Abstract: A system and method for controlling an AC motor drive includes a control system programmed with an energy algorithm configured to optimize operation of the motor drive. Specifically, the control system input an initial voltage-frequency command to the AC motor drive based on an initial voltage/frequency (V/Hz) curve, receives a real time output of the AC motor drive generated according to the initial voltage-frequency command. and feedback a plurality of modified voltage-frequency commands to the AC motor drive. each of the plurality of modified voltage-frequency commands comprising a deviation from the initial V/Hz curve. The control system also determines a real-time value of the motor parameter corresponding to each of the plurality of modified voltage frequency commands. and feeds back a modified voltage-frequency command to the AC motor drive so that the real-time value of the motor parameter is within a motor parameter tolerance range.
SYSTEM AND METHOD OF DYNAMIC REGULATION OF REAL POWER
TO A LOAD
CROSS REFERENCE TO RELATED APPLICATION
[00011 This application claims the benefit of both U.S. Provisional Patent
Application Serial No. 61/186,287 filed June 11, 2009, and U.S. Non-Provisional Patent
Application Serial No. 12/541,320 filed August 14, 2009.
BACKGROUND OF THE INVENTION
|0002] The present invention relates generally to AC motors and, more particularly,
to a system and method for reducing real power usage of open-loop AC motor drive
systems (which can include at least a motor drive, a motor, and a connected load).
[003] Open loop AC motor drives are typically programmed to operate based on a
voltage/frequency (V/Hz) operating curve. Because the V/Hz settings of an open-loop
motor drive is typically adjustable only while the drive is not in operation and/or the
actual motor loading conditions are not known at time of drive commissioning, the
V/Hz operating curve is typically a pre-set and static curve that is programmed during
the initial installation and setup of the drive. The motor drive may be programmed with
a first order or linear V/Hz operating curve to maintain a constant ratio between the
voltage and frequency applied to the motor. Such an operating curve maintains a
constant flux in the air-gap and, therefore, generates constant torque in the motor.
Alternatively, a second order V/Hz curve may be selected, where the output torque is
approximately proportional to the square of the motor speed. Some motor drives also
provide preset user-programmable V/Hz settings to meet the requirement for special
applications. Once programmed, the motor drive typically operates based on the pre-set
operating; curve during the lifetime of the drive unless an operator changes the drive
setting at a later time.
[0004] Some drives today have energy saving options, such as "Flux Minimization"
or "Flux Optimization." These options are often designed to dynamically seek a
minimal current or flux in the motor, but not the overall motor input power. These
options typically select a motor voltage which is between the linear V/Hz setting and the
quadratic V/'Hz setting.
[0005] Typically, the linear V/Hz curve, commonly referred as constant V/Hz curve,
is the default setting of the majority of open-loop motor drives. While the linear V/Hz
curve settings for a given motor drive arc typically programmed to provide constant
torque to the load, such constant torque output is not needed for many variable torque
applications. Therefore, the V/Hz curve settings often result in wasted energy and
inefficient operation of the motor drive system, especially the motor and its connected
load.
[0006] Furthermore, because the V/Hz curve settings are static, the motor drive
operates independently of any changes in operating conditions. Although some motor
drives may allow a user to alter the V/Hz curve by, for example, adjusting the start,
middle, and/or end points of the V/Hz curve, such programming cannot be performed
automatically by the drive itself and may be completed only when the motor is
shutdown. This typically requires a skilled technician who has a thorough
understanding of the both motor drive and the loading profile of the specific motor and
load application.
[0007] Another reason why an operator commissioning a drive typically selects a
linear V/Hz curve is that the linear V/Hz curve provides constant torque and minimizes
the risk that the actual torque using a non-linear V/Hz curve (e.g., second order curve)
may not be sufficient to meet the load torque demand for variable torque applications.
This is particularly true if the operator commissioning the drive does not fully
understand the load profile of the motor application where the drive is installed. For
example, in waste water treatment plants, the pump motors are often designed to meet
the peak demand when heavy rain occurs in the summer. During the majority of the
year, however, the load percentage of the pump motor can be very low. Using a second
order V/Hz curve in this application may be risky because the second order V/Hz curve
may not provide enough torque when a heavy rain event occurs. Also, the operator who
commissions the drive is usually not the same person in a plant who is responsible for
monitoring and controlling energy savings. Thus, there may be little incentive for the
operator who commissions the drive to select a different V/Hz curve setting for energy
savings over the standard linear V/Hz curve settings.
[0008] It would therefore be desirable to design an apparatus and method for
dynamically adjusting the V/Hz operating curve of an open-loop AC motor drive during
motor operation, so that the drive itself can determine an optimal voltage and frequency
applied to the motor to minimize the motor input real power and achieve additional
energy savings while maintaining stable motor operating conditions.
BRIEF DESCRIPTION OF THE INVENTION
[0009] The present invention provides a system and method for controlling an AC
motor drive connected to a load that overcomes the aforementioned drawbacks.
[0010] In accordance with one aspect of the invention, a control system is
programmed to input an initial voltage-frequency command to the AC motor drive
based on an initial voltage/hertz (V/Hz) curve, receive a real-time output of the AC
motor drive generated according to the initial voltage-frequency command, and
feedback a plurality of modified voltage-frequency commands to the AC motor drive,
each of the plurality of modified voltage-frequency commands comprising a deviation
from the initial V/Hz curve. The control system is also programmed to determine a
realtime value of the motor parameter corresponding to each of the plurality of
modified voltage-frequency commands and feedback a modified voltage-frequency
command to the AC motor drive so that the real-time value of the motor parameter is
within a motor parameter tolerance range.
