Sign In to Follow Application
View All Documents & Correspondence

System And Method For Secure Electronic Transaction

Abstract: The various embodiments herein provide a system for a secure electronic transaction. The system comprises a dongle connected to a computing device for reading an electronic card data a client application running on the client device for collecting a transaction information from a customer a service provider system connected to the computing device through a first communication network for transmitting the collected transaction information and the audio signal from the computing device to the service provider system a production server located at the service provider system for processing the received card data a payment server for processing the audio signal a second communication network for transmitting a processed card data from the production server to a payment system and a payment gateway running on the payment system for interfacing with the service provider system. The payment system performs the financial transaction by authenticating the customer and a merchant.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
30 April 2014
Publication Number
01/2016
Publication Type
INA
Invention Field
COMPUTER SCIENCE
Status
Email
Parent Application

Applicants

EZETAP MOBILE SOLUTIONS PRIVATE LIMITED
5th Floor Beta Building Sigma Tech Park Varthur Main Road Ramagondanahalli Bangalore 560 066 Karnataka

Inventors

1. SANJAY Swamy
5th Floor Beta Building Sigma Tech Park Varthur Main Road Ramagondanahalli Bangalore 560 066 Karnataka
2. BHAKTHA Ram Keshavachar
5th Floor Beta Building Sigma Tech Park Varthur Main Road Ramagondanahalli Bangalore 560 066 Karnataka

Specification

SYSTEM AND METHOD FOR SECURE ELECTRONIC TRANSACTION
CROSS REFERENCE TO RELATED APPLICATION
[0001] The present application claims the benefit of an Indian
Provisional Patent Application entitled, "SYSTEM AND METHOD FOR SECURE
ELECTRONIC TRANSACTION" with serial number 3415/CHE/201 1, filed at
Government of India Patent Office on October 3, 201 1, the content of which is
incorporated by reference herein.
BACKGROUND
Technicalfield
[0002] The embodiments herein generally relate to a field of electronic
transaction. The embodiments herein particularly relate to a system and method for
secure electronic transaction. The embodiments herein more particularly relate to a
system and method for secure electronic transaction using a dongle device.
Description of the RelatedArt
[0003] Currently, there are hundreds of magnetic stripe readers/swipers
on the market; all of them are at least as long as the credit card itself. There exist
different types of card readers/swipers. One type is traditional card swiper with
single rails, which allow a card to be held against the base of the reader by the user
and moved across the read head of the reader. Another type of card reader guides a
card by two sets of rails and a backstop. Once the user has inserted the card against
the backstop, the card is read as it is removed from the swiper. Magnetic stripe cards
having standard specifications can typically be read by the point-of-sale devices at a
merchant's location. When the card is swiped through an electronic card reader at
the checkout counter at a merchant's store, the reader usually uses its built-in
modem to dial the number of a company that handles credit authentication requests.
After the account is verified, an approval signal is sent back to the merchant to
complete a transaction.
[0004] The conventional swipe device using magnetic card readers for
electronic payment is bulky. Further the merchant has to produce the printed
receipts for the customer, which is very cumbersome for the merchant handling
multiple customers. And also the merchant has to keep record of all the printed
receipts, to avoid the dispute about the transactions. It is advantageous for an
individual to make a payment to another individual or merchant by swiping his
magnetic stripe card through a reader connected to a mobile device.
[0005] Hence there were huge developments in providing the card reader
for a mobile phone. In the currently available systems, providing portable swipe
machine for mobile devices, the card data is encrypted on the mobile phone. Hence
there is a chance of insecure transaction over the mobile phone. Further, the existing
systems communicate the relevant data through the electrical signals, which are
extremely slow compared to the electromagnetic signals. In the current scenario, the
communication is always performed on IP network, since IP networks are wide
spread. Further the existing devices work only with high end devices such as
iPhone, iPad or any other smart phone, making the system very costly for the
prospective users. Further the swipe machines used presently are active devices,
where machines need to be charged with an external power supply or through a
connected device.
[0006] In view of the above facts, there is a need for a secure electronic
transaction. There is also a need for a system and method providing a secure
electronic transaction in a cost effective manner. Further there is a need for a system
and method to provide to perform electronic transaction in a fast and efficient
manner. Yet there is a need for a system and method to utilize the fast and efficient
IP communication, thereby reducing the need for the use of electrical signal.
[0007] The above mentioned shortcomings, disadvantages and problems
are addressed herein and which will be understood by reading and studying the
following specification.
OBJECTS OF THE EMBODIMENTS
[0008] The primary object of the embodiments herein is to provide a
system and method for a secure electronic transaction.
[0009] Another object of the embodiments herein is to provide a dongle
to connect to a computing device to perform an electronic transaction
[0010] Yet another object of the embodiments herein is to provide a
system and method to enable a fast and efficient electronic transaction.
[001 1] Yet another objective of the embodiments herein is to provide a
portable swipe machine or dongle for all the users wishing to do an electronic
transaction.
[0012] Yet another object of the embodiments herein is to provide a
system and method for secure electronic transaction by machine level encryption of
a data.
[0013] Yet another object of the embodiments herein is to provide a cost
effective swipe machine for a computing device.
[0014] Yet another object of the embodiments herein is to provide a
system and method for electronic transaction in which power consumed by the
system is managed efficiently.
[0015] Yet another object of the embodiments herein is to provide a
system and method for electronic transaction with a compression scheme to save the
memory of the system.
[0016] Yet another object of the embodiments herein is to provide a
system and method for electronic transaction with a compression scheme that runs
on an open device such as mobile device.
[0017] Yet another objective of the embodiments herein is to provide a
user interface for a computing device to perform an electronic transaction.
[0018] Yet another object of the embodiments herein is to provide a way
to transform card data into a token data and to transmit the token data without
sending the card data from a computing device to a server.
[0019] Yet another object of the embodiments herein is to provide a
method to safely enter a PIN on a computing device using a scrambled keypad
method.
[0020] Yet another objet of the embodiments herein is to provide a
keypad on the dongle to prevent tampering of keypad of the computing device.
[0021] Yet another object of the embodiments herein is to prevent a
replay attack in an electronic transaction.
[0022] Yet another object of the embodiments herein is to provide a
security mechanism to perform an electronic transaction.
[0023] These and other objects and advantages of the embodiments
herein will become readily apparent from the following detailed description taken in
conjunction with the accompanying drawings.
SUMMARY
[0024] According to the various embodiments herein, a system and
method for secure electronic transaction is provided. The system for a secure
electronic transaction comprising a dongle connected to a computing device for
reading an electronic card data, a client application running on the client device for
collecting a transaction information from a customer, a service provider system
connected to the computing device through a first communication network for
transmitting the collected transaction information and the audio signal from the
computing device to the service provider system, a production server located at the
service provider system for processing the received card data, a payment server for
processing the audio signal, a second communication network for transmitting a
processed card data from the production server to a payment system and a payment
gateway running on the payment system for interfacing with the service provider
system. The payment system performs the financial transaction by authenticating
the customer and a merchant.
[0025] According to an embodiment herein, the dongle comprises a
magnetic card reader for reading a swipe data, a key pad for entering a PIN data, a
microchip for decoding, tokenizing, transforming, encrypting, modulating and
representing a swipe data and PIN data as an audio signal, a flash, a battery for a
power supply and a retractable connecting plug. The swipe data is in the form of
analog signals and is a unique data for the electronic card.
[0026] According to an embodiment herein, the retractable connecting
plug connects the dongle to the computing device through a connecting port such as
audio jack or a mini USB.
[0027] According to an embodiment herein, the flash stores a dongle ID,
a serial number of the dongle and a public key. The dongle ID and the serial number
of the dongle are paired at a time of manufacturing the dongle.
[0028] According to an embodiment herein, the client application
provides a scrambled keypad for preventing an onlooker from detecting a personal
identification number (PIN) entered by the customer. According to an embodiment
herein, the PIN is any one of a scrambled PIN data or a PIN block or a one time
password.
[0029] According to an embodiment herein, the first communication
network is an IP network.
[0030] According to an embodiment herein, the production server
comprises a gateway server for interfacing the client application and the production
server, a payment database for storing information about the dongle, an analytics
database. The analytics database stores a metadata, a frequency of a plurality of
swipes for the electronic card, a plurality of fraud patterns and a plurality of
customer spend patterns.
[003 1] According to an embodiment herein, the gateway server conducts
an authentication, firewalling and load balancing operations,
[0032] According to an embodiment herein, the payment server
comprises a decoder for decoding the audio signal, a decryption engine loaded with
a decryption algorithm for converting a cipher text to a normal text using a private
key. The private key is generated randomly by the payment server using a global
unique identification (GUID) number and wherein the GUID is generated at the
payment server based on the paired dongle ID and the serial number of the dongle.
