Sign In to Follow Application
View All Documents & Correspondence

Sewage Treatment Apparatus And Sewage Reuse System

Abstract: The present patent aims to control a water storing quantity of reuse water which is stored by a sewage treatment apparatus of a satellite treatment plant. The sewage treatment apparatus of the present invention comprises: a membrane separation active-sludge treating section which performs a biological treatment on a part of sewage, which is introduced by a water introducing section while flowing through a sewer trunk line, to generate first treated sewage; a membrane highly treating section which performs a membrane high treatment on said first treated sewage to generate second treated sewage; a membrane treating tank which stores said first treated sewage; a membrane highly treating tank which stores said second treated sewage; water level sensors which respectively measure water level of said membrane treating tank and said membrane highly treating tank; and a power-control section which controls water introducing quantity of said water introducing section on the basis of the water level data measured by said water level sensors.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
22 March 2010
Publication Number
44/2012
Publication Type
INA
Invention Field
CHEMICAL
Status
Email
Parent Application

Applicants

HITACHI PLANT TECHNOLOGIES, LTD.
5-2, HIGASHI-IKEBUKURO 4-CHOME, TOSHIMA-KU, TOKYO, 170-8466 JAPAN

Inventors

1. TAKEMURA, KIYORAZU
C/O. HITACHI PLANT TECHNOLOGIES, LTD. 5-2 HIGASHI-IKEBUKURO 4-CHOME, TOSHIMA-KU, TOKYO, 170-8466 JAPAN
2. ONISHI, MAKOTO
C/O. HITACHI PLANT TECHNOLOGIES, LTD. 5-2 HIGASHI-IKEBUKURO 4-CHOME, TOSHIMA-KU, TOKYO, 170-8466 JAPAN
3. YOSHIKAWA, SHINICHI
C/O. HITACHI PLANT TECHNOLOGIES, LTD. 5-2 HIGASHI-IKEBUKURO 4-CHOME, TOSHIMA-KU, TOKYO, 170-8466 JAPAN
4. ITO, MASAMI
C/O. HITACHI PLANT TECHNOLOGIES, LTD. 5-2 HIGASHI-IKEBUKURO 4-CHOME, TOSHIMA-KU, TOKYO, 170-8466 JAPAN
5. UEDA, SHINJIRO
C/O. HITACHI PLANT TECHNOLOGIES, LTD. 5-2 HIGASHI-IKEBUKURO 4-CHOME, TOSHIMA-KU, TOKYO, 170-8466 JAPAN

Specification

TITLE OF THE INVENTION
SEWAGE TREATMENT APPARATUS AND SEWAGE REUSE SYSTEM
BACKGROUND
(a) Field of the Invention
The present invention relates to a sewage treatment apparatus which is used in
a satellite treatment plant. The sewage treatment apparatus introduces a part of
sewage from a sewer trunk line; performs sewage treatment; and supplies reuse water
to the neighborhood. The present invention also relates to a sewage reuse system which
includes a plurality of sewage treatment apparatuses located in respective satellite
treatment plants.
(b) Description of the Related Arts
Conventionally, sewage flowing through a sewer trunk line is treated by a
terminal sewage treatment plant in order to generate reuse water. The generated reuse
water is supplied to an area on the upstream side. However, the supply of reuse water
has become a problem for an area that is far away from the terminal sewage treatment
plant but needs water.
Then, in recent years, satellite treatment plant, by which sewage can be
effectively treated and reused, is put into use. Fig. 4 is an explaining diagram showing
a structure of a plurality of satellite treatment plants. As shown in Fig. 4, there is a
sewer trunk line 3. A terminal sewage treatment plant 2 is arranged at the end of the
sewer trunk line 3, and a plurality of satellite treatment plants 1 are distributed along
the sewer trunk line 3. Each satellite treatment plant 1 introduces a part of sewage
flowing through the sewer trunk line 3; purifies the sewage in order to generate reuse
water; then supplies the generated reuse water to an area that is in the neighborhood
of the satellite treatment plant 1 and is in demand for reuse water.
However, because such conventional satellite treatment plan is often located in
an urban district where it is difficult to secure ample setting space, it has become a
problem to miniaturize the setting space as much as possible.
As disclosed in the Japanese Patent Publication No. 2008-705, the present
applicant once proposed a sewage treatment apparatus used in such satellite
treatment plant. The Japanese Patent Publication No. 2008-705 describes a sewage
treatment apparatus which performs a sewage treatment through combining a
high-rate filtering section with a membrane separation active-sludge treating section.
According to the sewage treatment apparatus disclosed in the Japanese Patent
Publication No. 2008-705, it is possible to miniaturize the setting space of the whole
treatment apparatus, as well as to generate reuse water with high purity.
