engaging each other. For example, in the end surface of the shaped block
which extends approximately transverse to the direction of travel in vertical and horizontal
direction, a recess is provided into which a protruding element can be inserted, wherein
the protruding element is also inserted into a similar recess in the adjacent shaped block
and mutually fastens the two shaped blocks arranged behind one another, with or without
clamping forces (e.g. by tensioning a screw or nut). Alternatively or additionally, the
covers described below can be connected to one another in a manner described for the
shaped blocks. Alternatively to the protruding element being a separate part, one of the
adjacent shaped blocks may comprise the protruding element as an integral part at the
end surface.
In particular, the at least one shaped block may comprise an end surface for facing in a
direction of travel of the vehicle, wherein the end surface comprises a central region and
wherein the end surface - if viewed from above - retreatingly extends on both sides of the
central region, so that a further shaped block having a plane or retreatingly extending end
surface may abut on the end surface oriented in different directions. As mentioned above,
the so called "end surface" may extend in vertical and horizontal direction:"Retreatingly
extending" means that there are relative orientations of the shaped block and the adjacent
shaped block wherein only the central region of the end surface abuts on the adjacent
block. If viewed from above, the outline of the end surface may be straight or curved on
both sides of the central region. Preferably, the end surfaces of both adjacent shaped
blocks are shaped having retreatingly extending sides.
Such retreatingly extending end surfaces have the advantage that the adjacent blocks can
be oriented relative to each other at different angels, while they abut on each other in the
central region of the end surfaces. This means that shaped blocks can be laid along
c u ~ e dtra ck sections with varying radii. For example, the blocks may have a length in the
direction of travel of the vehicle in the range of 80 - 100 cm. In this case, the retreatingly
extending sides of the end surfaces (if viewed from above) may have a straight outline
which extends at an angle of 2.5" - 3" relative to a straight line which extends
perpendicularly to the direction of travel. Of course, blocks having such a retreating shape
of the end surface can also be arranged adjacent to each other so that they follow a
straight path of travel of the vehicle.
In particular, a first shaped block comprises a protrusion in the central region of the end
surface, wherein a second shaped block comprises a recess in the central region of an
abutting end surface, wherein the protrusion and the recess are correspondingly shaped
and arranged so that the protrusion engages the recess in a manner which allows for a
variation of the relative orientation of the first and second shaped block. Preferably, the
protrusion and the recess - if viewed from above - comprise a curved outline.
If covers are placed over the shaped blocks arranged along the track, this serves, in
particular, to protect the shaped blocks and the electric line(s) laid therein or thereon
against influences such as unintended trampling by persons, damage during building
works or during the laying of the lines, and against the weather. It should, in particular, be
avoided that water can enter from above into the spaces for accommodating the line
sections and freeze therein. Preferably, the covers can therefore configured to be broader
than the spaces to accommodate the line sections extending transversely to the direction
of travel. The covers can therefore extend laterally over the edges of the shaped blocks,
providing particularly effective protection.
Alternatively or additionally, the covers can comprise downwardly projecting edges. These
edges can extend at least to the height level of the lower edge of the spaces for
accommodating the line sections and thus also protect the electrical lines or line sections
laid in the spaces against influences from the side.
As described above, covers arranged behind one another in the direction of travel can be
mutually connected. Apart from enhancing the mechanical stability and protecting against
displacement, this also serves to protect against theft of the electric lines.
The invention also relates to a method for positioning andlor holding a plurality of line
sections of one or more electric lines along a track of a vehicle, wherein
- at least one shaped block having a plurality of recesses andlor projections is
provided, wherein edges of the recesses andlor the projections each delimit a
space for the line sections into which one of the line sections can be
introduced, so that said line section extends through the space in a longitudinal
direction of the space, and wherein the longitudinal directions of the spaces
delimited by the edges of the recesses andlor by the projections extend
essentially mutually parallel in a common plane,
- at least one electric line is introduced into the spaces such that the line
sections of the line extend through the spaces in the longitudinal direction.
