Sign In to Follow Application
View All Documents & Correspondence

System And Method For Estimating Cache Size For Cache Routers In Information Centric Networks

Abstract: A technique for estimating cache size for cache routers in information centric networks (ICNs) is disclosed. In an example, anaverage rate of incoming requests anda probability of occurrence of each requestat a cache router in a predefined time interval is determined. Further, a relation between cache hit and cache miss with and without replacement is derivedbased on the probability of occurrence of each request. Furthermore, an entropy of the requests is computed based on the probability of occurrence of each request. Moreover, a diversity index of the requests is calculated based on the entropyand the average rate of the requests. A cache size for the cache router is then estimated based onauserdefined probability of cache hit, the average rate of the requests, the diversity index of the requests and the relation between the cache hit and cache miss with and without replacement.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
04 June 2015
Publication Number
51/2016
Publication Type
INA
Invention Field
COMPUTER SCIENCE
Status
Email
ip@legasis.in
Parent Application
Patent Number
Legal Status
Grant Date
2024-03-18
Renewal Date

Applicants

Tata Consultancy Services Limited
Nirmal Building, 9th Floor, Nariman Point, Mumbai 400021, Maharashtra, India

Inventors

1. PANIGRAHI, Bighnaraj
Tata Consultancy Services Limited, Abhilash Building, Plot No. 96 EP-IP Industrial Area, Whitefield Road, Bangalore 560 066, Karnataka, India
2. SHAILENDRA, Samar
Tata Consultancy Services Limited, Abhilash Building, Plot No. 96 EP-IP Industrial Area, Whitefield Road, Bangalore 560 066, Karnataka, India
3. RATH, Hemant Kumar
Tata Consultancy Services Limited, Abhilash Building, Plot No. 96 EP-IP Industrial Area, Whitefield Road, Bangalore 560 066, Karnataka, India
4. SIMHA, Anantha
Tata Consultancy Services Limited, SJM Towers, 18, Sheshadri Road Gandhinagar, Bangalore 560 009, Karnataka, India

Specification

DESC:FORM 2

THE PATENTS ACT, 1970
(39 of 1970)
&
THE PATENTS RULES, 2003

COMPLETE SPECIFICATION
(See section 10 and rule 13)

Title of invention:
ESTIMATING CACHE SIZE FOR CACHE ROUTERS IN INFORMATION CENTRIC NETWORKS

Applicant:
Tata Consultancy Services Limited
A company Incorporated in India under the Companies Act, 1956
Having address:
Nirmal Building, 9th floor,
Nariman point, Mumbai 400021,
Maharashtra, India

The following specification particularly describes the invention and the manner in which it is to be performed.

CROSS REFERENCE TO RELATED APPLICATIONS AND PRIORITY
The present invention claims priority to Indian Provisional Application titled “System and method for estimating cache size for cache routers in information centric networks” bearing No. 2161/MUM/2015, filed on June 04, 2015.

TECHNICAL FIELD
The embodiments herein generally relate to information centric networks (ICNs), and, more particularly, to estimation of cache size for cache routers in the ICNs.

DESCRIPTION OF THE RELATED ART
Currently, the Internet is a point-to-point or host-to-host network where information (also referred as content) is identified by its location in the network. The increasing demand for scalable and efficient distribution of the content led to the Internet architecture, such as information centric networks (ICNs) where communication is not a host-to-host communication. In the ICNs, users may send requests for the content without mentioning its location. Further, in the ICNs, along with a source of the content, the content may cached at intermediate routers to deliver the content to the user(s) either from the source and/or from the routers for any future request of the same content. If a request for the same content is received by such router, the user is served by a local copy of the corresponding content rather than getting it all the way from the source. However, it may not be possible to cache all the content on each intermediate router all the time as each intermediate router include a predefined cache size.

SUMMARY
The following presents a simplified summary of some embodiments of the disclosure in order to provide a basic understanding of the embodiments. This summary is not an extensive overview of the embodiments. It is not intended to identify key/critical elements of the embodiments or to delineate the scope of the embodiments. Its sole purpose is to present some embodiments in a simplified form as a prelude to the more detailed description that is presented below. In view of the foregoing, an embodiment herein provides a technique for estimating cache size for cache routers in information centric networks (ICNs).