However, it is necessary to generate reuse water according to the demand of the
neighborhood. Furthermore, it is also necessary to prepare water tanks for temporarily
storing the generated reuse water according to different purities. Because of that, there
is an important project to generate reuse water and control water storing quantity of
reuse water according to the demand for reuse water, but this project has not been
considered in the Japanese Patent Publication No. 2008-705 mentioned above.
Therefore, in order to accomplish the project mentioned above, the present
invention aims to control the water storing quantity of reuse water which is generated
by a sewage treatment apparatus of a satellite treatment plant. Furthermore, the
present invention also aims to control and adjust water storing quantities in a plurality
of sewage treatment apparatuses by a unified management.
SUMMARY
An aspect of the invention is to provide a sewage treatment apparatus, which
comprises:
a membrane separation active-sludge treating section which performs a
biological treatment on a part of sewage, which is introduced by a water introducing
section while flowing through a sewer trunk line, to generate first treated sewage,'
a membrane highly treating section which performs a membrane high treatment
on said first treated sewage to generate second treated sewage;
a membrane treating tank which stores said first treated sewage,'
a membrane highly treating tank which stores said second treated sewage,'
water level sensors which respectively measure water level of said membrane
treating tank and said membrane highly treating tank; and
a power-control section which controls water introducing quantity of said water
introducing section on the basis of the water level data measured by said water level
sensors.
Furthermore, the power-control section power-control section controls the water
introducing quantity on the basis of temperature.
The sewage treatment apparatus of the above type further comprises a power
supply which is contained in the power-control section which drives the membrane
separation active-sludge treating section and the membrane highly treating section.
Waste heat released from said power supply is used by a plurality of heating sections
mounted in the membrane separation active-sludge treating section, the membrane
treating tank, and the membrane highly treating tank.
Furthermore, concentration sewage produced by said membrane highly treating
section is drained back to said sewer trunk line downstream from a water introducing
opening formed in said water introducing section.
Another aspect of the invention is to provide a sewage reuse system, which
comprises:
a plurality of sewage treatment apparatuses of the above type, which are
distributed in an area where there is a sewer trunk line;
a communication section which transmits driving information of respective the
sewage treatment apparatus; and
a central control section which controls water storing quantity of each
membrane treating tank and/or each membrane highly treating tank located in
respective the sewage treatment apparatuses, on the basis of demand for reuse water
and the driving information transmitted by the communication section.
The sewage reuse system of the above type further comprises a supply section
which connects all the membrane treating tanks located in respective the sewage
treatment apparatuses with each other, as well as connects all the membrane highly
treating tanks located in respective the sewage treatment apparatuses with each other.
On the basis of demand for reuse water, the central control section supplies reuse water
via the supply section to the membrane treating tank and/or the membrane highly
treating tank located in an area where reuse water is in shortage.
With such sewage treatment apparatus of the present invention, it is possible to
the store the reuse water generated by the membrane separation active-sludge treating
section or the membrane highly treating section according to different purities. It is
also possible to control the water storing quantity of the membrane treating tank
and/or the membrane highly treating tank on the basis of to the demand for reuse
water, the temperature and the water lever data.
Furthermore, because the waste heat released from the power supply is collected
and is used by a plurality of heating sections mounted in the membrane separation
active-sludge treating section, the membrane treating tank, and the membrane highly
treating tank, it is possible to heat the sewage to a proper temperature for the
biological treatment in order to raise the efficiency of the biological treatment, as well
as to heat the reuse water according to different uses.
Furthermore, because the concentration sewage, which is produced in the
membrane highly treating section during the membrane high treatment, is drained
back to the sewer trunk line, there is no need to install extra treating device. As a
result, the setting space of the whole apparatus can be miniaturized.
With such sewage reuse system of the present invention, it is possible to control
and adjust the water storing quantities of the plurality of sewage treatment
apparatuses by a unified management.
It is also possible to replenish all the tanks by transferring reuse water from
other tanks to a tank located in an area where the reuse water is in shortage, according
to the demand for reuse water.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a summary diagram showing a structure of a sewage treatment
apparatus of the present invention.
Fig. 2 is an explaining diagram of a sewage treatment apparatus, wherein waste
heat is reused.
Fig. 3 is a summary diagram showing a structure of a sewage reuse system of
the present invention.
Fig. 4 is an explaining diagram showing a structure of a plurality of satellite
treatment plants in prior art.
DETAILED DESCRIPTION OF EMBODIMENTS
Embodiments of the present invention will be described in detail hereinbelow
with reference to the drawings.
Fig. 1 is a summary diagram showing a structure of a sewage treatment
apparatus of the present invention. Fig. 2 is an explaining diagram of a sewage
treatment apparatus, wherein waste heat is reused. As shown in Fig. 1, a sewage
treatment apparatus 10 mainly comprises a pretreating section 20, a membrane
separation active-sludge treating section 30, a membrane highly treating section 40, a
membrane treating tank 50, a membrane highly treating tank 60, several water level
sensors 70, a power-control section 80, and a power supply 90. Further, the sewage
treatment apparatus 10 is located anywhere along a sewer trunk line 12, as an
example where the place is considered of being in demand for reuse water.