Preferably, the electric line or lines are introduced into the spaces such that at least some
of the line sections are parts of a continuous electric line, so that first line sections
extending through the spaces in the longitudinal direction are connected to one another
via other, second line sections of the electric line, wherein the second line sections extend
alternately on opposite sides of the shaped block, so that the electric line follows a
meandering path.
According to a preferred embodiment, the shaped block comprises an end surface for
facing in a direction of travel of the vehicle, wherein the end surface comprises a central
region and wherein the end surface - if viewed from above - retreatingly extends on both
sides of the central region and wherein a further shaped block having a plane or
retreatingly extending end surface is oriented in a desired direction - corresponding to the
path of travel of the vehicle - while the end surfaces of the shaped block and of the further
shaped block abutting on each other.
The shaped block may comprise a protrusion in the central region of the end surface,
wherein the further shaped block comprises a recess in the central region of an abutting
end surface, wherein the protrusion and the recess are correspondingly shaped and
wherein the shaped block and the further shaped block are arranged so that the
protrusion engages the recess in a manner which allows for a variation of the relative
orientation of the first and second shaped block.
Developments and other embodiments of the method are disclosed in the description of
the arrangement according to the invention, i.e. the description of a feature of the
arrangement means that the arrangement can be made in corresponding manner.
An alternating voltage of any desired frequency can be applied to the conductor
arrangement which is laid with the aid of the shaped blocks according to the invention
along the track of the vehicle. However, it is preferred that the frequency is greater than
100 Hz. A well suited frequency range is the range between 1 and 100 kHz, e.g. between
10 and 30 kHz. As disclosed, in principle, in WO 95130556 A2, the vehicle which is
travelling on the track may comprise at least one coil. The alternating electromagnetic field
generated by the alternating voltage and applied to the conductor arrangement generates
an alternating voltage in the coil which can be used to operate any electric load in the
vehicle, such as a drive motor. Alternatively or additionally, the alternating voltage can be
used to charge an energy storage system, such as conventional batteries and/or
supercapacitors.
As previously stated, the electric conductor arrangement comprises at least one of the
lines mentioned above. Preferably, it comprises at least two of these lines, wherein each
line is configured or operated to carry one phase of a multi-phase alternating current. In
practice, it is preferred that the electric conductor arrangement comprises three lines and
that each line is configured to carry one of the three-phases of a three-phase alternating
current. However, it is also possible, that the alternating current has more than three
phases, so that a corresponding number of electric lines is present as part of the
conductor arrangement. The magnetic poles produced by the lines andlor the sections of
the different lines form -at each point in time - a repeating sequence extending in the
direction of travel, wherein the repeating sequence corresponds to the sequence of the
phases. For example, in the case of a three-phase alternating current, having the phases
U, V, W, a section carrying phase U is followed by a section carrying phase V which in
turn is followed by a section carrying phase W. This sequence of phases U, V, W is
repeated several times in the direction of travel. An example is described below in the
description of the drawings.
The sections of the conductor arrangement arranged behind one another (with respect to
the direction of travel), which sections extend transversely to the direction of travel have
the advantage that the resulting electromagnetic fields sideways of the conductor
arrangement (i. e. sideways of the track) compensate each other even at small distances
to the conductor arrangement. Limit values for the EMC problem can therefore easily be
met, despite power transfer at high levels. For this reason, it is advantageous if the line
sections extending transversely to the direction of travel extend in an approximately
horizontal plane. However, a slight inclination of the line sections relative to the horizontal
plane, e.g. in curve regions of the track does no! lead to significantly greater field
strengths laterally to the track. The same applies if the track rises or falls, for example, in
a hilly landscape.
The electric line or lines can be implemented with externally insulated electric cables, for
example, stranded conductor cables. The cross-sectional area of the electrically
conducting part of the cable lies, for example, in the range of 80 mm2 to 200 mm2.