[0033] According to an embodiment herein, the second communication
network is an IP network.
[0034] According to an embodiment herein, the payment gateway
interfaces a plurality of financial institutions to complete a financial transaction.
[0035] According to an embodiment herein, the microchip comprises a
counter for keeping a track on a status of a swipe such as a good swipe or a bad
swipe, a comparator for performing a frequency/double frequency (F2F) decoding
and a post-processing of the swipe data to increase a probability of a good swipe, a
converter for converting the swipe data into a card data, a memory unit for storing
the card data, a tokenizer for converting the card data into a token data using a
standard mathematical transformation, an encryption engine loaded with an
encryption algorithm for encrypting the token data using a PKI (Public Key
Infrastructure) asymmetric algorithm such as 1024 bit RSA algorithm, 2048 bit RSA
algorithm, a modulation engine for modulating the token data, a low pass filter for
filtering the token data, a voltage divider network for representing the token data as
audio signal, a random number generator for avoiding replay attacks and an ADC
(Analog to Digital Converter) for measuring a voltage level of the battery.
[0036] According to an embodiment herein, the audio signal is an audio
tone signal.
[0037] According to an embodiment herein, wherein the dongleJD is a
unique and secret ID associated with the dongle.
[0038] According to an embodiment herein, the public key is used in
RSA algorithm for encrypting the card data.
[0039] According to an embodiment herein, wherein the information
about the dongle includes at least one of a Global Universal Identification (GUID)
associated with the dongle, a serial number of the dongle and a merchant's personal
information provided at the time of registration.
[0040] According to an embodiment herein, the dongle further includes a
keypad for reading a PIN entered by the card holder.
[0041] According to an embodiment herein, the card is one of a
magnetic card, a Near Field Communication (NFC) card, a smart card.
[0042] According to an embodiment herein, the computing device is one
of a cell phone, an Apple's iPhone, an iPod, an iPad, an iTouch, a Google's Android
device and a general purpose computer.
[0043] According to an embodiment herein, the swipe data is recorded at
a first swipe to avoid a replay attack.
[0044] According to an embodiment herein, the swipe data is sent alone
as an audio signal after tokenization and encryption.
[0045] According to an embodiment herein, the dongle is powered by
swiping a magnetic card, inserting a smart card, waving a NFC card. The power is
produced by one of a micro-switch, a low power amplifier or a comparator, a switch
in the audio jack, a sensitive microphone, a photo detector having a solar cell and a
mic bias.
[0046] According to an embodiment herein, the transaction information
includes an amount of the transaction, an unique PIN of the card entered by the card
holder, an additional data related to the transaction, and a signature of a card holder.
[0047] According to an embodiment herein, the client application
provides a graphical user interface (GUI) for a user to interact with the system.
[0048] According to an embodiment, the client application includes a
compression scheme for compressing the token data.
[0049] According to an embodiment herein, the dongle is a tamperproof
device and wherein a circuit board in the dongle is impregnated with resin to
provide a tamper proof property and a microprocessor based security fuse is
provided in the dongle to provide a tamperproof property so that the security fuse is
blown at a time of manufacturing the dongle.
[0050] According to an embodiment herein, the system provides a user
login based Virtual point of sales (POS) system. The virtual POS is provided by
using different accounts in the computing device to act as different merchants.
[0051] According to an embodiment herein, the dongle of the
embodiments herein further comprises a public key. The public key is burned on the
dongle at a manufacture time.
[0052] According to an embodiment herein, the system provides a user
login based Virtual point of sales (POS) system, wherein the virtual POS is provided
by using different accounts in the computing device to act as different merchants.
[0053] According to an embodiment herein, the dongle further
comprises a public key burned at a time of manufacture the dongle.
[0054] According to an embodiment herein, the dongle generates a
session key and a secret key at a beginning of the transaction, and wherein the secret
key is used for authenticating the payment server, and wherein the session key and
secret key are encrypted by the public key before sending to the payment server.
[0055] According to an embodiment herein, the payment server further
comprises a private key, and wherein the private key decrypts the secret key sent by
the dongle and sends back the decrypted secret key to the dongle for mutually
authenticating the dongle and the payment server.
[0056] According to an embodiment herein, the dongle is injected with a
plurality of keys, and wherein the plurality of keys is a banking domain key and an
acquirer key.
[0057] According to an embodiment herein, the server is provided with a
plurality of keys, and wherein the plurality of keys is a banking domain key and an
acquirer key.
[0058] According to an embodiment herein, the banking key or the
acquirer key is selected based on a card issuer.
[0059] According to an embodiment herein, the banking key or the
acquirer key is selected from the dongle based on a business intelligence (BI) rule
and wherein the BI rule is set on the dongle using a user interface on a mobile phone
and wherein the BI rule is set on the dongle using a server.
[0060] According to an embodiment herein, a PIN is encrypted in the
dongle selected using the session key.
[0061] According to an embodiment herein, the PIN is translated into a
banking domain key using a secure device and wherein the secure device is HSM
device.
[0062] According to an embodiment herein, the banking key or the
acquirer key is selected from the server based on a BIN number or a business
intelligence (BI) rule.
[0063] According to an embodiment herein, the BIN number or the BI
rule is set on the dongle by a merchant using a user interface on a mobile phone and
wherein the BIN number or the BI rule is set on the dongle by a merchant using a
user interface on a portal.
[0064] According to an embodiment herein, the dongle further
comprises a NFC tag, and wherein the NFC tag of the dongle includes a unique ID
and a physical unclonable function (PUF).
[0065] According to an embodiment herein, the merchant device
comprises a NFC tag, and wherein the NFC tag of the merchant device authenticates
the dongle by verifying the unique ID of the dongle NFC tag.
[0066] According to an embodiment herein, in case of a key compromise
in the server, new public keys are programmed into the dongle over a secure
communication link. The link can be in a secure location or over the air as
determined by the business needs of the acquirer. The acquirer keys are injected into
the dongle in a secure location or over the air using the secure link establishment.
The dongles are authenticated by verifying their serial numbers and the secret IDs
against a positive database in the server. The selection of the key is either based on
the BIN (the first 6 digits of the card) or on a command set by the phone/server to
the dongle.
[0067] According to an embodiment herein, the PIN entered by the user
on the secure keyboard is encrypted by the chosen acquirer key using industry
standard algorithms like 3-DES and a PIN block is generated and sent to the
acquirer. The key for encryption is either a unique key per terminal (UKPT) given
by the acquirer or a derived key from a master key (DUKPT).
[0068] According to an embodiment herein, the dongle comprises a
secret ID and a publicly visible serial number. The secret ID and publicly visible
serial numbers are paired at manufacture time and are stored in the database
securely. Later the stored details of the secret ID and publicly visible serial numbers
are transported to the server. Whenever a dongle needs to transact with the server it
establishes a secure connection to the server. The server authenticates a dongle by
checking the serial number and the secret dongle ID on a positive database.
[0069] According to an embodiment herein, the dongle generates a
session key and a secret key at the beginning of the transaction. The generated
secret key is used for authenticating the payment server. The session key and the
secret key along with the serial number and unique ID of the dongle are encrypted
by the public key before sending to the payment server.
[0070] According to an embodiment herein, the payment server
comprises a private key. The private key decrypts the secret key sent by the dongle
and sends back the decrypted secret key to the dongle for mutually authenticating
the dongle and the payment server. The public-private key pair is identified by a key
ID at the payment server. After authentication, the communication is done using the
session key using a standard encryption algorithm like AES-256.
[0071] According to an embodiment herein, the issuer keys are stored in
the dongle for encrypting the PIN and generating ISO standard PIN blocks. The
management and injection of keys is done as per issuer conforming to the standard
industry practices.
[0072] According to an embodiment herein, the dongle further
comprises a NFC tag. The NFC tag of the dongle includes a unique ID and a
physical unclonable function (PUF). The physical unclonable function provides
tamper proof for the NFC tag.
[0073] According to an embodiment herein, the merchant device
comprises a NFC tag. The NFC tag of the merchant device authenticates the dongle
by verifying the unique ID of the dongle NFC tag.