The pretreating section 20 is used for removing "sediment" from the sewage,
before a sewage treatment which will be performed afterwards. For example, fiber
filtering medium, screen and other materials can be used as the pretreating section 20.
In details, the pretreating section 20 separates and removes suspending solid wastes
included in the sewage as "sediment", by letting the sewage flow through the fiber
filtering medium or the screen.
An induction pipe with a water introducing opening is mounted in the
pretreating section 20, and the induction pipe connects the pretreating section 20 with
the sewer trunk line 12. By means of a water introducing section 14 installed in the
middle of the induction pipe, a part of sewage is introduced into the pretreating section
20 via the water introducing opening. The water introducing section 14 is formed, for
example, by an electromagnetic valve or a suction pump. The pretreating section 20
further includes a draining pipe 22, which drains the "sediment" collected during the
pretreatment back to the sewer trunk line 12. The draining pipe 22 is connected to the
sewer trunk line 12 downstream from the water introducing opening, and the drained
"sediment" will be treated by a terminal sewage treatment plant arranged at the end of
the sewer trunk line 12.
The membrane separation active-sludge treating section 30 mainly comprises an
anaerobic tank 32 and an aerobic tank 34. As shown in Fig. 2, the aerobic tank 34 is
located next to the anaerobic tank 32, so that a circulation loop is built for letting
active-sludge circulate from the aerobic tank 34 located downstream to the anaerobic
tank 32 located upstream. The sewage is introduced from the pretreating section 20
into the anaerobic tank 32, and the anaerobic tank 32 performs a biological treatment
through the active-sludge in order to generate treated sewage (i.e. first treated sewage).
Then, the first treated sewage is introduced into the anaerobic tank 34, and the aerobic
tank 34 performs a membrane separation through flat membrane soaked in the tank,
in order to separate the active-sludge from the first treated sewage. Afterwards, the
first treated sewage is introduced to the membrane highly treating section 40 or to the
membrane treating tank 50 which will be described below. In the membrane separation
active-sludge treating section 30, excess sludge is produced as a result of the growth of
the active-sludge during the biological treatment. To drain the excess sludge back to
the sewer trunk line 12, a draining pipe 36 is installed in the membrane separation
active-sludge treating section 30. The draining pipe 36 is connected to the sewer trunk
line 12 downstream from the water introducing opening, and the drained excess sludge
will be treated by the terminal sewage treatment plant. Further, although as an
example, the aerobic tank 34 of the present embodiment has been described as using
flat membrane, any other hollow fiber membrane can also be used as a separation
method and the material of the membrane is not restrict as long as the active-sludge
can be separate from the first treated sewage.
The membrane highly treating section 40 is used for generating reuse water
with high purity according to different uses of the reuse water. For example, reverse
osmosis membrane (RO) and/or Nan filtration membrane (NF) can be used in the
membrane highly treating section 40. The reverse osmosis membrane (RO) or the Nan
filtration membrane (NF) is fixed in the fluid path of the first treated sewage, so that
it is possible to purify the first treated sewage by letting it flow through the membrane.
The reverse osmosis membrane can remove inorganic molecules from the first treated
sewage to generate treated sewage (i.e. second treated sewage) that has the same
purity as drinking water. Comparatively, the Nan filtration membrane can remove
pigment components from the first treated sewage to generate second treated sewage
that is transparent. In the membrane highly treating section 40, during the process of
the membrane treatment, concentration sewage is produced as a by-product besides
the generation of reuse water. To drain the concentration sewage back to the sewer
trunk line 12, a draining pipe 42 is installed in the membrane highly treating section
40. The draining pipe 42 is connected to the sewer trunk line 12 downstream from the
water introducing opening, and the drained concentration sewage will be treated by the
terminal sewage treatment plant.
The membrane treating tank 50 is used for storing a part of the first treated
sewage, which is generated through the biological treatment performed in the
membrane separation active-sludge treating section 30, as reuse water. The membrane
treating tank 50 contains a supply pipe and a draining pipe. The supply pipe supplies
the reuse water to an area where reuse water is in demand, and the draining pipe
drains the reuse water stored in the tank back to the sewer trunk line 12.
The membrane highly treating tank 60 is used for storing the second treated
sewage, which is generated through the membrane separation performed in the
membrane highly treating section 40, as reuse water. The membrane highly treating
tank 60 contains a supply pipe and a draining pipe. The supply pipe supplies the reuse
water to an area where reuse water is in demand, and the draining pipe drains the
reuse water stored in the tank back to the sewer trunk line 12.