In one aspect, a method for estimating a cache size for a cache router in an ICN is disclosed. In an embodiment, an average rate of incoming requests and a probability of occurrence of each of the incoming requests at the cache router in a predefined time interval is determined. Further, a relation between a cache hit, cache miss with replacement and cache miss without replacement is derived based on the probability of occurrence of each of the requests. Furthermore, an entropy of the requests is computed based on the probability of occurrence of each of the requests in the predefined time interval. Moreover, a diversity index of the requests is calculated based on the entropy of the requests and the average rate of the requests. The cache size for the cache router is then estimated based on a user defined probability of cache hit, which is an input received from user, the average rate of the requests, the diversity index of the requests and the relation between the cache hit, cache miss with replacement and cache miss without replacement. In some embodiments, the cache size of the cache router is then adjusted depending on a pattern of a new incoming request and the user defined probability of cache hit.

In another aspect, a cache router in an ICN is disclosed. In an embodiment, the cache router includes one or more processors and a memory and a cache communicatively coupled to the processors. Further, the memory includes a cache size estimation module. In an embodiment, the cache size estimation module determines an average rate of incoming requests anda probability of occurrence of each of the incoming requests in a predefined time interval. Further, the cache size estimation module derives a relation between a cache hit, cache miss with replacement and cache miss without replacement based on the probability of occurrence of eachof the requests. Furthermore, the cache size estimation module computes an entropy of the requests based on the probability of occurrence of eachof the requests in the predefined time interval. Moreover, the cache size estimation module calculates a diversity index of the requests based on the entropy of the requests and the average rate of the requests. The cache size estimation module then estimates a cache size for the cache router based on a user defined probability of cache hit, which is an input received from user, the average rate of the requests, the diversity index of the requests and the relation between the cache hit, cache miss with replacement and cache miss without replacement. In some embodiments, the cache size estimation module then adjusts the cache size of the cache router depending on a pattern of a new incoming request andthe user defined probability of cache hit.

It should be appreciated by those skilled in the art that any block diagram herein represent conceptual views of illustrative systems embodying the principles of the present subject matter. Similarly, it is appreciated that any flow charts, flow diagrams, state transition diagrams, pseudo code, and the like represent various processes which may be substantially represented in computer readable medium and so executed by a computing device or processor, whether or not such computing device or processor is explicitly shown.

BRIEF DESCRIPTION OF THE DRAWINGS
The embodiments herein are better understood from the following detailed description with reference to the drawings, in which:
FIG. 1 illustrates a networking environment including an information centric network (ICN), according to an embodiment of the present disclosure;
FIG. 2 schematically illustrates a cache router, such as the one shown in FIG.1, according to an embodiment of the present disclosure;
FIG. 3 illustrates a tri-state model for caching content in the ICN, according to an embodiment of the present disclosure;
FIGS. 4A and 4B are graphs illustrating a cache size of a cache router with respect to a request traffic rate and a probability of cache hit, respectively, according to an embodiment of the present disclosure; and
FIG. 5is a flow chart illustrating a method for estimating a cache size for a cache router in an ICN, according to an embodiment of the present disclosure.

DETAILED DESCRIPTION
The embodiments herein and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments that are illustrated in the accompanying drawings and detailed in the following description. The examples used herein are intended merely to facilitate an understanding of ways in which the embodiments herein may be practiced and to further enable those of skill in the art to practice the embodiments herein. Accordingly, the examples should not be construed as limiting the scope of the embodiments herein.

FIG. 1 illustrates a networking environment 100 including an information centric network (ICN) 102, according to an embodiment of the present disclosure. As shown in FIG. 1, the networking environment 100 includes the ICN 102, a plurality of user devices 104A-N, and a plurality of data stores 106A-N. Examples of the user devices 104A-N may include, without limitation, desktop computers, hand-held devices, laptops or other portable computers, network computers, mobile phones, landline phones, and the like. For example, the data stores 106A-N may store collection of content, such as files, images, videos, and the like. Further, the ICN 102 includes a plurality of cache routers 108A-N collectively referred to as cache routers 108 and individually referred to as a cache router 108. In the ICN 102, the cache routers 108 (also referred as ICN routers 108) have extra cache memories (also referred as cache) to locally store contents that pass through the cache routers 108. For example, an ICN router 108 can be any Internet router with extra cache and ICN specific interfaces.