[0074] According to an embodiment herein, the merchant is
authenticated using a user-ID and password. Other forms of authentication like OTP
and bio-metric is also used. According to an embodiment herein, the method for a
secure electronic transaction comprising the steps of logging in by a merchant into a
client application installed on a computing device, swiping a card onto a dongle,
tracking a status of a swipe, reading a swipe data by a magnetic card reader of the
dongle, extracting a public key burnt on a flash of the dongle, processing the swipe
data by a microchip for producing a cipher data, representing the cipher data and a
PIN data as an audio signal, transmitting the cipher data and the PIN data to a
mobile device through an audio jack of the mobile device, collecting a transaction
information through a graphical user interface (GUI), collecting a part of a card
number from the merchant, constructing a hash value out of the cipher data by using
a hash algorithm of a client application running on a computing device, transmitting
the hash value along with the transaction information to a production server through
a first communication network, processing the cipher data and the PIN data in a
payment server of the production server, sending a transaction request to a third
party system to perform an electronic transaction, transmitting a transaction
information to the third party system through a second communication network,
performing the electronic transaction by the third party system and indicating a
transaction status.
[0075] According to an embodiment herein, the data communicated
between the mobile device and the dongle is in a form of acoustic signals or audio
tones.
[0076] According to an embodiment herein, the GUI is provided by the
client application.
[0077] According to an embodiment herein, the hash algorithm is
exchanged and stored between the mobile device and the payment server for a first
time.
[0078] According to an embodiment herein, the transaction status is
indicated by an audio tone or a colored light. The transaction status is one of a bad
transaction and a good transaction.
[0079] According to an embodiment herein, the step processing the
swipe data by a microchip for producing a cipher data comprises generating a
random number for avoiding a replay attack, decoding the swipe data by a
comparator, converting the swipe data into a card data by a converter, tokenization
of the card data by a tokenizer by Xoring the card data with a dongle ID, encrypting
the card data into a cipher data by an encryption engine using a RSA algorithm and
modulating the cipher data by a modulation engine using Frequency Shift Keying
(FSK). The dongle ID is a unique and secret ID related to the dongle.
[0080] According to an embodiment herein, a public key is used in RSA
algorithm for encrypting the card data.
[0081] According to an embodiment herein, the step of processing the
cipher data in a payment server of the production server comprises decoding the
hash value by a decoder of the payment server for producing the cipher data,
decrypting the cipher data by a decryption engine of the payment server using a
private key, retrieving a merchant information stored in a payment database of the
production server, reproducing a complete card number by stitching a part of the
card number entered by the merchant with a card data received from the dongle and
authenticating the merchant.
[0082] According to an embodiment herein, the step of representing the
cipher data as an audio signal comprises filtering the cipher data by a low pass filter
and dividing a voltage of cipher data for producing amplitude for the audio signal.
[0083] According to an embodiment herein, the step of constructing the
hash value out of the encrypted data by the hash function of the client application
running on the mobile phone is done by creating a date/time stamp.
[0084] According to an embodiment herein, the method for secure
electronic transaction further comprises sending an electronic receipt to the
customer through a short message service (SMS) or an e-mail.
[0085] According to an embodiment here, the method for secure
electronic transaction further comprises recording a transaction status by a counter
of the microchip.
[0086] According to an embodiment herein, the method for secure
electronic transaction further comprises measuring a voltage level of a battery of the
dongle by an analog-to-digital converter (ADC) of the microprocessor, sending a
measured voltage level along with the transaction data to the production server,
collating a reading of the battery by the payment server, computing a remaining
voltage level in the battery by the payment server and sending an information
corresponding to the remaining voltage level in the battery to a user.
[0087] According to an embodiment herein, the transaction information
includes an amount of the transaction, an unique PIN of the card entered by the card
holder, an additional data related to the transaction and a signature of a card holder.
[0088] According to an embodiment herein, the PIN ia any one of a
scrambled PIN data or a PIN block or a one time password.
[0089] According to an embodiment herein, the method for secure
electronic transaction further comprises an updating of the public key. Updating of
the public key comprises swiping a non financial card on a swipe machine, reading
a swipe data by a reader head of the dongle, extracting a public key from the swipe
data and updating the public key associated with the dongle.
[0090] According to an embodiment herein, the method for secure
electronic transaction further comprises mapping a merchant ID, a terminal ID, a
user ID, IMEI number of computing device, a serial number of the dongle with a
dongle ID for executing a secure electronic transaction.
[0091] According to an embodiment herein, the method for secure
electronic transaction further comprises mapping a dongle ID, serial number of
dongle with IMEI number of a mobile phone for executing a secure electronic
transaction.
[0092] According to an embodiment herein, the public key is burned in
the dongle at a manufacturing time.
[0093] According to an embodiment herein, the dongle generates a
session key and a secret key at a beginning of the transaction, and wherein the secret
key is used for authenticating the payment server, and wherein the session key and
secret key are encrypted by the public key and sent to the payment server.
[0094] According to an embodiment herein, the payment server further
comprises a private key, and wherein the private key decrypts the secret key sent by
the dongle and sends back the decrypted secret key to the dongle for mutually
authenticating the dongle and the payment server.
[0095] According to an embodiment herein, a plurality of keys is
injected in the dongle and wherein the plurality of keys is a banking domain key and
an acquirer key.
[0096] According to an embodiment herein, a plurality of keys is
provided with the server and wherein the plurality of keys is a banking domain key
and an acquirer key.
[0097] According to an embodiment herein, the banking key or the
acquirer key is selected based on a card issuer.
[0098] According to an embodiment herein, the banking key or the
acquirer key is selected from the dongle based on a business intelligence (BI) rule
and wherein the BI rule is set on the dongle using a user interface on a mobile phone
and wherein the BI rule is set on the dongle using a server.
[0099] According to an embodiment herein, a PIN is encrypted in the
dongle selected using the session key.
[00100] According to an embodiment herein, the PIN is translated into a
banking domain key using a secure device and wherein the secure device is HSM
device.
[00101] According to an embodiment herein, the banking key or the
acquirer key is selected from the server based on a BIN number or a business
intelligence (BI) rule.
[00102] According to an embodiment herein, the BIN number or the BI
rule is set on the dongle by a merchant using a user interface on a mobile phone and
wherein the BIN number or the BI rule is set on the dongle by a merchant using a
user interface on a portal.
[00103] According to an embodiment herein, the dongle further
comprises a NFC tag, and wherein the NFC tag of the dongle includes a unique ID
and a physical unclonable function (PUF).
[00104] According to an embodiment herein, the merchant device
comprises a NFC tag, and wherein the NFC tag of the merchant device authenticates
the dongle by verifying the unique ID of the dongle NFC tag.
[00105] According to an embodiment herein, a swipe data alone is sent as
an audio signal after tokenization and encryption.
[00106] According to an embodiment herein, a method for providing a
user friendly secure electronic transaction comprising the steps of providing a SDK
(Standard Development Kit) for a merchant to develop a client application and
wherein the client application is developed by the merchant according to a
requirement; installing the client application on a computing device and executing a
plurality of electronic transactions using the computing device.
[00107] According to an embodiment herein, the step of executing the
plurality of electronic transactions comprises logging in by a merchant into a client
application installed on a computing device, swiping a card onto a dongle, tracking
a status of a swipe, reading a swipe data by a magnetic card reader of the dongle,
extracting a public key burnt on a flash of the dongle, processing the swipe data by a
microchip for producing a cipher data, representing the cipher data as an audio
signal, transmitting the cipher data to a mobile device through an audio jack of the
mobile device, collecting a transaction information through a graphical user
interface (GUI), collecting a part of a card number from the merchant, constructing
a hash value out of the cipher data by using a hash algorithm of a client application
running on a computing device, transmitting the hash value along with the
transaction information to a production server through a first communication
network, processing the cipher data in a payment server of the production server,
sending a transaction request to a third party system to perform an electronic
transaction, transmitting a transaction information to the third party system through
a second communication network, performing the electronic transaction by the third
party system and indicating a transaction status.
[00108] According to an embodiment herein, the data communicated
between the mobile device and the dongle is in a form of acoustic signals or audio
tones.
[00109] According to an embodiment herein, the GUI is provided by the
client application.
[001 10] According to an embodiment herein, the hash algorithm is
exchanged and stored between the mobile device and the payment server for a first
time;
[001 11] According to an embodiment herein, the transaction status is
indicated by an audio tone or a colored light. The transaction status is one of a bad
transaction and a good transaction.
[001 12] According to an embodiment herein, the step processing the
swipe data by a microchip for producing a cipher data comprises generating a
random number for avoiding a replay attack, decoding the swipe data by a
comparator, converting the swipe data into a card data by a converter, tokenization
of the card data by a tokenizer by Xoring the card data with a dongle ID, encrypting
the card data into a cipher data by an encryption engine using a RSA algorithm and
modulating the cipher data by a modulation engine using Frequency Shift Keying
(FSK). The dongle ID is a unique and secret ID related to the dongle.
[001 13] According to an embodiment herein, a public key is used in RSA
algorithm for encrypting the card data.