For measuring the water level (water storing quantity) of reuse water, water
level sensors 70 are installed in both the membrane treating tank 50 and the
membrane highly treating tank 60,
The power-control section 80 is electrically connected with the water introducing
section 14, the pretreating section 20, the membrane separation active-sludge treating
section 30, the membrane highly treating section 40, water level sensors 70, and a
valve (not shown). The power-control section 80 operates to control the water
introducing section 14, the pretreating section 20, the membrane separation
active-sludge treating section 30, and the membrane highly treating section 40.
The power supply 90 is installed in the sewage treatment apparatus 10
accompany with the power-control section 80, and supplies electric power to the
power-control section 80.
For example, a fuel cell, or a family use generator such as a solar power source or
a wind power source can be used as the power supply 90. Further, the power supply 90
can be formed as a supplement to a main power supply, and programmed to work in
emergency such as in a disaster.
Furthermore, the power supply 90 includes a waster heat collecting section 92
(as shown in Fig. 2). The power supply 90 releases heat in the course of generating
electricity. In the present invention, the released heat (i.e. waster heat) is collected by
the waster heat collecting section 92, and is used in the sewage treatment.
As shown in Fig. 2, the waster heat collecting section 92 collects the waste heat
released from the generator of the power supply 90, and temporarily stores it in a heat
accumulating device. The waster heat collecting section92 is connected with a plurality
of heating sections. An embodiment of the heating section has a structure described
below. The waster heat collecting section 92 is connected with a dispersing section 38
which is mounted in the aerobic tank 34 of the membrane separation active-sludge
treating section 30. The dispersing section 38 bubbles hot air into the aerobic tank 34
so that the sewage which is being treated in the aerobic tank 34 can be heated to a
proper temperature for biological treatment. As a result, the efficiency of the biological
treatment performed through the active-sludge can be raised accordingly. The waster
heat collecting section 92 is also connected with a couple of heat exchanging units 94
which are mounted respectively in the membrane treating tank 50 and the membrane
highly treating tank 60. The waster heat collecting section 92 supplies hot liquid to the
heat exchanging units 94 so that the treated sewage (i.e. reuse water) stored in the
tanks can be heated for melting snow. Moreover, the heating method of the heating
section is not limit to the dispersing section 38 and the heat exchanging units 94, as
long as the treated sewage and the reuse water can be heated.
Furthermore, because the "sediment" which is newly produced by the sewage
treatment apparatus 10, the excess sludge, and the concentration sewage are all
drained back to the sewer trunk line 12 downstream from the water introducing
opening, there is no need to install extra treating device. As a result, the setting space
of the whole apparatus can be miniaturized.
The sewage treatment apparatus of the present invention, which has the
structure described above, works in the following way.
Sewage is introduced from the sewer trunk line 12 into the pretreating section 20
through the water introducing section 14. The pretreating section 20 separates and
removes the "sediment" included in the sewage in order to reduce the burden of the
membranes treatment performed in the membrane separation active-sludge treating
section 30 afterwards. The "sediment" is drained via the draining pipe 22 back to the
sewer trunk line 12 downstream from the water introducing opening, and the sewage
which has been treated by the pretreating section 20 is introduced into the membrane
separation active-sludge treating section 30 in the back.
The membrane separation active-sludge treating section 30 performs the
biological treatment in the anaerobic tank 32 through the active-sludge with a required
concentration. Then, the sewage, which has been treated by the active-sludge, is
introduced into the aerobic tank 34 located next to the anaerobic tank 32, and is
separated from the active-sludge by flat membrane soaked in the aerobic tank 34. The
excess sludge, which is produced as a result of the growth of the active-sludge during
the biological treatment, is drain back to the sewer trunk line 12 via the draining pipe
36. A part of the first treated sewage is introduced into the membrane highly treating
section 40, while the remaining is introduced into the membrane treating tank 50 and
temporarily stored there.
In the membrane highly treating section 40, to generate the second treated
sewage with a purity higher than that of the first treated sewage, the reverse osmosis
membrane and/or the Nan filtration membrane is put into use according to different
uses of reuse water. The second treated sewage, which is generated through the
purification treatment, is introduced into the membrane highly treating tank 60 and
temporarily stored there.
The power-control section 80 is in operation while the purification treatment
described above is being performed. The demand information of reuse water, the (outer
atmospheric) temperature or other weather information, the water level data about the
water level (water storing quantities) of the treated sewage in the membrane treating
tank 50 and the membrane highly treating tank 60 measured by water level sensors
are transmitted to the power-control section 80. Furthermore, the power-control section
80 operates to control the water introducing section 14, the pretreating section 20, the
membrane separation active-sludge treating section 30, and the membrane highly
treating section 40, whose operating information is respectively inputted into the
power-control section 80. Then, on the basis of the water level data, the demand for
reuse water, and the (outer atmospheric) temperature or other weather information,
the power-control section 80 adjusts water introducing quantity of the sewage
introduced by the water introducing section 14, in order to adjust the water storing
quantity of treated sewage in the membrane treating tank 50 and the membrane
highly treating tank 60 to a desired water storing quantity. For example, in order to
raise the water storing quantity, it is necessary to increase the water introducing
quantity. Conversely, in order to lower the water storing quantity, it is necessary to
decrease the water introducing quantity, or to drain the reused water stored in the
tanks back to the sewer trunk line 12.