In operation, one or more of the user devices 104A-N may send requests to the ICN 102 for accessing content. In an embodiment, one of the ICN routers 108 may receive the requests and communicate with the data stores 106A-N to provide the content to the one or more of the user devices 104A-N. For example, any intermediate cache router 108 on receiving the requests for the content performs one of the following: (i) serves the requests immediately, if the requested content is available with the cache router 108 and (ii) forwards the request(s) to a peer router or to any other ICN router placed at a higher level of hierarchy, if the requested content in not available in the cache router 108. While performing one of the above steps, the cache router 108 may also store responses of the earlier requests in the cache for any subsequent requests of the same content.

Further, using atri-state model (also referred as a tri-state Markov model), the ICN router 108 determines a probability of cache hit or cache miss i.e., the probability of finding the content in the cache for newly arriving requests. For example, the cache hit is a function of an available cache size, statistical nature of the requests, and content that is already cached in the cache router. Furthermore, the ICN router 108 determines a relation between a cache hit, cache miss with replacement and cache miss without replacement based on the probability of cache hit or cache miss. Moreover, the ICN router 108 computes an entropy of the requests using the probability of cache hit or cache miss to characterize the requests. In addition, the ICN router 108 calculates a diversity index of the requests based on the entropy of the requests and an average rate of the incoming requests. Also, the ICN router 108 estimates the cache size for the cache based on the average rate of the requests, the diversity index, the relation between the cache hit, cache miss with replacement and cache miss without replacement and a required cache hit probability (i.e., a user defined probability of cache hit) as a measure of service level agreement (SLA). This is explained in more detailed with reference to FIGS. 2 and 3.

FIG. 2 schematically illustrates a cache router 200 (e.g., one of the cache routers 108A-N of FIG. 1), according to an embodiment of the present disclosure. As shown in FIG. 2, the cache router 200 includes processor(s) 202, a memory 204, a cache 206 (i.e., a cache memory), and interface(s) 208 communicatively coupled to each other. Further, the memory 204 includes a cache size estimation module 210. The processor(s) 202, the memory 204, the cache 206 and the interface(s) 208 may be communicatively coupled by a system bus or a similar mechanism. Although FIG. 2 shows example components of the cache router 200, in other implementations, the cache router 200 may contain fewer components, additional components, different components, or differently arranged components than depicted in FIG. 2.

The processor(s) 202 may include circuitry implementing, among others, audio and logic functions associated with the communication. The processor(s) 202 may include, among other things, a clock, an arithmetic logic unit (ALU) and logic gates configured to support operation of the processor(s) 202. The processor(s) 202 can be a single processing unit or a number of units, all of which include multiple computing units. The processor(s) 202 may be implemented as one or more microprocessors, microcomputers, microcontrollers, digital signal processors, central processing units, state machines, logic circuitries, and/or any devices that manipulate signals based on operational instructions. Among other capabilities, the processor(s) 202 is configured to fetch and execute computer-readable instructions and data stored in the memory 204.

The functions of the various elements shown in the figure, including any functional blocks labeled as “processor(s)”, may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (DSP) hardware, network processor, application specific integrated circuit (ASIC), field programmable gate array (FPGA), read only memory (ROM) for storing software, random access memory (RAM), and non-volatile storage. Other hardware, conventional, and/or custom, may also be included.

The interface(s) 208 may include a variety of software and hardware interfaces, for example, interfaces for peripheral device(s), such as a keyboard, a mouse, an external memory, and a printer. The interface(s) 208 can facilitate multiple communications within a wide variety of networks and protocol types, including wired networks, for example, local area network (LAN), cable, etc., and wireless networks, such as Wireless LAN (WLAN), cellular, or satellite. For the purpose, the interface(s) 208 may include one or more ports for connecting the cache router 200 to one or more of user devices and data sources (as shown in FIG. 1).

The memory 204 may include any computer-readable medium known in the art including, for example, volatile memory, such as static random access memory (SRAM) and dynamic random access memory (DRAM), and/or non-volatile memory, such as read only memory (ROM), erasable programmable ROM, flash memories, hard disks, optical disks, and magnetic tapes. The memory 204, may store any number of pieces of information, and data, used by the cache router 200 to implement the functions of the cache router 200. The memory 204 may be configured to store information, data, applications, instructions or the like for enabling the cache router 200 to carry out various functions in accordance with various example embodiments. Additionally or alternatively, the memory 204 may be configured to store instructions which when executed by the processor(s) 202 causes the cache router 200 to behave in a manner as described in various embodiments. The memory 204 includes the cache size estimation module 210 and/or other modules. The module 210 includes routines, programs, objects, components, data structures, etc., which perform particular tasks or implement particular abstract data types. The other modules may include programs or coded instructions that supplement applications and functions of the cache router 200.