Depending on the power or current, however, other cross-sections can also be chosen. It
is also possible to lay two or more cables parallel and directly adjacent to one another to
conduct the same phase of the alternating current.
Embodiments of the invention will now be described with reference to the accompanying
figures, in which:
Fig. 1 shows a top view of a shaped block,
13
Fig. 2 shows a vertical cross-section through half of the block of Fig. 1,
Fig. 3 shows a top view of a first arrangement of two blocks according to Fig. 1 and 2,
Fig. 4 shows a top view of a second arrangement of two blocks according to Fig. 1 and
2,
Fig. 5 shows a vertical cross-section through a railway track construction, including a
shaped block
Fig. 6 shows a perspective view of a track construction similar to the construction
shown in figure 5.
Fig. 1 shows a top view of a shaped block. The block 304 comprises six recesses 315a -
315f which extend perpendicularly to a centre line 310 which divides the block 304 in two
halves. The centre line 31 0 extends in the direction of travel of a vehicle, if the block 304
forms parts of a track for the vehicle.
The recesses 315 are parallel to each other and are arranged within the same horizontal
plane which is parallel to the plane of Fig. 1. The recesses 315 extend in width direction
(the vertical direction in Fig. 1) over about three quarters of the total width of block 304.
They are arranged symmetrically to the centre line 310.
Each recess has a U-shaped cross section to receive a cable. The dashed lines shown in
Fig. 1 which extend along the recesses 31 5 are centre lines of the recesses 31 5. At each
of the two opposite ends of the straight recesses 315, there a bifurcated curved recess
region 316 which forms a transition to a peripheral straight recess 317 extending along the
lateral edge of the block 304. Cables can be laid in a manner consecutively extending
from the straight recesses 315 through the curved recess region 316 into the peripheral
straight recess 31 7, thereby changing the direction of extension from perpendicular to the
direction of travel to parallel to the direction of travel.
The curved recess regions 316 allow for placing a cable, which extends through the
recess 315, in such a manner that it continues to either the left or the right, if viewed in the
straight direction of the recess 315. For example, a cable (not shown in Fig. 1) may
extend through recess 31 5b, may turn to the right - while extending through recess region
316 - and may then extend through the straight recess 317 which extends perpendicularly
to the recesses 315 on the opposite side of curved recess region 316. There are two
peripheral straight recess regions 317 on opposite sides of block 304. The cable may then
turn to the right through the recess region 316 at the end of recess 315e and may then
extend through recess 3156. At the end of recess 315e, which is shown in the lower part
of Fig. 1, the cable may again turn left through recess region 316 into the other straight
recess 31 7. The other recesses 31 5 may be used for two other cables.
As shown in Fig. 2, the depth of the recesses 315, 316, 31 7 is different. The depth of
recess 31 5 is sufficient to receive one cable. The depth of the curved recess region 31 6
increases from the end of recess 315 to recess 317 as indicated by a dashed line in Fig.
2. The bottom profile of the curved recess region 316 is not fully shown in Fig. 2, since the
sectional view includes a region 31 9 of block 304 which is not recessed. Each of the
curved recess regions 316 comprises such an island region 319 which is located between
the two curved branches of the curved recess region 316. One of the branches extends
above the plane of Fig. 2 and the other branch extends below the plane of Fig. 2. In
addition, the island region 319 is located between the straight recess 317 and the two
branches of the curved recess region 316.
Since the depth of the curved recess region 316 increases towards the straight recess
317, different cables can be laid upon one another. The depth of the straight recess 317 is
sufficient to arrange two cables upon one another extending in the same straight direction.
For example, a first cable may extend trough the lower recess 31 7 in Fig. 1 and may turn
left into recess 31 5b through the recess region 316 shown in the bottom left part of Fig. 1.
In addition, a second cable may extend trough recess 315a, may turn into the recess 317,
thereby crossing (if viewed from above) the first cable.
The example concerning the extension of cables or electric lines given above refers to
one specific application for laying three meandering cables. However, the use of the
shaped block 304 shown in Fig. 1 and 2 is not restricted to this application. Rather, for
example, less or more than three cables can be laid using the block 304 shown in Fig. 1
and 2.