[001 14] According to an embodiment herein, the step of processing the
cipher data in a payment server of the production server comprises decoding the
hash value by a decoder of the payment server for producing the cipher data,
decrypting the cipher data by a decryption engine of the payment server using a
private key, retrieving a merchant information stored in a payment database of the
production server, reproducing a complete card number by stitching a part of the
card number entered by the merchant with a card data received from the dongle and
authenticating the merchant.
[001 15] According to an embodiment herein, the step of representing the
cipher data as an audio signal comprises filtering the cipher data by a low pass filter
and dividing a voltage of cipher data for producing amplitude for the audio signal.
[001 16] According to an embodiment herein, the step of constructing the
hash value out of the encrypted data by the hash function of the client application
running on the mobile phone is done by creating a date/time stamp.
[001 17] According to an embodiment herein, the method for secure
electronic transaction further comprises sending an electronic receipt to the
customer through a short message service (SMS) or an e-mail.
[001 18] According to an embodiment here, the method for secure
electronic transaction further comprises recording a transaction status by a counter
of the microchip.
[001 19] According to an embodiment herein, the method for secure
electronic transaction further comprises measuring a voltage level of a battery of the
dongle by an analog-to-digital converter (ADC) of the microprocessor, sending a
measured voltage level along with the transaction data to the production server,
collating a reading of the battery by the payment server, computing a remaining
voltage level in the battery by the payment server and sending an information
corresponding to the remaining voltage level in the battery to a user.
[00120] According to an embodiment herein, the transaction information
includes an amount of the transaction, an unique PIN of the card entered by the card
holder, an additional data related to the transaction and a signature of a card holder.
[00121] According to an embodiment herein, the PIN ia any one of a
scrambled PIN data or a PIN block or a one time password.
[00122] According to an embodiment herein, the method for secure
electronic transaction further comprises an updating of the public key. Updating of
the public key comprises swiping a non financial card on a swipe machine, reading
a swipe data by a reader head of the dongle, extracting a public key from the swipe
data and updating the public key associated with the dongle.
[00123] According to an embodiment herein, the method for secure
electronic transaction further comprises mapping a merchant ID, a terminal ID, a
user ID, IMEI number of computing device, a serial number of the dongle with a
dongle ID for executing a secure electronic transaction.
[00124] According to an embodiment herein, the method for secure
electronic transaction further comprises mapping a dongle ID, serial number of
dongle with IMEI number of a mobile phone for executing a secure electronic
transaction.
[00125] According to an embodiment herein, the public key is burned in
the dongle at a manufacturing time.
[00126] According to an embodiment herein, the dongle generates a
session key and a secret key at a beginning of the transaction, and wherein the secret
key is used for authenticating the payment server, and wherein the session key and
secret key are encrypted by the public key and sent to the payment server.
[00127] According to an embodiment herein, the payment server further
comprises a private key, and wherein the private key decrypts the secret key sent by
the dongle and sends back the decrypted secret key to the dongle for mutually
authenticating the dongle and the payment server.
[00128] According to an embodiment herein, a plurality of keys is
injected in the dongle and wherein the plurality of keys is a banking domain key and
an acquirer key.
[00129] According to an embodiment herein, a plurality of keys is
provided with the server and wherein the plurality of keys is a banking domain key
and an acquirer key.
[00130] According to an embodiment herein, the banking key or the
acquirer key is selected based on a card issuer.
[00131] According to an embodiment herein, the banking key or the
acquirer key is selected from the dongle based on a business intelligence (BI) rule
and wherein the BI rule is set on the dongle using a user interface on a mobile phone
and wherein the BI rule is set on the dongle using a server.
[00132] According to an embodiment herein, a PIN is encrypted in the
dongle selected using the session key.
[00133] According to an embodiment herein, the PIN is translated into a
banking domain key using a secure device and wherein the secure device is HSM
device.
[00134] According to an embodiment herein, the banking key or the
acquirer key is selected from the server based on a BIN number or a business
intelligence (BI) rule.
[00135] According to an embodiment herein, the BIN number or the BI
rule is set on the dongle by a merchant using a user interface on a mobile phone and
wherein the BIN number or the BI rule is set on the dongle by a merchant using a
user interface on a portal.
[00136] According to an embodiment herein, the dongle further
comprises a NFC tag, and wherein the NFC tag of the dongle includes a unique ID
and a physical unclonable function (PUF).
[00137] According to an embodiment herein, the merchant device
comprises a NFC tag, and wherein the NFC tag of the merchant device authenticates
the dongle by verifying the unique ID of the dongle NFC tag.
[00138] These and other aspects of the embodiments herein will be better
appreciated and understood when considered in conjunction with the following
description and the accompanying drawings. It should be understood, however, that
the following descriptions, while indicating preferred embodiments and numerous
specific details thereof, are given by way of illustration and not of limitation. Many
changes and modifications may be made within the scope of the embodiments
herein without departing from the spirit thereof, and the embodiments herein include
all such modifications.
BRIEF DESCRIPTION OF THE DRAWINGS
[00139] The other objects, features and advantages will occur to those
skilled in the art from the following description of the preferred embodiment and the
accompanying drawings in which:
[00140] FIG.l illustrates a functional block diagram of a system for
secure electronic transaction, according to an embodiment herein.
[00141] FIG. 2 illustrates a block circuit diagram of a dongle used in a
system for secure electronic transaction, according to an embodiment herein.
[00142] FIG. 3 illustrates a flowchart for a method for secure electronic
transaction, according to an embodiment herein.
[00143] FIG. 4 illustrates a perspective view of a dongle, according to an
embodiment herein.
[00144] Although the specific features of the embodiments herein are
shown in some drawings and not in others. This is done for convenience only as
each feature may be combined with any or all of the other features in accordance
with the embodiments herein.
DETAILED DESCRIPTION OF THE EMBODIMENTS HEREIN
[00145] In the following detailed description, a reference is made to the
accompanying drawings that form a part hereof, and in which the specific
embodiments that may be practiced is shown by way of illustration. These
embodiments are described in sufficient detail to enable those skilled in the art to
practice the embodiments and it is to be understood that the logical, mechanical and
other changes may be made without departing from the scope of the embodiments.
The following detailed description is therefore not to be taken in a limiting sense.
[00146] FIG.l illustrates a functional block diagram of a system for
secure electronic transaction, according to an embodiment herein. The system 100
comprises a dongle 101 connected to a computing device 102 for reading an
electronic card data, a client application (not shown in FIG. 1) running on the
computing device 102 for collecting a transaction information such as an amount of
the transaction, an unique PIN of the card entered by the card holder, an additional
data related to the transaction and a signature of a card holder, a service provider
system connected to the computing device 102 through a first communication
network 103 for transmitting the collected transaction information and the audio
signal from the computing device 102 to the service provider system, a production
server 104 located at the service provider system for processing the received card
data, a second communication network 105 for transmitting a processed card data
from the production server 104 to a third party system 106 and a payment gateway
107 running on the third party system 106 for interfacing with the service provider
system. The third party system 106 performs the financial transaction by
authenticating the customer and a merchant. The first communication network 103
and the second communication network 105 are IP networks connected in turn to a
web server 108. The transaction information includes an amount of the transaction,
an unique PIN of the card entered by the card holder, an additional data related to
the transaction, and a signature of a card holder.
[00147] The production server 104 comprises a payment server 109 for
processing the audio signal, a gateway server 10 for interfacing the client
application and the production server 104, a payment database 111 for storing
information about the dongle 101, an analytics database 112. The analytics database
112 stores a metadata, a frequency of a plurality of swipes for the electronic card, a
plurality of fraud patterns and a plurality of customer spend patterns. The gateway
server 110 conducts an authentication, firewalling and load balancing operations.
[00148] The payment gateway 107 interfaces a plurality of financial
institutions to complete a financial transaction. The plurality of financial institutes
are banks Bl ...Bn. The payment gateway 107 access a transaction database 113 of
the third party system 106 for getting details of the customer.
[00149] The system 100 further comprises an admin workstation 1 4 for
monitoring the system 100.
[00150] The dongle 101 comprises a magnetic card reader for reading a
swipe data, a microchip for decoding, tokenizing, transforming, encrypting,
modulating and representing a swipe data as an audio signal, a flash, a battery for a
power supply and a retractable connecting plug. The swipe data is in the form of
analog signals and is a unique data for the electronic card. The retractable
connecting plug connects the dongle to the computing device 102 through a
connecting port such as audio jack or a mini USB. The swipe data is recorded at a
first swipe.