Furthermore, if the water storing quantity of the membrane treating tank 50
and/or the membrane highly treating tank 60 exceeds a preset water storing quantity
but there is no demand for reuse water, to avoid the reuse water going bad, the reuse
water stored in the tank will be drained back to the sewer trunk line 12 via a draining
pipe.
Moreover, the power supply 90 supplies the power-control section 80 with
electricity, and the waster heat collecting section 92 collects and stores the waste heat
released from the generator. Further, the waster heat collecting section 92 is connected
with the dispersing section 38 mounted in the aerobic tank 34 of the membrane
separation active-sludge treating section 30, and the dispersing section 38 bubbles hot
air into the aerobic tank 34. As a result, the sewage which is being treated in the
aerobic tank 34 can be heated to a proper temperature for biological treatment, so that
the efficiency of the biological treatment performed through the active-sludge can be
raised accordingly. The waster heat collecting section 92 is also connected with a couple
of heat exchanging units 94 which are mounted respectively in the membrane treating
tank 50 and the membrane highly treating tank 60, and supplies hot liquid to the heat
exchanging units 94.
With such sewage treatment apparatus, it is possible to store the reuse water
generated by the membrane separation active-sludge treating section 30 or the
membrane highly treating section 40 according to different purities. It is also possible
to control the water storing quantity of the membrane treating tank 50 and/or the
membrane highly treating tank 60 on the basis of the demand for reuse water, the
temperature and the water lever data.
Furthermore, because the waste heat released from the power supply 90 is
collected by the waster heat collecting section 92 and is used by the dispersing section
38 mounted in the aerobic tank 34 of the membrane separation active-sludge treating
section 30, it is possible to heat the sewage to a proper temperature for the biological
treatment in order to raise the efficiency of the biological treatment. The waste heat is
also used by a couple of heat exchanging units 94 mounted respectively in the
membrane treating tank 50 and the membrane highly treating tank 60, so it is possible
to heat the reuse water according to different uses.
A sewage reuse system of the present invention will be described below. Fig. 3 is
a summary diagram showing a structure of the sewage reuse system of the present
invention. The sewage reuse system 100 of the present invention mainly comprises a
plurality of sewage treatment apparatuses 10, a communication section 110, and a
central control section 120.
The structure of the sewage treatment apparatus 10 in present embodiment is
. shown in Fig. 1 and Fig. 2. A plurality of such sewage treatment apparatuses 10 are
distributed along a sewer trunk line 12 in an area that is in demand for reuse water,
Further, reuse water can be used as, for example, environment water in parks,
water for melting snow, toilet water, sprinkling water, gardening water, domestic water
in emergency and so on.
The power-control section 80 in each sewage treatment apparatus 10 contains a
data sending source. The communication section 110 is a wired or wireless network,
which connects all the data sending sources with a data receiving source installed in
the central control section 120 which will be described below. There are a plurality of
relay stations distributed among the communication section 110 according to the
distance between those data sending sources and the data receiving source. For
example a wireless network system, such as a mobile system or a Wireless LAN, can be
used as a mean of communication.
Data transmitted from the data sending source of the power-control section 80, is,
for example, the water storing quantities of the membrane treating tank 50 and the
membrane highly treating tank 60.' the water treating quantities of the membrane
separation active-sludge treating section 30 and the membrane highly treating section
40; the water introducing quantity of the water introducing section 14,' failure
information of the membrane separation active-sludge treating section 30 and the
membrane highly treating section 40,' temperature, rain, snow or other weather
information,' and so on.
The central control section 120 mainly comprises a wireless receiver, a data
processing device, and a monitor, and controls driving states of all the sewage
treatment apparatuses 10 by a unified management. Specifically, the central control
section 120 receives data about the driving state of each sewage treatment apparatus
10 via the wireless receiver. Further, the demand information of reuse water and
weather information in the neighborhood of the satellite treatment plant is inputted
into the data processing device of the central control section 120. On the basis of such
information, the central control section 120 controls and adjusts the water storing
quantity of each sewage treatment apparatus 10.
Furthermore, those sewage treatment apparatuses 10, which are distributed
along the sewer trunk line 12 or sewer branch lines, are interconnected by a supply
section 130 composed of a set of supply tubes. The supply section 130 is a network of
many tubes and pumps, and it connects all the membrane treating tanks 50 that are
located respectively in a plurality of sewage treatment apparatuses 10 with each other,
as well as connects all the membrane highly treating tanks 60 that are located
respectively in a plurality, of sewage treatment apparatuses 10 with each other, in
order to deliver the generated reuse water from one tank to others. Besides a set of
supply tubes, the supply section 130 can also be a movable device such as a water
supply truck, as long as those tanks located in different sewage treatment apparatuses
10 can replenish each other with treated sewage via the supply section 130.