In an embodiment, the cache size estimation module 210 computes an average rate of incoming requests and a probability of occurrence of each of the incoming requests from the user devices for a predefined time interval. The data (response) for the requested content is cached at the cache router 200 based upon a caching policy, such as first-in first-out (FIFO), least recently used (LRU) and so on. For example, the predefined time interval is a cache refresh time. Moreover, the cache size estimation module 210 determines a relation between the cache hit and cache miss (with and without replacement) based on the probability of occurrence of the requests in the predefined time interval. For example, the cache hit is a function of an available cache size, statistical nature of the requests, and content that is already cached in the cache router.

The cache size estimation module 210 then computes an entropy of the requests based on the probability of occurrence of the requests in the predefined time interval. Characteristics of the requests are then determined using the entropy of the requests. For example, the characteristics of the requests include content popularity, repetition of content and the like. Furthermore, the cache size estimation module 210 calculates a diversity index of the requests based on the entropy of the requests and the average rate of the requests. This is explained in more detail with reference to FIG. 3. Also, the cache size estimation module 210 estimates the cache size for the cache 206 based upon service level agreement (SLA) or user defined probability of cache hit, the characteristics of the requests (captured through the entropy), the average rate of the requests, the diversity index and the relation between the cache hit and cache miss (with and without replacement). For example, the estimated cache size of the cache router supports the cache hit for the requests and a cache hit for new requests with replacement. In some embodiments, the cache size estimation module 210 adjusts the cache size by observing a request pattern arriving and depending upon the change in traffic pattern and a user defined probability of cache hit.

FIG. 3 illustrates a tri-state model 300 for caching content in the ICN, according to an embodiment of the present disclosure. In FIG. 3, consider ? isa total arrival rate of requests at an ICN router (e.g., one of the cache routers 108A-N of FIG. 1 or the cache router 200 of FIG. 2). For example, the total arrival rate of requests (?) is defined using an equation below:
?= ?H+ ?R+ ?NR (1)
where, ?H be a rate of arrival of requests for already existing content in a cache at the ICN router, ?R be a rate of arrival of requests for non-existing content in the ICN router with higher metric than smallest metric content in the cache and hence, replaces existing content and ?NR be a rate of arrival of the requests for non-existing content in the cache and are not stored in the cache even after serving to requested users.

Further, the balance equations for the model 300 are as follows:
(?R + ?NR) • p_H= ?H • (p_M^R+ p_M^NR) (2)
(?H + ?NR) • p_M^R = ?R • (p_H+ p_M^NR)(3)
(?H+ ?R) • p_M^NR= ?NR• (p_H+ p_M^R)(4)
For the tri - state Markov model explained above,
p_H +p_M^R+ p_M^NR= 1 (5)
where, p_His a probability of cache hit,p_M^Ris a probability of cache miss with replacement, and p_M^NRis a probability of cache miss without replacement.

Also, in FIG. 3, SN, SNR, and SNNR are three different possible states of a cache. The cache is in the state SN when a request for already existing content arrives at the cache. Further, the cache is in the state SNR when a request for content which does not exist in the cache arrives, however, the response of such request gets stored in the cache after replacing one of the existing content. Furthermore, the cache is in the state SNNR when the request for content which does not exist in the cache arrives, however, the response of such request does not replace any existing content in the cache and hence not cached.

Based on the above equations (1)-(5), a relation between the cache hit and cache miss with and without replacement is derived. Further, based on the above equations (1)-(5), it can be observed that with the increase in a size of the cache (B), ?H may increase as ?H is a fraction of the total arrival rate of requests which is getting hit from the cache. Moreover, with a fixed cache size, the possibility of similar requests may increase with that of the total arrival rate of requests. Also, with increase in the total arrival rate of requests, ?H may also increases. Therefore, nature of the requests are analyzed to obtain a proper relationship between B, ? and ?H as explained below.