[00151] The flash stores a dongle ID, a serial number of the dongle and a
public key. The dongle ID and the serial number of the dongle are paired at a time
of manufacturing the dongle. The dongle ID is a unique and secret ID associated
with the dongle. The public key is used in RSA algorithm for encrypting the card
data.
[00152] The client application provides a scrambled keypad for
preventing an onlooker from detecting a personal identification number (PIN)
entered by the customer.
[00153] The payment server 109 comprises a decoder for decoding the
audio signal, a decryption engine loaded with a decryption algorithm for converting
a cipher text to a normal text using a private key. The private key is generated
randomly by the payment server 109 using a global unique identification (GUID)
number and wherein the GUID is generated at the payment server 109 based on the
paired dongle ID and the serial number of the dongle.
[001 54] The microchip comprises a counter for keeping a track on a status
of a swipe such as a good swipe or a bad swipe, a comparator for performing a
frequency/double frequency (F2F) decoding and a post-processing of the swipe data
to increase a probability of a good swipe, a converter for converting the swipe data
into a card data, a memory unit for storing the card data, a tokenizer for converting
the card data into a token data using a standard mathematical transformation, an
encryption engine loaded with an encryption algorithm for encrypting the token data
using a PKI (Public Key Infrastructure) asymmetric algorithm such as 1024 bit RSA
algorithm, 2048 bit RSA algorithm, a modulation engine for modulating the token
data, a low pass filter for filtering the token data, a voltage divider network for
representing the token data as audio signal, a random number generator for avoiding
replay attacks and an ADC (Analog to Digital Converter) for measuring a voltage
level of the battery. The audio signal is an audio tone signal.
[00155] According to an embodiment herein, the information about the
dongle includes at least one of a Global Universal Identification (GUID) associated
with the dongle, a serial number of the dongle and a merchant's personal
information provided at the time of registration.
[00156] According to an embodiment herein, the card is one of a
magnetic card, a Near Field Communication (NFC) card, a smart card.
[00157] According to an embodiment herein, the computing device is one
of a cell phone, an Apple's iPhone, an iPod, an iPad, an iTouch, a Google's Android
device and a general purpose computer.
[00158] The client application provides a graphical user interface (GUI)
for a user to interact with the system. The client application also includes a
compression scheme for compressing the token data.
[00159] The dongle 101 is a tamperproof device and a circuit board in the
dongle is impregnated with resin to provide a tamper proof property and a
microprocessor based security fuse is provided in the dongle to provide a
tamperproof property so that the security fuse is blown at a time of manufacturing
the dongle.
[00160] The system 100 provides a user login based Virtual point of sales
(POS) system. The virtual POS is provided by using different accounts in the
computing device to act as different merchants.
[00161] The service provider is able to provide a SDK (Standard
Development Kit) for a merchant to develop a client application. The merchant is
able to develop the client application according to a requirement.
[00162] According to an embodiment herein, a camera of the computing
device records a plurality of activities involved in the electronic transaction. As
soon as dongle is connected to the computing device, the client application
interfaces with the native camera applications and starts recording the plurality of
actions.
[00163] FIG. 2 illustrates a block circuit diagram of a dongle used in the
system for secure electronic transaction, according to an embodiment herein. The
components of the dongle 1 are integrated on a circuit board 201. The circuit
board 201 comprises signal conditioning circuitry 202 and a microchip 203. The
microchip 203 comprises a comparator 204 for performing a frequency/double
frequency (F2F) decoding and a post-processing of the swipe data to increase a
probability of a good swipe, a converter 205 for converting the swipe data into a
card data, a tokenizer 206 for converting the card data into a token data using a
standard mathematical transformation provided by a transformation engine 207, an
encryption engine 208 loaded with an encryption algorithm for encrypting the token
data using a PKI (Public Key Infrastructure) asymmetric algorithm such as 1024 bit
RSA algorithm, 2048 bit RSA algorithm, a modulation engine 209 for modulating
the token data, a low pass filter 210 for filtering the token data, a voltage divider
network 2 11 for representing the token data as audio signal and an ADC (Analog to
Digital Converter) 212 for measuring a voltage level of the battery. The audio signal
is an audio tone signal.
[00164] According to an embodiment herein, the microchip 203 further
comprises a counter for keeping a track on a status of a swipe such as a good swipe
or a bad swipe.
[00165] According to an embodiment herein, the microchip 203 further
comprises a memory unit (not shown in FIG. 2) for storing the card data.
[00166] According to an embodiment herein, the microchip 203 further
comprises a random number generator for avoiding replay attacks.
[00167] The dongle 101 further comprises a magnetic card reader 213 for
reading a swipe data, a battery 214 for a power supply and a retractable connecting
p ug. The swipe data is in the form of analog signals and is a unique data for the
electronic card.
[00168] A retractable connecting plug connects the dongle 101 to the
computing device through a connecting port such as audio jack 215a or a mini USB
215b. The swipe data is recorded at a first swipe.
[00169] The flash stores a dongle ID, a serial number of the dongle and a
public key. The dongle ID and the serial number of the dongle are paired at a time
of manufacturing the dongle. The dongle ID is a unique and secret ID associated
with the dongle. The public key is used in RSA algorithm for encrypting the card
data.
[001 70] According to an embodiment herein, the dongle further includes a
keypad for reading a entered by the card holder.
[00171] The dongle 101 is powered by swiping a magnetic card, inserting
a smart card, waving a NFC card. The power is produced by one of a micro-switch,
a low power amplifier or a comparator, a switch in the audio jack, a sensitive
microphone, a photo detector having a solar cell and a mic bias.
[00172] The dongle 101 is a tamperproof device and a circuit board in the
dongle is impregnated with resin to provide a tamper proof property and a
microprocessor based security fuse is provided in the dongle to provide a
tamperproof property so that the security fuse is blown at a time of manufacturing
the dongle.
[00173] FIG. 3 illustrates a flowchart for a method for secure electronic
transaction, according to an embodiment herein. The method comprising the steps
of logging in by a merchant into a client application installed on a computing device
(301), swiping a card onto a dongle (302), tracking a status of a swipe (303),
reading a swipe data by a magnetic card reader of the dongle (304), extracting a
public key burnt on a flash of the dongle (305), processing the swipe data by a
microchip for producing a cipher data (306), representing the cipher data as an audio
signal (307), transmitting the cipher data to a mobile device through an audio jack
of the mobile device (308), collecting a transaction information through a graphical
user interface (GUI) (309), collecting a part of a card number from the merchant
(310), constructing a hash value out of the cipher data by using a hash algorithm of
a client application running on a computing device (31 1), transmitting the hash
value along with the transaction information to a production server through a first
communication network (312), processing the cipher data in a payment server of the
production server (313), sending a transaction request to a third party system to
perform an electronic transaction (3 14), transmitting a transaction information to the
third party system through a second communication network (315), performing the
electronic transaction by the third party system (316) and indicating a transaction
status (3 17). The GUI is provided by the client application.
[00174] The data communicated between the mobile device and the
dongle is in a form of acoustic signals or audio tones.
[00175] The hash algorithm is exchanged and stored between the mobile
device and the payment server for a first time;
[00176] The transaction status is indicated by an audio tone or a colored
light. The transaction status is one of a bad transaction and a good transaction.
[00177] The step processing the swipe data by a microchip for producing
a cipher data (306) comprises generating a random number for avoiding a replay
attack, decoding the swipe data by a comparator, converting the swipe data into a
card data by a converter, tokenization of the card data by a tokenizer by Xoring the
card data with a dongle ID, encrypting the card data into a cipher data by an
encryption engine using a RSA algorithm and modulating the cipher data by a
modulation engine using Frequency Shift Keying (FSK). The dongle ID is a unique
and secret ID related to the dongle.
[00178] According to an embodiment herein, a public key is used in RSA
algorithm for encrypting the card data.
[00179] According to an embodiment herein, the step of processing the
cipher data in a payment server of the production server (313) comprises decoding
the hash value by a decoder of the payment server for producing the cipher data,
decrypting the cipher data by a decryption engine of the payment server using a
private key, retrieving a merchant information stored in a payment database of the
production server, reproducing a complete card number by stitching a part of the
card number entered by the merchant with a card data received from the dongle and
authenticating the merchant.
[00180] According to an embodiment herein, the step of representing the
cipher data as an audio signal (307) comprises filtering the cipher data by a low pass
filter and dividing a voltage of cipher data for producing amplitude for the audio
signal.
[00181] According to an embodiment herein, the step of constructing the
hash value out of the encrypted data by the hash function of the client application
running on the mobile phone (31 1) is done by creating a date/time stamp.
[00182] According to an embodiment herein, the method for secure
electronic transaction further comprises sending an electronic receipt to the
customer through a short message service (SMS) or an e-mail.