The sewage reuse system 100, which has the structure described above, works in
the following way. The water level data of all the membrane treating tanks 50 and the
membrane highly treating tanks 60, which are located respectively in a plurality of
sewage treatment apparatuses 10, is measured by a plurality of water level sensors 70.
The water level data is transmitted to the power-control section 80 and is remembered
there. Besides the water level data, the water treating quantity of the membrane
separation active-sludge treating section 30 and the membrane highly treating section
40; the water introducing quantity of the water introducing section 14; failure
information of the membrane separation active-sludge treating section 30 and the
membrane highly treating section 40; temperature, rain, snow or other weather
information; and so on, is also inputted into the power-control section 80. Such
information is sent to the central control section 120 via the communication section
110.
The communication section 110 works in the following way. First, the data
sending source sends data to all relay stations that are in reach. Then each of the relay
stations forwards the received data to other relay stations that are in reach. By
repeating the step described below, the data can be transmitted to the data receiving
source of the central control section 120.
The driving information of all the sewage treatment apparatuses 10, the driving
information in the past, the demand information of reuse water in the neighborhood,
and temperature information, is inputted into the central control section 120. When
the water storing quantity of one sewage treatment apparatus 10 is insufficient
according to the demand information of reuse water, the central control section 120
performs control by increasing the water introducing quantity of the water introducing
section 14 and performing the sewage treatment. As a result, the water storing
quantity of the sewage treatment apparatus 10 can be raised to meet the demand.
Moreover, the central control section 120 also controls and adjusts the water storing
quantity on the basis of weather information and the consumption history of reuse
water.
In another situation, when the water storing quantity of one sewage treatment
apparatus 10 is considered to be insufficient (for example in a case that the demand
goes beyond the limit of the sewage treating capacity of the sewage treatment
apparatus 10) according to the demand information of reuse water, the weather
information, or other factors, the central control section 120 performs control by
drawing and supplying reuse water from membrane treating tanks 50 or membrane
highly treating tanks 60 of other sewage treatment apparatuses 10 located in the
neighborhood, via the supply section 130.
Furthermore, because all the membrane treating tanks 50 which are located in
respective sewage treatment apparatuses 10 are connected with each other by a set of
pumps, and all the membrane highly treating tanks 60 which are located in respective
sewage treatment apparatuses 10 are also connected with each other by a set of pumps,
it is possible to transfer reuse water among different areas according to the
consumption condition of reuse water. The consumption condition of reuse water can be
judged by measuring water level data of each membrane treating tank 50 and each
membrane highly treating tank 60 through the water level sensor 70.
Moreover, it is also possible to transfer reuse water among different areas
according to a demand forecasting which can be predicted on the basis of the demand
history of reuse water and the temperature information.
With such sewage reuse system 100, it is possible to control water storing
quantities of the plurality of sewage treatment apparatuses 10 by a unified
management, and adjust the water storing quantities according to the demand for
reuse water. It is also possible to replenish those sewage treatment apparatuses 10
according to the demand for reuse water, by transferring reuse water from other tanks
to a tank located in an area where the reuse water is in shortage.
WE CLAIM
1. A sewage treatment apparatus, comprising:
a membrane separation active-sludge treating section which performs a
biological treatment on a part of sewage, which is introduced by a water introducing
section while flowing through a sewer trunk line, to generate first treated sewage;
a membrane highly treating section which performs a membrane high treatment
on said first treated sewage to generate second treated sewage;
a membrane treating tank which stores said first treated sewage;
a membrane highly treating tank which stores said second treated sewage,'
water level sensors which respectively measure water level of said membrane
treating tank and said membrane highly treating tank; and
a power-control section which controls water introducing quantity of said water
introducing section on the basis of the water level data measured by said water level
sensors.
2. The sewage treatment apparatus according to claim 1,
wherein said power-control section controls said water introducing quantity on
the basis of temperature.
3. The sewage treatment apparatus according to claim 1, further comprising:
a power supply which is contained in said power-control section which drives
said membrane separation active-sludge treating section and said membrane highly
treating section,
wherein waste heat released from said power supply is used by a plurality of
heating sections mounted in said membrane separation active-sludge treating section,
said membrane treating tank, and said membrane highly treating tank.
4. A sewage treatment apparatus, comprising:
a membrane separation active-sludge treating section which performs a
biological treatment on a part of sewage, which is introduced by a water introducing
section while flowing through a sewer trunk line, to generate first treated sewage;
a membrane highly treating section which performs a membrane high treatment
on said first treated sewage to generate second treated sewage;
a membrane treating tank which stores said first treated sewage;
a membrane highly treating tank which stores said second treated sewage;
water level sensors which respectively measure water level of said membrane
treating tank and said membrane highly treating tank;
a power-control section which controls water introducing quantity of said water
introducing section on the basis of temperature and the water level data measured by
said water level sensors; and
a power supply which is contained in said power-control section which drives
said membrane separation active-sludge treating section and said membrane highly
treating section,
wherein waste heat released from said power supply is used by a plurality of
heating sections mounted in said membrane separation active-sludge treating section,
said membrane treating tank, and said membrane highly treating tank.