Fig. 3 shows two blocks of the type shown in Fig. 1 and 2. The blocks 304a, 304b are
adjacent to each other, forming a continuous or nearly continuous path of recesses for
receiving electric lines. The two blocks 304 may extend in the direction of travel together
with further consecutive blocks not shown in Fig. 3 and 4. The direction of travel is parallel
to the dashed line extending from left to right in Fig. 3 and 4.
Each of the blocks 304a, 304b comprises end surfaces facing in the direction of travel.
The end surfaces facing to the right in Fig. 3 and 4 are denoted by 325. The end surfaces
which are facing to the opposite side are denoted by 324. All end surfaces 324, 325
extend from their central region to the opposite side of the block 304 in a retreating
manner. "Retreating" means that the end surface as a whole does not extend within a
single plane. Rather, the parts on opposite side of the centre line of the block 304 are
either curved or extend along planes which are aligned at an angle relative to each other.
According to the arrangement shown in Fig. 3, the two blocks 304a, 304b are aligned so
that their centre lines are forming a common straight line. This arrangement corresponds
to a straight track of a vehicle. According to the arrangement shown in Fig. 4, the centre
lines are angled relative to each other which correspond to a curved track. Because of the
retreating extension of the end surfaces 324, 325 which abut on each other at the
interface of the blocks 304a, 304b the abutting surfaces 324,325 include an angle which
is denoted by a. In contrast, according to the arrangement shown in Fig. 4, the end
surfaces 324, 325 are in full contact with each other on one side of the centre line (the top
side in Fig. 4) and include an angle of two times the angle of Fig. 3 on the opposite side of
the centre line. Other angles between 2 times a and -2 times a can also be achieved by
using the blocks 304a, 304b.
Within their central region, the end surfaces 325 comprise a protrusion 320 which is semicircularly
shaped. The end surfaces 324 comprise a correspondingly shaped semi-circular
recess 321. As shown in Fig. 3 and 4, the protrusion 320 fully engages the recess 321.
Because of the curved outline of the protrusion 320 and of the recess 321 : the relative
orientation of the adjacent blocks 304a, 304b can be adapted within the limits given by the
retreating configuration of the end surfaces 324, 325.
Fig. 5 shows a cross section through the construction of a track for a rail vehicle. The two
parallely extending rails are denoted by 303a, 303b. In between the rails 303, a block 304
is placed for receiving cables.
Fig. 6 shows a perspective view of a similar arrangement. The same or corresponding
parts in Fig. 5 and 6 are denoted by the same reference numerals.
Fig. 6 shows three cables 17a, 17b, 17c which are placed in recesses of block 304 to
follow a meandering path. The recesses in block 304 and following blocks are not shown
in detail. In order to increase visibility, some regions of the track construction are cut away
in Fig. 6.
Coming back to the common features of the constructions shown in Fig. 5 and 6, the track
comprises a bottom layer 10 which is placed on a sublayer 35. The sub layer 35 may be
natural ground or compressed ground or compressed construction material for example.
The bottom layer 10 is preferably made of concrete. The bottom layer 10 may have a Ushaped
cross section as shown in Fig. 5 or may be rectangular as shown in Fig. 6.
On top of the bottom layer 10, a intermediate layer 15 is placed into which the rails 303
together with the parts in between the rails 303 are embedded. The rails 303 are
embedded between two lateral zones of fastening material, for example an elastomer,
such as polyurethane. The inner zone between the rail 303 and the block 304 is denoted
by 336a, 336b. The outer zone 335 of fastening material is located between the rail 303
and the layer 15 (in the lower region of the rail 303) and between the rail and a cover layer
340 (in the upper region of the rail 303). The cover layer 314 is an optional layer.
Alternatively or in addition, a cover 18 can be provided to cover the electric lines and the
shaped blocks 304 (as shown in Fig. 6).