[00183] According to an embodiment here, the method for secure
electronic transaction further comprises recording a transaction status by a counter
of the microchip.
[00184] According to an embodiment herein, the method for secure
electronic transaction further comprises measuring a voltage level of a battery of the
dongle by an analog-to-digital converter (ADC) of the microprocessor, sending a
measured voltage level along with the transaction data to the production server,
collating a reading of the battery by the payment server, computing a remaining
voltage level in the battery by the payment server and sending an information
corresponding to the remaining voltage level in the battery to a user. The
information is sent to the user's mobile phone through a SMS or an Email.
[00185] According to an embodiment herein, the transaction information
includes an amount of the transaction, a unique PIN of the card entered by the card
holder, an additional data related to the transaction and a signature of a card holder.
[00186] According to an embodiment herein, the method for secure
electronic transaction further comprises an updating of the public key. Updating of
the public key comprises swiping a non financial card on a swipe machine, reading
a swipe data by a reader head of the dongle, extracting a public key from the swipe
data and updating the public key associated with the dongle.
[00187] According to an embodiment herein, the method for secure
electronic transaction further comprises mapping a merchant ID, a terminal ID, a
user ID, IMEI number of computing device, a serial number of the dongle with a
dongle ID for executing a secure electronic transaction.
[00188] According to an embodiment herein, the method of electronic
transaction further comprising the step of updating a merchant's server located at
the merchant's place. As soon as card is swiped and transaction is successful for a
particular order, the corresponding details of the order in the merchant's server are
updated.
[00189] According to an embodiment herein, the method for secure
electronic transaction further comprises recording location information of the
electronic transaction. The client application interfaces with a native GPS device
and detects the location of the electronic transaction.
[00190] FIG. 4 illustrates a perspective view of a dongle used in a system
for secure electronic transaction, according to an embodiment herein. As shown in
FIG. 4, the dongle 101 comprises a retractable connecting plug 401. The retractable
connecting plug 401 connects the dongle 101 to the computing device through a
connecting port such as audio jack or a mini USB.
[00191] The foregoing description of the specific embodiments herein
will so fully reveal the general nature of the embodiments herein that others can, by
applying current knowledge, readily modify and/or adapt for various applications
such specific embodiments herein without departing from the generic concept, and,
therefore, such adaptations and modifications should and are intended to be
comprehended within the meaning and range of equivalents of the disclosed
embodiments. It is to be understood that the phraseology or terminology employed
herein is for the purpose of description and not of limitation.
[00192] The embodiments herein provide a system and method for a
secure electronic transaction. The system and method provides a way for a fast and
an efficient electronic transaction. A portable swipe machine is provided for all the
users wishing to do an electronic transaction.
[00193] The embodiments herein provide a cost effective swipe machine
for a mobile device. A way to manage a power consumed by the system is provided.
A compression scheme is provided for saving in the memory of the system. The
embodiments herein provide a compression scheme that runs on an open device
such as mobile device. The system provides a user interface for a mobile device to
perform an electronic transaction. The random number generator prevents a replay
attack in an electronic transaction.
[00194] The mobile device is provided with the scrambled keypad to
safely enter a PIN on an open platform such as mobile, using a scrambled keypad
method. The card data is transformed into a token data which is transmitted to a
payment server through a mobile device thereby eliminating a need for transmitting
a card data. The dongle is also is provided with a keypad for avoiding tampering
with the keypad of the computing device. Using the keypad of the dongle, the
customer can enter the PIN.
[00195] The user friendly SDK provided by the service provider is used
by the merchant to develop a customized client application. A system integrates
easily with the merchant's server for updating the status of an order after an
electronic transaction.
[00196] The system and method provides a machine level encryption of a
data for an electronic transaction. The non financial card provided periodically to
the users of the dongle make sure that, the public key is updated periodically to
provide security. The camera of the computing device records a plurality of
activities involved in an electronic transaction. The recording data is stored for
security purpose.
[00197] The GPS of the computing device record the location of an
electronic transaction, so that the location data can be used at the time of disputes
about the transaction.
[00198] The foregoing description of the specific embodiments herein
will so fully reveal the general nature of the embodiments herein that others can, by
applying current knowledge, readily modify and/or adapt for various applications
such specific embodiments herein without departing from the generic concept, and,
therefore, such adaptations and modifications should and are intended to be
comprehended within the meaning and range of equivalents of the disclosed
embodiments. It is to be understood that the phraseology or terminology employed
herein is for the purpose of description and not of limitation.
[00199] Therefore, while the embodiments herein have been described in
terms of preferred embodiments, those skilled in the art will recognize that the
embodiments herein can be practiced with modification within the spirit and scope
of the appended claims.
[00200] Although the embodiments herein are described with various
specific embodiments, it will be obvious for a person skilled in the art to practice the
invention with modifications. However, all such modifications are deemed to be
within the scope of the claims.
[00201] It is also to be understood that the following claims are intended
to cover all of the generic and specific features of the embodiments described herein
and all the statements of the scope of the embodiments which as a matter of
language might be said to fall there between.
CLAIMS
What is claimed is:
1. A system for a secure electronic transaction comprising:
a dongle connected to a computing device for reading an electronic card data, wherein the
dongle comprises a magnetic card reader for reading a swipe data, and wherein the swipe
data is in the form of analog signals and is a unique data for the electronic card, a
microchip for decoding, tokenizing, transforming, encrypting, modulating and
representing a swipe data and a PIN data as an audio signal, a flash for storing a dongle
ID, a serial number of the dongle and a public key, and wherein the dongle ID and the
serial number of the dongle are paired at a time of manufacturing the dongle, a battery for
a power supply, and a retractable connecting plug, and wherein the retractable connecting
plug connects the dongle to the computing device through a connecting port, and wherein
the connecting port is at least one of an audio jack or a mini USB;
a client application running on a client device for collecting a transaction information
from a customer^ and wherein the client application provides a scrambled keypad for
preventing an onlooker from detecting a personal identification number (PIN) entered by
the customer;
a service provider system connected to the computing device through a first
communication network for transmitting the collected transaction information and the
audio signal from the computing device to the service provider system, and wherein the
first communication network is an IP network;
a production server located at the service provider system for processing the received
card data, and wherein the production server comprises a gateway server for interfacing
the client application and the production server, and wherein the gateway server conducts
an authentication, firewalling and load balancing operations, a payment database for
storing an information about the dongle, an analytics database, and wherein the analytics
database stores a metadata, a frequency of a plurality of swipes for the electronic card, a
plurality of fraud patterns and a plurality of customer spend patterns, a payment server
for processing the audio signal, and wherein the payment server comprises a decoder for
decoding the audio signal, a decryption engine loaded with a decryption algorithm for
converting a cipher text to a normal text using a private key, wherein the private key is
generated randomly by the payment server using a global unique identification (GUID)
number and wherein the GUID is generated at the payment server based on the paired
dongle ID and the serial number of the dongle;
a second communication network for transmitting a processed card data from the
production server to a payment system, and wherein the second communication network
is an IP network; and
a payment gateway running on the payment system for interfacing with the service
provider system, and wherein the payment gateway interfaces a plurality of financial
institutions to complete a financial transaction, and wherein the payment system performs
the financial transaction by authenticating the customer and a merchant.
2. The system of claim 1, wherein the microchip comprises:
a counter for keeping a track on a status of a swipe, wherein the status of the swipe is a
good swipe or a bad swipe;
a comparator for performing a frequency/double frequency (F2F) decoding and a post¬
processing of the swipe data to increase a probability of a good swipe;
a converter for converting the swipe data into a card data;
a memory unit for storing the card data;
a tokenizer for converting the card data into a token data using a standard mathematical
transformation;
an encryption engine loaded with an encryption algorithm for encrypting the token data
using a PKI (Public Key Infrastructure) asymmetric algorithm, wherein the PKI
asymmetric algorithm is any one of 1024 bit RSA algorithm, 2048 bit RSA algorithm ;
a modulation engine for modulating the token data;
a low pass filter for filtering the token data;
a voltage divider network for representing the token data as audio signal, and wherein the
audio signal is an audio tone signal;
a random number generator for avoiding replay attacks; and
an ADC (Analog to Digital Converter) for measuring a voltage level of the battery.
3. The system of claim 1, wherein the dongle ID is a unique and secret ID associated with
the dongle.
4. The system of claim 1, wherein the public key is used in RSA algorithm for encrypting
the card data.
5. he system of claim 1, wherein the information about the dongle includes at least one of a
Global Universal Identification (GUID) associated with the dongle, a serial number of the
dongle, and a merchant's personal information provided at the time of registration.
6. The system of claim , wherein the dongle further includes a keypad for reading a PIN
entered by the card holder.