5. The sewage treatment apparatus according to any of claims 1-4,
wherein concentration sewage produced by said membrane highly treating
section is drained back to said sewer trunk line downstream from a water introducing
opening formed in said water introducing section.
6. A sewage reuse system comprising:
(a) a plurality of sewage treatment apparatuses, each comprising:
a membrane separation active-sludge treating section which performs a
biological treatment on a part of sewage, which is introduced by a water introducing
section while flowing through a sewer trunk line, to generate first treated sewage;
a membrane highly treating section which performs a membrane high
treatment on said first treated sewage to generate second treated sewage;
a membrane treating tank which stores said first treated sewage;
a membrane highly treating tank which stores said second treated sewage;
water level sensors which respectively measure water level of said membrane
sating tank and said membrane highly treating tank; and
a power-control section which controls water introducing quantity of said
water introducing section on the basis of the water level data measured by said water
level sensors,
(b) wherein said plurality of sewage treatment apparatuses are distributed in an
area where there is a sewer trunk line, and
(c) further comprising:
a communication section which transmits driving information of respective
said sewage treatment apparatus; and
a central control section which controls water storing quantity of each
membrane treating tank and/or each membrane highly treating tank located in
respective said sewage treatment apparatuses, on the basis of demand for reuse water
and said driving information transmitted by said communication section.
7. The sewage reuse system according to claim 6, further comprising:
a supply section which connects all said membrane treating tanks located in
respective said sewage treatment apparatuses with each other, as well as connects all
said membrane highly treating tanks located in respective said sewage treatment
apparatuses with each other,
wherein on the basis of demand for reuse water, said central control section
supplies reuse water via said supply section to said membrane treating tank and/or
said membrane highly treating tank located in an area where reuse water is in
shortage.

The present patent aims to control a water storing quantity of reuse water which
is stored by a sewage treatment apparatus of a satellite treatment plant. The sewage
treatment apparatus of the present invention comprises: a membrane separation
active-sludge treating section which performs a biological treatment on a part of
sewage, which is introduced by a water introducing section while flowing through a
sewer trunk line, to generate first treated sewage; a membrane highly treating section
which performs a membrane high treatment on said first treated sewage to generate
second treated sewage; a membrane treating tank which stores said first treated
sewage; a membrane highly treating tank which stores said second treated sewage;
water level sensors which respectively measure water level of said membrane treating
tank and said membrane highly treating tank; and a power-control section which
controls water introducing quantity of said water introducing section on the basis of
the water level data measured by said water level sensors.

Documents

Application Documents

# Name Date
1 289-KOL-2010-AbandonedLetter.pdf 2018-03-16
1 abstract-289-kol-2010.jpg 2011-10-06
2 289-KOL-2010-FER.pdf 2017-07-26
2 289-KOL-2010-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf 2011-10-06
3 289-kol-2010-specification.pdf 2011-10-06
3 289-KOL-2010-(27-03-2014)-CORRESPONDENCE.pdf 2014-03-27