Further optional elements of the track construction are: A layer 341 which is arranged
under the shaped block 304 and which may be made of fibre reinforced concrete (Fig. 5).
A further layer 345 may be placed under the layer 341 (if present) or under block 304.
This further layer 345, for example a mat, may comprise electrically conducting material.
This layer 345 can be used for shielding the electromagnetic field produced by the electric
lines in the recesses of the block 304. Also, the layer can be used as an electric contact
point for providing electric ground potential.
As shown in Fig. 6, a structure 12 can be arranged sideways of the rails for containing
electric and/or electronic devices for operation of the electric lines 17. The devices within
the structure 12 are connected to the electric lines 17 via a connection device 20. Cables
19 for supplying electric energy to the device or devices within structure 12 are laid along
the track construction parallel to the direction of travel of the vehicle.
We claim:
A shaped block (304) for positioning andlor holding a plurality of line sections (310)
of one or more electric lines along a drive way of a vehicle, wherein the shaped
block (304) comprises a plurality of recesses (315) and/or projections, wherein
edges of the recesses (315) and/or the projections each delimit a space for the line
sections (310) into which one of the line sections (310) can be introduced, so that
said line section extends through the space in a longitudinal direction of the space,
and wherein the longitudinal directions of the spaces delimited by the edges of the
recesses (315) andlor by the pmjections extend essentially mutually parallel in a
common plane.
2. The shaped Mock according to !hs preceding claim. wherein the shaped black (334)
comprises an end surface for facing in a direction of travel of the vehicle. wherein
the end surface comprises a central region and wherein the end surface - if viewed
fmm above - retreatingly extends on both sides of the central region. so that a
further shaped block having a plane or retreatingly extending end surface may abut
on the end surface oriented in different directions.
3, The shaped block according to one of the preceding claims, wherein the recesses
(31 5) extend with their longitudinal directions essentially mutually parallel at the
upper surface of the shaped block (304).
4. An arrangement comprising at least two of the shaped blocks (304) according to
one of the preceding claims, wherein the at least two shaped blocks (304) are
arranged behind one another to be positioned along the drive way.
5. The arrangement according to the preceding daim and according to claim 2,
wherein a first shaped block comprises a protrusion in the central region of the end
surfam, wherein a second shaped Mock comprises a recess in the central region of
an abutting end surface, wherein the protrusion and the recess are correspondingly
shaped and arranged so that the protrusion engages the recess in a manner which
allows for a variation of the relative orientation of the first and second shaped block.
RECTIFIED SHEET (RULE 91) ISNEP
18
6. The arrangement of the preceding claim, wherein the protrusion and the recess - if
viewed from above - comprise a curved outline.
7. An arrangement comprising the shaped block (304) amrding to one of claims 1 - 3
or comprising the arrangement of one of claims 4 - 6, wherein the shaped block
(304) comprises the line sections (310) which extend through the spaces.
8. The amngement according to the preceding claim, wherein at least part of the line
sections (310) are formed by a continuous electric line so that the first lines sections
(310) extending through the spaces in the longitudinal direction are mutually
connected via second line sections (31 1) of the electric line and whemin the second
line sections (31 1) extend alternately at opposing sides of the shaped block (304),
so that the electric line folbws a meandering ptti.
9. The arrangement according to one of the pmceding daims, wherein a plurality of
the shaped Mocks (304) is arranged behind one another along the drive way (303)
of the vehicle so that the longitudinal directions of the spaces foned by the
different shaped blocks (304) for accommodating the line sections (310) extend
essentially mutually parallel, wherein the longitudinal directions extend transversely
to the direction of travel of the vehicle.
10. The arrangement according to one of the preceding claims, wherein the shaped
blocks (304) arranged behind one another are situated between the rails (303a,
303b) of a railway track for railway vehicles. so that the longitudinal dimtion of the
spaces for accommodating the line sections (310) extend in an essentially
horizontal plane and transversely to the direction of travel of the vehicle.