7. The system of claim 1, wherein the PIN data is any one of a scrambled PIN data or a PIN
block or a one time password.
8. The system of claim 1, wherein the card is one of a magnetic card, a Near Field
Communication (NFC) card and a smart card.
9. The system of claim , wherein the computing device is one of a cell phone, an Apple's
iPhone, an iPod, an iPad, an iTouch, a Google's Android device and a general purpose
computer.
10. The system of claim 1, wherein the swipe data is recorded at a first swipe to avoid a
replay attack.
11. The system of claim 1, wherein the swipe data is sent alone as an audio signal after
tokenization and encryption.
12. The system of claim 1, wherein the dongle is powered by swiping a magnetic card,
inserting a smart card, tapping a NFC card, wherein power is produced by one of a microswitch,
a low power amplifier or a comparator, a switch in the audio jack, a sensitive
microphone, a photo detector having a solar cell and a mic bias.
13. The system of claim 1, wherein the transaction information includes an amount of the
transaction, an unique PIN of the card entered by the card holder, an additional data
related to the transaction, and a signature of a card holder.
14. The system of claim 1, wherein the client application provides a graphical user interface
(GUI) for a user to interact with the system.
15. The system of claim 1, wherein the client application includes a compression scheme for
compressing the token data.
16. The system of claim 1, wherein the dongle is a tamperproof device and wherein a circuit
board in the dongle is impregnated with resin to provide a tamper proof property and a
microprocessor based security fuse is provided in the dongle to provide a tamperproof
property so that the security fuse is blown at a time of manufacturing the dongle.
17. The system of claim 1, the system provides a user login based virtual point of sales (POS)
system, wherein the virtual POS is provided by using different accounts in the computing
device to act as different merchants.
18. The system of claim 1, wherein the dongle further comprises a public key burned at a
time of manufacture the dongle.
19. The system of claim 1, wherein the dongle generates a session key and a secret key at a
beginning of the transaction, and wherein the secret key is used for authenticating the
payment server, and wherein the session key and secret key are encrypted by the public
key before sending to the payment server.
20. The system of claim 1, wherein the payment server further comprises a private key, and
wherein the private key decrypts the secret key sent by the dongle and sends back the
decrypted secret key to the dongle for mutually authenticating the dongle and the
payment server.
21. The system according to claim 1, wherein the dongle is injected with a plurality of keys,
and wherein the plurality of keys is a banking domain key and an acquirer key.
22. The system according to claim 1, wherein the server is provided with a plurality of keys,
and wherein the plurality of keys is a banking domain key and an acquirer key.
23. The system according to claim 1, wherein the banking key or the acquirer key is selected
based on a card issuer.
24. The system according to claim 1, wherein the banking key or the acquirer key is selected
from the dongle based on business intelligence (BI) rule and wherein the B rule is set on
the dongle using a user interface on a mobile phone and wherein the BI rule is set on the
dongle using a server.
25. The system according to claim 1, wherein a PIN is encrypted in the dongle selected using
the session key.
26. The system according to claim 1, wherein the PIN is translated into a banking domain
key using a secure device and wherein the secure device is HSM device.
27. The system according to claim 1, wherein the banking key or the acquirer key is selected
from the server based on a BIN number or a business intelligence (BI) rule.
28. The system according to claim 1, wherein the BIN number or the BI rule is set on the
dongle by a merchant using a user interface on a mobile phone and wherein the BIN
number or the BI rule is set on the dongle by a merchant using a user interface on a
portal.
29. The system of claim 1, wherein the dongle further comprises a NFC tag, and wherein the
NFC tag of the dongle includes a unique ID and a physical unclonable function (PUF).
30. The system of claim 1, wherein the merchant device comprises a NFC tag, and wherein
the NFC tag of the merchant device authenticates the dongle by verifying the unique ID
of the dongle NFC tag.
31. A method for a secure electronic transaction comprising the steps of:
logging in by a merchant into a client application installed on a computing device;
swiping a card onto a dongle;
tracking a status of a swipe;
reading a swipe data by a magnetic card reader of the dongle;
extracting a public key burnt on a flash of the dongle;
processing the swipe data by a microchip for producing a cipher data;
representing the cipher data and a PIN data as an audio signal;
transmitting the cipher data and the PIN data to a mobile device through an audio jack of
the mobile device, and wherein the data communicated between the mobile device and
the dongle is in a form of acoustic signals or audio tones;
collecting a transaction information through a graphical user interface (GUI) and wherein
the GUI is provided by the client application;
collecting a part of a card number from the merchant;
constructing a hash value out of the cipher data by using a hash algorithm of a client
application running on a computing device and wherein the hash algorithm is exchanged
and stored between the mobile device and the payment server for a first time;
transmitting the hash value along with the transaction information to a production server
through a first communication network;
processing the cipher data and the PIN data in a payment server of the production server;
sending a transaction request to a third party system to perform an electronic transaction;
transmitting a transaction information to the third party system through a second
communication network;
performing the electronic transaction by the third party system; and
indicating a transaction status and wherein the transaction status is indicated by an audio
tone or a colored light, and wherein the transaction status is one of a bad transaction and a
good transaction.
32. The method of claim 31, wherein the step processing the swipe data by a microchip for
producing a cipher data comprises:
generating a random number for avoiding a replay attack;
decoding the swipe data by a comparator;
converting the swipe data into a card data by a converter;
tokenization of the card data by a tokenizer by Xoring the card data with a dongle ID;
encrypting the card data into a cipher data by an encryption engine using a RSA
algorithm, and wherein a public key is used in RSA algorithm for encrypting the card
data; and
modulating the cipher data by a modulation engine using Frequency Shift Keying (FSK);
wherein the dongle ID is a unique and secret ID related to the dongle.
33. The method of claim 31, wherein the step of processing the cipher data in a payment
server of the production server comprises:
decoding the hash value by a decoder of the payment server for producing the cipher
data;
decrypting the cipher data by a decryption engine of the payment server using a private
key;
retrieving a merchant information stored in a payment database of the production server;
reproducing a complete card number by stitching a part of the card number entered by the
merchant with a card data received from the dongle; and
authenticating the merchant.
34. The method of claim 31, wherein the step of representing the cipher data as an audio
signal comprises:
filtering the cipher data by a low pass filter; and
dividing a voltage of cipher data for producing an amplitude for the audio signal.
35. The method of claim 31, wherein the step of constructing the hash value out of the
encrypted data by the hash function of the client application running on the mobile phone
is done by creating a date/time stamp.
36. The method of claim 31, wherein the method further comprises sending an electronic
receipt to the customer through a short message service (SMS) or an e-mail.
37. The method of claim 31, wherein the method further comprises recording a transaction
status by a counter of the microchip.
38. The method of claim 31, wherein the method further comprises:
measuring a voltage level of a battery of the dongle by an analog-to-digital converter
(ADC) of the microprocessor,
sending a measured voltage level along with the transaction data to the production server,
collating a reading of the battery by the payment server,
computing a remaining voltage level in the battery by the payment server, and
sending an information corresponding to the remaining voltage level in the battery to a
user.
39. The method of claim 3 , wherein the transaction information includes an amount of the
transaction, an unique PIN data of the card entered by the card holder, an additional data
related to the transaction, and a signature of a card holder.
10
40. The method according to claim 3 , wherein the unique PIN is data is any one of a
scrambled PIN data or a PIN block or a one time password.
41. The method of claim 31, wherein the method further comprises an updating of the public
key, and wherein the updating of the public key comprises swiping a non financial card
on a swipe machine, reading a swipe data by a reader head of the dongle, extracting a
public key from the swipe data and updating the public key associated with the dongle.
42. The method according to claim 3 1 further comprises mapping a merchant ID, a terminal
ID, a user ID, IMEI number of computing device, a serial number of the dongle with a
dongle ID for executing a secure electronic transaction.
43. The method according to claim 3 1 further comprises mapping a dongle ID, serial number
of dongle with IMEI number of a mobile phone for executing a secure electronic
transaction.
44. The method according to claim 31, wherein the public key is burned in the dongle at a
manufacturing time.
45. The method according to claim 31, wherein the dongle generates a session key and a
secret key at a beginning of the transaction, and wherein the secret key is used for
authenticating the payment server, and wherein the session key and secret key are
encrypted by the public key and sent to the payment server.
46. The method according to claim 3 , wherein the payment server further comprises a
private key, and wherein the private key decrypts the secret key sent by the dongle and
sends back the decrypted secret key to the dongle for mutually authenticating the dongle
and the payment server.
47. The method according to claim 31, wherein a plurality of keys is injected in the dongle
and wherein the plurality of keys is a banking domain key and an acquirer key.