A. Characterization of the requests
In an example, nature of the requests, such as the content popularity or repetition of contents can be characterized using an entropy of the requests as the cache hit depends upon the nature of the requests coming from the user devices. In an example, a time axis in the predefined time interval(Tf) is discretized and the entropy of any incoming random request sequence X during the predefined time interval (Tf) is computed using an equation:
H(X) = ?_i¦?q_i×log_2?( q_i)? (6)
where, qi is the probability of occurrence of any request ‘i’ in a set of random requests originating from the user devices within the predefined time interval(Tf).
For example, the value of entropy H(X) depends on the request rate ? (average request rate in Tf) and the probability of occurrence of the requests. The entropy H(X) is equal to log2(?) when there is no similarity between the requests. On the other hand, the entropy H(X) is equal to 0 when all the requests are repeated. Thus, the entropy H(X) is a more accurate way of determining popularity or diversity index of the requests. Therefore, a diversity index (t_B) of the requests is calculated using an equation below:
t_B=(H(X) )/log_2??(?)? (7)
where, the diversity index (t_B)of the requests ranges between 0 and 1. The diversity index of 0 indicates that the requests at the cache router are same and the diversity index of 1 indicates that the requests are different.

B. Estimation of a cache size
As discussed above, the cache size for the ICN router can be such that the ICN router is able to accommodate ?H (to support the cache hit for the current requests) and ?R (to support cache hit for new requests by keeping the most valued content for which the requests are arrived in the cache router) fraction of requests in the predefined time interval (Tf).For example, the cache size (B) can be estimated using one of the below equations:
B = Bmin + t_B (c1?H + c2?R)s
= Bmin + t_B?s(c1p_H+ c2p_M^R)
= Bmin+ t_B?s(c1p_H + c2(1 - (p_H + p_M^NR ))) (8)
where, c1 and c2are constants (0 =c1, c2= 1 and c1 + c2 = 1), values of which can be obtained using simulations, Bmin is a minimum cache size required for the regular operation of the ICN router which includes caching of requests, caching of temporary information and caching for a single content in the case t_B= 0, i.e., for single repeated request,‘s’ is an average sizeof the content associated with the requests at the cache router. Further,p_His the probability of cache hit to be achieved to support service level agreement (SLA).

In an example, estimation of the cache size for the ICN router is performed using equation (8)where the requests characterization is measured throught_B, p_M^NRand ? and desired cache hit (p_H).With change in requests’ arrival rate and pattern in future, the cache size can be adjusted by adding additional memory to the cache as required to support cache hit probability.

C. Analysis and bounds for caching
In an example, nature of the caching and the cache size estimation are analyzed by assuming c1 = c2 = c, a constant (c = 0.5), in equation (8).Then, the equation (8) can be expressed as follows:
B = Bmin + t_B ?s(c1p_H+c2p_M^R)
= Bmin + t_B ?cs(1 - p_M^NR )(9)
Using (9), the probability of miss p_M^NRcan be expressed as follows:
p_M^R= [1 -B – Bmin/ ct_B ?s],
= [1 -B1/ct_B ?s],(10)
where, B1 is a function of the cache size B. From the above equations, itis observed that cache size is linearly increased (decreased) as the entropy of the requests is increased (decreased) to maintain a desired cache hit or cache miss. Further, the cache size of the ICN router is fixed and bounded for a desired cache hit probability with bounded entropy, t_B and fixed average rate of requests.

FIGS. 4A and 4B are graphs 400A and 400B illustrating a cache size of a cache router with respect to a request traffic rate and a probability of cache hit, respectively, according to an embodiment of the present disclosure. In FIG. 4A, the graph 400A shows variation of the cache size with respect to the rate of requests (?) for different target cache hit probabilities. From the FIG. 4A, it is observed that as the request rate increases, cache size also increases for a fixed target cache hit probability. This is because as more number of requests arrive, higher cache size is required to maintain a target cache hit probability. In FIG. 4B,the graph 400B shows that the cache size increases with increase in cache hit probability for a fixed request rate. This is because higher the target cache hit probability more is the cache size required.

FIG. 5 is a flow chart 500 illustrating a method for estimating a cache size for a cache router in an ICN, according to an embodiment of the present disclosure. At block 502, an average rate of incoming requests and a probability of occurrence of each of the incoming requests at a cache router in a predefined time interval is determined. The data (response) for the requested content is cached at the router based upon a caching policy such as FIFO, LRU and so on. At block 504, a relation between a cache hit, cache miss with replacement and cache miss without replacement is derived based on the probability of occurrence of each of the requests. For example, the cache hit is a function of an available cache size, statistical nature of the requests, and content that is already cached in the cache router. At block 506, an entropy of the requests is computed based on the probability of occurrence of each of the requests in the predefined time interval. In an embodiment, the entropy of the requests is computed using an equation:
H(X) = ?_i¦?q_i×log_2?( q_i)?

where,X is a sequence of incoming requests during a predefined time interval (Tf), H(X) is the entropy of the requests and qi is a probability of occurrence of a request ‘i’ in the requests.