11. A method for positioning and/or holding a plurality of line sections (310) of one or
more electric lines along a track of a vehicle, wherein
- at least one shaped block (304) having a plurality of recesses (315) andlor
projections is provided, wherein edges of the mcesses (315) andlor the
projections each delimit a space for the line sections (310) into which one of
the line sections (310) can be introduced, so that said line section extends
through the space in a longitudinal direction of the space, and wherein the
longitudinal directions of the spaces delimited by the edges of the recesses
RECTIFIED SHEET (RULE 91) ISAIEP
iq
(315) andlor by the projections extend essentially mutually parallel in a
common plane, - at least one electric line is introduced into the spaces such that the line
sections (310) of the line extend through the spaces in the longitudinal
direction.
12. The mehod according to the preceding claim, wherein the line or lines are
introduced into the spaces such that at least part of the line sections (310) am
formed by a continuous elecbic liru, (310.31 1) so that the first line sections (31 0)
extending through the spaces in the longitudinal direction are mutually connected
via other second line sections (31 1) of the electric line and wherein the second line
sections (31 1) extend altematetly at oppodng sides of t b shaped block (304), so
that the electric line follow$ a meandering path.
13. The method according to one of the pmxding claims, wherein the shaped Mock
(304) comprises an end surface for facing in a dirscbkn of travel of the vehicle,
wherein the end surface comprises a central region and wherein the end.suhce - if
viewed from above - retreatingly extends on both sides of the central region and
wherein a further shaped Mock having a plane or retreatingly extending end surface
is oriented in a desired direction - comsponding to the path of travel of the vehicle
- while the end surfaces of the shaped Mock and of the further shaped Mock
abutting on each other.
14. The method according to the preceding claim, wherein the shaped block comprises
a protrusion in the central region of the end surface, wherein the further shaped
block comprises a recess in the central region of an abutting end surface, wherein
the protrusion and the mess are correspondingly shaped and wherein the shaped
black and the further shaped block are arranged so that the protrusion engages the
recess in a manner which allows for a variation of the relative orientation of the first
and second shaped Mock.
| # | Name | Date |
|---|---|---|
| 1 | 5052-DELNP-2012-AbandonedLetter.pdf | 2018-08-17 |
| 1 | 5052-delnp-2012-GPA-(25-06-2012).pdf | 2012-06-25 |
| 2 | 5052-DELNP-2012-FORM 3 [26-02-2018(online)].pdf | 2018-02-26 |
| 2 | 5052-delnp-2012-Correspondence-Others-(25-06-2012).pdf | 2012-06-25 |
| 3 | 5052-DELNP-2012.pdf | 2012-09-27 |
| 3 | 5052-DELNP-2012-FER.pdf | 2017-12-05 |
| 4 | Form 3 [12-07-2016(online)].pdf | 2016-07-12 |
| 4 | 5052-delnp-2012-Correspondence Others-(23-11-2012).pdf | 2012-11-23 |