4 289-KOL-2010-PRIORITY DOCUMENT.pdf 2011-10-06
4 289-KOL-2010-(27-03-2014)-DRAWINGS.pdf 2014-03-27
5 289-KOL-2010-PA.pdf 2011-10-06
5 289-KOL-2010-(27-03-2014)-ENGLISH TRANSLATION.pdf 2014-03-27
6 289-kol-2010-form 5.pdf 2011-10-06
6 289-KOL-2010-(27-03-2014)-FORM-1.pdf 2014-03-27
7 289-kol-2010-form 3.pdf 2011-10-06
7 289-KOL-2010-(27-03-2014)-FORM-2.pdf 2014-03-27
8 289-KOL-2010-FORM 3 1.1.pdf 2011-10-06
8 289-KOL-2010-(27-03-2014)-FORM-3.pdf 2014-03-27
9 289-KOL-2010-(27-03-2014)-FORM-5.pdf 2014-03-27
9 289-kol-2010-form 2.pdf 2011-10-06
10 289-KOL-2010-(27-03-2014)-FORM-6.pdf 2014-03-27
10 289-kol-2010-form 1.pdf 2011-10-06
11 289-KOL-2010-(27-03-2014)-OTHERS.pdf 2014-03-27
11 289-kol-2010-drawings.pdf 2011-10-06
12 289-KOL-2010-(27-03-2014)-PA.pdf 2014-03-27
12 289-kol-2010-description (complete).pdf 2011-10-06
13 289-KOL-2010-(24-01-2014)-CORRESPONDENCE.pdf 2014-01-24
13 289-kol-2010-correspondence.pdf 2011-10-06
14 289-KOL-2010-(24-01-2014)-OTHERS.pdf 2014-01-24
14 289-KOL-2010-CORRESPONDENCE-1.1.pdf 2011-10-06
15 289-KOL-2010-(09-07-2013)-CORRESPONDENCE.pdf 2013-07-09
15 289-KOL-2010-CORRESPONDENCE 1.2.pdf 2011-10-06
16 289-KOL-2010-(09-07-2013)-OTHERS.pdf 2013-07-09
16 289-kol-2010-claims.pdf 2011-10-06
17 289-kol-2010-abstract.pdf 2011-10-06
17 289-KOL-2010-(31-05-2013)-CORRESPONDENCE.pdf 2013-05-31
18 289-KOL-2010-(11-03-2013)-CORRESPONDENCE.pdf 2013-03-11
18 289-KOL-2010-(31-05-2013)-OTHERS.pdf 2013-05-31
19 289-KOL-2010-(11-03-2013)-ANNEXURE TO FORM-3.pdf 2013-03-11
19 289-KOL-2010-(26-03-2013)-CORRESPONDENCE.pdf 2013-03-26
20 289-KOL-2010-(22-03-2013)-FORM-18.pdf 2013-03-22
20 289-KOL-2010-(26-03-2013)-OTHERS.pdf 2013-03-26
21 289-KOL-2010-(22-03-2013)-FORM-18.pdf 2013-03-22
21 289-KOL-2010-(26-03-2013)-OTHERS.pdf 2013-03-26
22 289-KOL-2010-(11-03-2013)-ANNEXURE TO FORM-3.pdf 2013-03-11
22 289-KOL-2010-(26-03-2013)-CORRESPONDENCE.pdf 2013-03-26
23 289-KOL-2010-(11-03-2013)-CORRESPONDENCE.pdf 2013-03-11
23 289-KOL-2010-(31-05-2013)-OTHERS.pdf 2013-05-31
24 289-kol-2010-abstract.pdf 2011-10-06
24 289-KOL-2010-(31-05-2013)-CORRESPONDENCE.pdf 2013-05-31
25 289-KOL-2010-(09-07-2013)-OTHERS.pdf 2013-07-09
25 289-kol-2010-claims.pdf 2011-10-06
26 289-KOL-2010-(09-07-2013)-CORRESPONDENCE.pdf 2013-07-09
26 289-KOL-2010-CORRESPONDENCE 1.2.pdf 2011-10-06
27 289-KOL-2010-(24-01-2014)-OTHERS.pdf 2014-01-24
27 289-KOL-2010-CORRESPONDENCE-1.1.pdf 2011-10-06
28 289-KOL-2010-(24-01-2014)-CORRESPONDENCE.pdf 2014-01-24
28 289-kol-2010-correspondence.pdf 2011-10-06
29 289-KOL-2010-(27-03-2014)-PA.pdf 2014-03-27
29 289-kol-2010-description (complete).pdf 2011-10-06
30 289-KOL-2010-(27-03-2014)-OTHERS.pdf 2014-03-27
30 289-kol-2010-drawings.pdf 2011-10-06
31 289-KOL-2010-(27-03-2014)-FORM-6.pdf 2014-03-27
31 289-kol-2010-form 1.pdf 2011-10-06
32 289-KOL-2010-(27-03-2014)-FORM-5.pdf 2014-03-27
32 289-kol-2010-form 2.pdf 2011-10-06
33 289-KOL-2010-(27-03-2014)-FORM-3.pdf 2014-03-27
33 289-KOL-2010-FORM 3 1.1.pdf 2011-10-06
34 289-KOL-2010-(27-03-2014)-FORM-2.pdf 2014-03-27
34 289-kol-2010-form 3.pdf 2011-10-06
35 289-KOL-2010-(27-03-2014)-FORM-1.pdf 2014-03-27
35 289-kol-2010-form 5.pdf 2011-10-06
36 289-KOL-2010-(27-03-2014)-ENGLISH TRANSLATION.pdf 2014-03-27
36 289-KOL-2010-PA.pdf 2011-10-06
37 289-KOL-2010-PRIORITY DOCUMENT.pdf 2011-10-06
37 289-KOL-2010-(27-03-2014)-DRAWINGS.pdf 2014-03-27
38 289-kol-2010-specification.pdf 2011-10-06
38 289-KOL-2010-(27-03-2014)-CORRESPONDENCE.pdf 2014-03-27
39 289-KOL-2010-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf 2011-10-06
39 289-KOL-2010-FER.pdf 2017-07-26
40 abstract-289-kol-2010.jpg 2011-10-06
40 289-KOL-2010-AbandonedLetter.pdf 2018-03-16

Search Strategy

1 searchstrategy_26-07-2017.pdf