At block 508, a diversity index of the requests is calculated based on the entropy of the requests and the average rate of the requests. For example, the diversity index ranges between 0 and 1. The diversity index of 0 indicates that the requests at the cache router are same and the diversity index of 1 indicates that all the requests are different. In an embodiment, the diversity index of the requests is calculated using an equation:
t_B=(H(X) )/log_2??(?)?
where,t_Bis the diversity index of the requests and ? is a total arrival rate of requests at the cache router (i.e., the average rate of requests).

At block 510, the cache size for the cache router is estimated based upon a user defined probability of cache hit, the average rate of incoming requests, the diversity index and the relation between the cache hit, cache miss with replacement and cache miss without replacement obtained from blocks 502 to 508. For example, the estimated cache size of the cache router supports the cache hit for the requests and a cache hit for new requests with replacement.

In an example, the cache size for the cache router is estimated using one of equations:
B = Bmin + t_B (c1?H + c2?R)s
= Bmin + t_B?s(c1p_H+ c2p_M^R)
= Bmin+ t_B?s(c1p_H + c2(1 - (p_H + p_M^NR )))
where,B is the cache size, c1 and c2 are constant values, ?H is a rate of arrival of requests for already existing content in the cache router, ?R is a rate of arrival of requests for non-existing content in the cache router with replacement, Bmin is a minimum cache size required for a regular operation of the cache router (cache required for a single file size to run basic algorithm), ‘s’ is an average size of content associated with the requests at the cache router, p_H is a probability of the cache hit, p_M^R is a probability of the cache miss with replacement, and p_M^NR is a probability of the cache miss without replacement.

In some embodiments, the cache size of the cache router is adjusted depending on a pattern of a new incoming request and the user defined probability of cache hit. In other words, the cache size is adjusted by observing a request pattern arriving and depending upon a change in traffic pattern and the user defined probability of cache hit. This is explained in more detailed with reference to the FIGS. 1-4B.

The order in which the method(s) are described is not intended to be construed as a limitation, and any number of the described method blocks can be combined in any order to implement the method 500, or an alternative method. Additionally, individual blocks may be deleted from the methods without departing from the spirit and scope of the subject matter described herein. Furthermore, the method 500 can be implemented in any suitable hardware, software, firmware, or combination thereof.

In an implementation, one or more of the method(s) described herein may be implemented at least in part as instructions embodied in a non-transitory computer-readable medium and executable by one or more computing devices. In general, a processor (for example a microprocessor) receives instructions, from a non-transitory computer-readable medium, for example, a memory, and executes those instructions, thereby performing one or more method(s), including one or more of the method(s) described herein. Such instructions may be stored and/or transmitted using any of a variety of known computer-readable media.

In various embodiments of FIGS. 1-5, a technique for estimating a cache size for a cache router in an ICN is disclosed. For a given traffic model, i.e. the diversity index and for a desired probability of cache hit, cache size estimation by the proposed technique can ensure a cache size which is memory efficient and performance efficient. Thus, delay in accessing content is reduced. Further, the proposed technique for cache size estimation can adapt to different types of content traffic, user’s requests pattern and desired cache performance of the cache router.

It is, however to be understood that the scope of the protection is extended to such a program and in addition to a computer-readable means having a message therein; such computer-readable storage means contain program-code means for implementation of one or more steps of the method, when the program runs on a server or mobile device or any suitable programmable device.

The preceding description has been presented with reference to various embodiments. Persons having ordinary skill in the art and technology to which this application pertains appreciate that alterations and changes in the described structures and methods of operation can be practiced without meaningfully departing from the principle, spirit and scope.
,CLAIMS:WE CLAIM:

1. A method comprising:
determining an average rate of incoming requests anda probability of occurrence of each of the incoming requests at a cache router in a predefined time interval;
deriving a relation between a cache hit, cache miss with replacement and cache miss without replacement in the predefined time interval based on the probability of occurrence of each of the incoming requests;
computing an entropy of the requests based on the probability of occurrence of eachof the requests in the predefined time interval;
calculating a diversity index of the requests based on the entropy of the requests and the average rate of the requests; and
estimating a cache size for the cache router based on a user defined probability of cache hit, the average rate of the requests, the diversity index and the relation between the cache hit, cache miss with replacement and cache miss without replacement.