48. The method according to claim 31, wherein a plurality of keys is provided with the server
and wherein the plurality of keys is a banking domain key and an acquirer key.
49. The method according to claim 31, wherein the banking key or the acquirer key is
selected based on a card issuer.
50. The method according to claim 31, wherein the banking key or the acquirer key is
selected from the dongle based on a business intelligence (BI) rule and wherein the BI
rule is set on the dongle using a user interface on a mobile phone and wherein the BI rule
is set on the dongle using a server.
51. The method according to claim 31, wherein a PIN is encrypted in the dongle selected
using the session key.
52. The method according to claim 31, wherein the PIN is translated into a banking domain
key using a secure device and wherein the secure device is HSM device.
53. The method according to claim 31, wherein the banking key or the acquirer key is
selected from the server based on a BIN number or business intelligence (BI) rule.
54. The method according to claim 31, wherein the BIN number or the BI rule is set on the
dongle by a merchant using a user interface on a mobile phone and wherein the BIN
number or the BI rule is set on the dongle by a merchant using a user interface on a
portal.
55. The method according to claim 31, wherein the dongle further comprises a NFC tag, and
wherein the NFC tag of the dongle includes a unique ID and a physical unclonable
function (PUF).
56. The method according to claim 31, wherein the merchant device comprises a NFC tag,
and wherein the NFC tag of the merchant device authenticates the dongle by verifying the
unique ID of the dongle NFC tag.
57. The method according to claim 31, wherein a swipe data alone is sent as an audio signal
after tokenization and encryption.
58. A method for providing a user friendly secure electronic transaction comprising the steps
of:
providing a SDK (Standard Development Kit) for a merchant to develop a client
application and wherein the client application is developed by the merchant according to
a requirement;
installing the client application on a computing device; and
executing a plurality of electronic transactions using the computing device.
59. The method according to claim 58, wherein the step of executing the plurality of
electronic transactions comprises:
logging in by a merchant into a client application installed on a computing device;
swiping a card onto a dongle;
tracking a status of a swipe;
reading a swipe data by a magnetic card reader of the dongle;
extracting a public key burnt on a flash of the dongle;
processing the swipe data by a microchip for producing a cipher data;
representing the cipher data as an audio signal;
transmitting the cipher data to a mobile device through an audio jack of the computing
device, and wherein the cipher data transmitted between the computing device and the
dongle is in a form of acoustic signals or audio tones;
collecting a transaction information through a graphical user interface (GUI) and wherein
the GUI is provided by the client application ;
collecting a part of a card number from the merchant;
constructing a hash value out of the cipher data by using a hash algorithm of a client
application running on a computing device and wherein the hash algorithm is exchanged
and stored between the mobile device and the payment server for a first time;
transmitting the hash value along with the transaction information to a production server
through a first communication network;
processing the cipher data in a payment server of the production server;
sending a transaction request to a third party system to perform an electronic transaction;
transmitting a transaction information to the third party system through a second
communication network;
performing the electronic transaction by the third party system; and
indicating a transaction status and wherein the transaction status is indicated by an audio
tone or a colored light, and wherein the transaction status is one of a bad transaction and a
good transaction.
60. The method of claim 58, wherein the step processing the swipe data by a microchip for
producing a cipher data comprises:
generating a random number for avoiding a replay attack;
decoding the swipe data by a comparator;
converting the swipe data into a card data by a converter;
tokenization of the card data by a tokenizer by Xoring the card data with a dongle ID;
encrypting the card data into a cipher data by an encryption engine using a RSA
algorithm, and wherein a public key is used in RSA algorithm for encrypting the card
data; and
modulating the cipher data by a modulation engine using Frequency Shift Keying (FSK);
wherein the dongle ID is a unique and secret ID related to the dongle.
61. The method of claim 58, wherein the step of processing the cipher data in a payment
server of the production server comprises:
decoding the hash value by a decoder of the payment server for producing the cipher
data;
decrypting the cipher data by a decryption engine of the payment server using a private
key;
retrieving a merchant information stored in a payment database of the production server;
reproducing a complete card number by stitching a part of the card number entered by the
merchant with a card data received from the dongle; and
authenticating the merchant.
62. The method of claim 58, wherein the step of representing the cipher data as an audio
signal comprises:
filtering the cipher data by a low pass filter; and
dividing a voltage of cipher data for producing an amplitude for the audio signal.
63. The method of claim 58, wherein the step of constructing the hash value out of the
encrypted data by the hash function of the client application running on the mobile phone
is done by creating a date/time stamp.
64. The method of claim 58, wherein the method further comprises sending an electronic
receipt to the customer through a short message service (SMS) or ah e-mail.
65. The method of claim 58, wherein the method further comprises recording a transaction
status by a counter of the microchip.
66. The method of claim 58, wherein the method further comprises:
measuring a voltage level of a battery of the dongle by an analog-to-digital converter
(ADC) of the microprocessor;
sending a measured voltage level along with the transaction data to the production server,
collating a reading of the battery by the payment server;
computing a remaining voltage level in the battery by the payment server; and
sending an information corresponding to the remaining voltage level in the battery to a
user.
67. The method of claim 58, wherein the method further comprises sending a plurality of
promotional offers for a customer after reaching a preset frequency of transactions from
an electronic card.
68. The method of claim 58, wherein the transaction information includes an amount of the
transaction, an unique PIN of the card entered by the card holder, an additional data
related to the transaction, and a signature of a card holder.
69. The method according to claim 58, wherein the unique PIN is data is any one of a
scrambled PIN data or a PIN block or a one time password.
70. The method of claim 58, wherein the method further comprises an updating of the public
key, and wherein the updating of the public key comprises swiping a non financial card
on a swipe machine, reading a swipe data by a reader head of the dongle, extracting a
public key from the swipe data and updating the public key associated with the dongle.

Documents

Application Documents

# Name Date
1 3253-CHENP-2014 PCT PUBLICATION 30-04-2014.pdf 2014-04-30
1 3253-CHENP-2014-FER.pdf 2020-05-11
2 3253-CHENP-2014-FORM 3 [14-08-2017(online)].pdf 2017-08-14
2 3253-CHENP-2014 FORM-1 30-04-2014.pdf 2014-04-30
3 abstract 3253-CHENP-2014.jpg 2015-01-14
3 3253-CHENP-2014 DRAWINGS 30-04-2014.pdf 2014-04-30
4 3253-CHENP-2014 CORRESPONDENCE OTHERS 30-04-2014.pdf 2014-04-30
4 3253-CHENP-2014.pdf 2014-05-09
5 3253-CHENP-2014 CLAIMS 30-04-2014.pdf 2014-04-30
5 3253-CHENP-2014 FORM-2 FIRST PAGE 30-04-2014.pdf 2014-04-30
6 3253-CHENP-2014 DESCRIPTION (COMPLETE) 30-04-2014.pdf 2014-04-30
6 3253-CHENP-2014 FORM-5 30-04-2014.pdf 2014-04-30
7 3253-CHENP-2014 CLAIMS SIGNATURE LAST PAGE 30-04-2014.pdf 2014-04-30
7 3253-CHENP-2014 POWER OF ATTORNEY 30-04-2014.pdf 2014-04-30
8 3253-CHENP-2014 CLAIMS SIGNATURE LAST PAGE 30-04-2014.pdf 2014-04-30
8 3253-CHENP-2014 POWER OF ATTORNEY 30-04-2014.pdf 2014-04-30
9 3253-CHENP-2014 DESCRIPTION (COMPLETE) 30-04-2014.pdf 2014-04-30
9 3253-CHENP-2014 FORM-5 30-04-2014.pdf 2014-04-30
10 3253-CHENP-2014 FORM-2 FIRST PAGE 30-04-2014.pdf 2014-04-30
10 3253-CHENP-2014 CLAIMS 30-04-2014.pdf 2014-04-30
11 3253-CHENP-2014 CORRESPONDENCE OTHERS 30-04-2014.pdf 2014-04-30
11 3253-CHENP-2014.pdf 2014-05-09
12 abstract 3253-CHENP-2014.jpg 2015-01-14
12 3253-CHENP-2014 DRAWINGS 30-04-2014.pdf 2014-04-30
13 3253-CHENP-2014-FORM 3 [14-08-2017(online)].pdf 2017-08-14
13 3253-CHENP-2014 FORM-1 30-04-2014.pdf 2014-04-30
14 3253-CHENP-2014-FER.pdf 2020-05-11
14 3253-CHENP-2014 PCT PUBLICATION 30-04-2014.pdf 2014-04-30

Search Strategy

1 searchstrategyE_08-05-2020.pdf