| 5 | 5052-delnp-2012-Correspondence Others-(21-10-2015).pdf | 2015-10-21 |
| 6 | 5052-delnp-2012-Form-3-(21-10-2015).pdf | 2015-10-21 |
| 7 | 5052-delnp-2012-Form-5.pdf | 2013-10-24 |
| 7 | 5052-delnp-2012--Correspondence Others-(26-08-2015).pdf | 2015-08-26 |
| 8 | 5052-delnp-2012-Form-3.pdf | 2013-10-24 |
| 8 | 5052-delnp-2012--Form-1-(26-08-2015).pdf | 2015-08-26 |
| 9 | 5052-delnp-2012-Form-2.pdf | 2013-10-24 |
| 9 | 5052-delnp-2012--Form-13-(26-08-2015).pdf | 2015-08-26 |
| 10 | 5052-delnp-2012--GPA-(26-08-2015).pdf | 2015-08-26 |
| 10 | 5052-delnp-2012-Form-1.pdf | 2013-10-24 |
| 11 | 5052-delnp-2012-Correspondence Others-(26-08-2015).pdf | 2015-08-26 |
| 11 | 5052-delnp-2012-Drawings.pdf | 2013-10-24 |
| 12 | 5052-delnp-2012-Description (Complete).pdf | 2013-10-24 |
| 12 | 5052-delnp-2012-Form-1-(26-08-2015).pdf | 2015-08-26 |
| 13 | 5052-delnp-2012-Correspondence-Others.pdf | 2013-10-24 |
| 13 | 5052-delnp-2012-Petition-(26-08-2015).pdf | 2015-08-26 |
| 14 | 5052-delnp-2012-Claims.pdf | 2013-10-24 |
| 14 | Description(Complete) [26-08-2015(online)].pdf | 2015-08-26 |
| 15 | 5052-delnp-2012-Abstract.pdf | 2013-10-24 |
| 16 | 5052-delnp-2012-Form-18-(28-10-2013).pdf | 2013-10-28 |
| 17 | 5052-delnp-2012-Correspondence Others-(28-10-2013).pdf | 2013-10-28 |
| 18 | 5052-delnp-2012-Form-3-(25-11-2013).pdf | 2013-11-25 |
| 19 | 5052-delnp-2012-Correspondence Others-(25-11-2013).pdf | 2013-11-25 |
| 20 | 5052-delnp-2012-GPA-(16-04-2014).pdf | 2014-04-16 |
| 21 | 5052-delnp-2012-Form-3-(16-04-2014).pdf | 2014-04-16 |
| 22 | 5052-delnp-2012-Correspondence-Others-(16-04-2014).pdf | 2014-04-16 |
| 23 | 5052-delnp-2012-Form-3-(21-07-2014).pdf | 2014-07-21 |
| 24 | 5052-delnp-2012-Correspondence-Others-(21-07-2014).pdf | 2014-07-21 |
| 25 | 5052-DELNP-2012-Form 3-041214.pdf | 2014-12-16 |
| 26 | 5052-DELNP-2012-Correspondence-041214.pdf | 2014-12-16 |
| 27 | 5052-delnp-2012-Form-3-(25-06-2015).pdf | 2015-06-25 |
| 28 | 5052-delnp-2012-Correspondence Other-(25-06-2015).pdf | 2015-06-25 |
| 29 | Petition Under Rule 137 [25-08-2015(online)].pdf | 2015-08-25 |
| 30 | Form 13 [26-08-2015(online)].pdf | 2015-08-26 |
| 31 | Description(Complete) [26-08-2015(online)].pdf | 2015-08-26 |
| 32 | 5052-delnp-2012-Petition-(26-08-2015).pdf | 2015-08-26 |
| 33 | 5052-delnp-2012-Form-1-(26-08-2015).pdf | 2015-08-26 |
| 34 | 5052-delnp-2012-Correspondence Others-(26-08-2015).pdf | 2015-08-26 |
| 35 | 5052-delnp-2012--GPA-(26-08-2015).pdf | 2015-08-26 |
| 36 | 5052-delnp-2012--Form-13-(26-08-2015).pdf | 2015-08-26 |
| 37 | 5052-delnp-2012--Form-1-(26-08-2015).pdf | 2015-08-26 |
| 38 | 5052-delnp-2012--Correspondence Others-(26-08-2015).pdf | 2015-08-26 |
| 39 | 5052-delnp-2012-Form-3-(21-10-2015).pdf | 2015-10-21 |
| 40 | 5052-delnp-2012-Correspondence Others-(21-10-2015).pdf | 2015-10-21 |
| 41 | Form 3 [12-07-2016(online)].pdf | 2016-07-12 |
| 42 | 5052-DELNP-2012-FER.pdf | 2017-12-05 |
| 43 | 5052-DELNP-2012-FORM 3 [26-02-2018(online)].pdf | 2018-02-26 |
| 44 | 5052-DELNP-2012-AbandonedLetter.pdf | 2018-08-17 |
| 1 | PatSeer_04-12-2017.pdf |