2. The method as claimed in claim 1, further comprising:
adjusting the cache size of the cache router depending on a pattern of a new incoming request and the user defined probability of cache hit.

3. The method as claimed in claim 1, wherein the cachehit is a function of an available cache size, statistical nature of the requests, and content that is cached in the cache router.

4. The method as claimed in claim 1, wherein the diversity index of the requests ranges between 0 and 1, wherein the diversity index of 0 indicates that the requests at the cache router are same and the diversity index of 1 indicates that the requests at the cache router are different.

5. The method as claimed in claim 1, wherein the cache size for the cache router is estimated based on a rate of arrival of requests for existing content in the cache router, a rate of arrival of requests for non-existing content in the cache router with replacement, a minimum cache size required for the cache router, an average size of content associated with the requests at the cache router, a probability of the cache hit, a probability of the cache miss with replacement, a probability of the cache miss without replacement, the diversity index of the requests and the average rate of the requests.

6. The method as claimed in claim 1, wherein the estimated cache size of the cache router supports the cache hit for the requests and a cache hit for new requests with replacement.

7. A cache router in an information centric network, comprising:
at least one processor; and
a memory and a cache communicatively coupled to the at least processor, wherein the memory comprises a cache size estimation module to:
determine an average rate of incoming requests and a probability of occurrence of each of the incoming requestsin a predefined time interval;
derive a relation between a cache hit, cache miss with replacement and cache miss without replacement based on the probability of occurrence of each of the requests;
compute an entropy of the requests based on the probability of occurrence of each of the requests in the predefined time interval;
calculate a diversity index of the requests based on the entropy of the requests and the average rate of the requests; and
estimate a cache size of the cache based on a user defined probability of cache hit, the average rate of the requests, the diversity index and the relation between the cache hit, cache miss with replacement and cache miss without replacement.

8. The cache router as claimed in claim 7, wherein the cache size estimation module adjusts the cache size depending on a pattern of a new incoming request andthe user defined probability of cache hit.

9. The cache router as claimed in claim 7, wherein the cache hit is a function of an available cache size, statistical nature of the requests, and contentthat is cached in the cache router.

10. The cache router as claimed in claim 7, wherein the diversity index of the requests ranges between 0 and 1, wherein the diversity index of 0 indicates that the requests are same and the diversity index of 1 indicates that all the requests are different.

11. The cache router as claimed in claim 7, wherein the cache size estimation module estimates the cache size for the cache based on a rate of arrival of requests for existing content in the cache router, a rate of arrival of requests for non-existing content in the cache router with replacement, a minimum cache size required for the cache router, an average size of content associated with requests, a probability of the cache hit, a probability of the cache miss with replacement, a probability of the cache miss without replacement, the diversity index of the requests and the average rate of the requests.

12. The cache router as claimed in claim 7, wherein the estimated cache size of the cache router supports the cache hit for the requests and a cache hit for new requests with replacement.

Documents

Orders

Section Controller Decision Date

Application Documents

# Name Date
1 2161-MUM-2015-IntimationOfGrant18-03-2024.pdf 2024-03-18
1 Drawing [01-09-2015(online)].pdf 2015-09-01
2 2161-MUM-2015-PatentCertificate18-03-2024.pdf 2024-03-18
2 Description(Complete) [01-09-2015(online)].pdf 2015-09-01
3 Assignment [01-09-2015(online)].pdf 2015-09-01
3 2161-MUM-2015-Written submissions and relevant documents [21-02-2024(online)].pdf 2024-02-21
4 REQUEST FOR CERTIFIED COPY [18-02-2016(online)].pdf 2016-02-18
4 2161-MUM-2015-Correspondence to notify the Controller [06-02-2024(online)].pdf 2024-02-06
5 Request For Certified Copy-Online.pdf 2018-08-11
5 2161-MUM-2015-FORM-26 [06-02-2024(online)]-1.pdf 2024-02-06
6 Form-2(Online).pdf 2018-08-11
6 2161-MUM-2015-FORM-26 [06-02-2024(online)].pdf 2024-02-06
7 Form 2.pdf 2018-08-11
7 2161-MUM-2015-US(14)-ExtendedHearingNotice-(HearingDate-07-02-2024).pdf 2024-02-01
8 ABSTRACT1.jpg 2018-08-11
8 2161-MUM-2015-US(14)-HearingNotice-(HearingDate-05-02-2024).pdf 2024-01-12
9 2161-MUM-2015-CLAIMS [30-06-2020(online)].pdf 2020-06-30
9 2161-MUM-2015-Power of Attorney-091015.pdf 2018-08-11
10 2161-MUM-2015-COMPLETE SPECIFICATION [30-06-2020(online)].pdf 2020-06-30
10 2161-MUM-2015-Form 1-190815.pdf 2018-08-11
11 2161-MUM-2015-Correspondence-190815.pdf 2018-08-11
11 2161-MUM-2015-FER_SER_REPLY [30-06-2020(online)].pdf 2020-06-30
12 2161-MUM-2015-Correspondence-091015.pdf 2018-08-11
12 2161-MUM-2015-OTHERS [30-06-2020(online)].pdf 2020-06-30
13 2161-MUM-2015-FER.pdf 2019-12-30
14 2161-MUM-2015-Correspondence-091015.pdf 2018-08-11
14 2161-MUM-2015-OTHERS [30-06-2020(online)].pdf 2020-06-30
15 2161-MUM-2015-Correspondence-190815.pdf 2018-08-11
15 2161-MUM-2015-FER_SER_REPLY [30-06-2020(online)].pdf 2020-06-30
16 2161-MUM-2015-COMPLETE SPECIFICATION [30-06-2020(online)].pdf 2020-06-30
16 2161-MUM-2015-Form 1-190815.pdf 2018-08-11
17 2161-MUM-2015-Power of Attorney-091015.pdf 2018-08-11
17 2161-MUM-2015-CLAIMS [30-06-2020(online)].pdf 2020-06-30
18 2161-MUM-2015-US(14)-HearingNotice-(HearingDate-05-02-2024).pdf 2024-01-12
18 ABSTRACT1.jpg 2018-08-11
19 Form 2.pdf 2018-08-11
19 2161-MUM-2015-US(14)-ExtendedHearingNotice-(HearingDate-07-02-2024).pdf 2024-02-01
20 Form-2(Online).pdf 2018-08-11
20 2161-MUM-2015-FORM-26 [06-02-2024(online)].pdf 2024-02-06
21 Request For Certified Copy-Online.pdf 2018-08-11
21 2161-MUM-2015-FORM-26 [06-02-2024(online)]-1.pdf 2024-02-06
22 REQUEST FOR CERTIFIED COPY [18-02-2016(online)].pdf 2016-02-18
22 2161-MUM-2015-Correspondence to notify the Controller [06-02-2024(online)].pdf 2024-02-06
23 Assignment [01-09-2015(online)].pdf 2015-09-01
23 2161-MUM-2015-Written submissions and relevant documents [21-02-2024(online)].pdf 2024-02-21
24 Description(Complete) [01-09-2015(online)].pdf 2015-09-01
24 2161-MUM-2015-PatentCertificate18-03-2024.pdf 2024-03-18
25 2161-MUM-2015-IntimationOfGrant18-03-2024.pdf 2024-03-18
25 Drawing [01-09-2015(online)].pdf 2015-09-01

Search Strategy

1 2020-10-1615-42-16AE_23-10-2020.pdf
1 SearchStrategyMatrix_27-12-2019.pdf
2 2020-10-1615-42-16AE_23-10-2020.pdf
2 SearchStrategyMatrix_27-12-2019.pdf

ERegister / Renewals

3rd: 31 May 2024

From 04/06/2017 - To 04/06/2018

4th: 31 May 2024

From 04/06/2018 - To 04/06/2019

5th: 31 May 2024

From 04/06/2019 - To 04/06/2020

6th: 31 May 2024

From 04/06/2020 - To 04/06/2021

7th: 31 May 2024

From 04/06/2021 - To 04/06/2022

8th: 31 May 2024

From 04/06/2022 - To 04/06/2023

9th: 31 May 2024

From 04/06/2023 - To 04/06/2024

10th: 31 May 2024

From 04/06/2024 - To 04/06/2025

11th: 03 Jun 2025

From 04/06/2025 - To 04/06/2026