[0011] In accordance with another aspect of the invention, a method for controlling a
motor drive output includes operating a motor drive according to a static voltage-
frequency profile to generate an output power and determining a value of a specified
motor parameter corresponding to the static voltage-frequency profile. The method also
includes determining a tolerance zone of the specified motor parameter, selectively
modifying the static voltage-frequency profile during operation of the motor drive to
generate a reduced motor input power, and operating the motor drive at a voltage-
frequency setting corresponding to a value of the specified motor parameter within the
tolerance zone.
[0012] In accordance with yet another aspect of the invention, a motor drive is
configured to supply power to a load. The motor drive includes an inverter designed to
provide power to the load and a controller operationally connected to control operation
of the inverter. The controller is configured to cause the inverter to adjust a voltage-
frequency setting during operation of the motor drive to cause the inverter to operate
according to each of a plurality of varied voltage-frequency settings and monitor a real-
time value of a motor parameter corresponding to each voltage-frequency setting. The
controller is also configured to identify a tolerance zone for the motor parameter and
cause the inverter to operate according to the voltage-frequency setting such that the
motor parameter is within the tolerance zone.
[0013] Various other features and advantages of the present invention will be made
apparent from the following detailed description and the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] The drawings illustrate preferred embodiments presently contemplated for
carrying out the invention.
[0015] In the drawings:
[0016] FIG. 1 is schematic of a control system including a motor drive system
according to one aspect of the invention.
[0017] FIG. 2 is a schematic of a control system including a motor drive system
according to another aspect of the invention.
[0018] FIG. 3 is a schematic of a control system including a motor drive system
according to yet another aspect of the invention.
[0019] FIG. 4 is a tlow chart setting forth exemplary steps of a motor drive control
technique that may be implemented in any of the motor drive systems of FIGS. 1-3
according to embodiments of the invention.
[0020] FIG. 5 is a series of exemplary graphs of real-time motor parameters for the
motor drive control technique of FIG. 4.
[0021] FIG. 6 is an exemplary graph illustrating energy savings for a given motor
drive operated according to the motor drive control technique of FIG. 4 according to an
embodiment of the invention.
[0022] FIG. 7 is an exemplary graph illustrating energy savings for a given motor
drive operated according to the motor drive control technique of FIG. 4 according to an
embodiment of the invention.
[0023] FIGS. 8-10 are a series of exemplary graphs illustrating a comparison of a
number of motor drive control techniques.
DETAILED DESCRIPTION OF THE INVENTION
[0024] Several embodiments of the invention are set forth that relate to a system and
method of controlling an AC motor drive connected to a load that overcomes the
aforementioned drawbacks. These embodiments of the invention are directed to an
energy-optimizing control system for open-loop motor drives encompassing a plurality
of structures and control schemes.
[0025] A general structure of a motor drive system 10 and an associated AC motor
drive 12 is shown in FIG. 1. The motor drive 12 may be configured, for example, as an
adjustable speed drive designed to receive a three-phase AC power input 14a-14c,
rectify the AC input, and perform a DC/AC conversion of the rectified segment into a
three-phase alternating voltage of variable frequency and amplitude that is supplied to a
load. According to one embodiment, a drive control unit 16 may be integrated within
motor drive 12 and function as part of the internal logic of motor drive 12.
Alternatively, drive control unit 16 may be embodied in an external module distinct
from motor drive 12, and receive data therefrom (e.g., voltage and/or current signals), as
described in more detail with respect to FIGS. 2 and 3.
[0026] Referring to FIG. 1, in an exemplary embodiment, motor drive 12 includes a
drive power block unit 18, which may, for example, contain a uncontrollable or
controllable rectification unit 20 (uncontrolled AC to DC), a filtering inductor 22, a DC
bus capacitor 24, and a pulse width modulation (PWM) inverter 26 (DC to controlled
AC). Alternatively, drive power block unit 18 may be provided without such a
rectification unit such that the DC bus is directly connected to the inverter. A drive
power block unit may be provided without a rectification unit when applied to an
uninterruptible power supply (UPS), for example.
[0027] Motor drive 12 receives the three-phase AC input 14a-14c, which is fed to the
rectification unit 20. The rectification unit 20 converts the AC power input to a DC
power such that a DC bus voltage is present between rectification unit 20 and PWM
inverter 26, which inverts and conditions the DC power to a controlled AC power for
transmission to an AC motor 28. PWM inverter 26 includes a plurality of switches (not
shown) and is configured to operate according to a PWM control scheme, such as, for
example, a Space Vector Modulation (SVM) control scheme or a Sinusoidal-Triangle
PWM control scheme, to control the plurality of switches, thereby producing the
controlkd AC power output. According to an exemplary embodiment, PWM inverter
26 is configured to operate according to a SVM control scheme.
[0028] Drive control unit 16 operates to generate the SVM control scheme for the
PWM inverter 26. More specifically, the SVM control scheme for the PWM inverter 26
is generated by motor drive system 10 based on a voltage-frequency (V/Hz) setting or
command (i.e., V/Hz profile or curve) used for operating motor drive 12. According to
an exemplary embodiment of the invention, motor drive system 10 is programmed to
dynamically adjust the voltage and frequency applied to motor 28 based on motor or
load demand, which in effect dynamically adjusts the shape or profile of the pre-set
V/Hz curve (and the associated SVM control scheme) internal to motor drive 12.
[0029] Motor drive 12 further includes a drive user interface 30 or drive control
panel, configured to input motor parameters 32 and output a frequency reference 34, a
boost vc Itage 36. which is which is used to produce starting torque to accelerate motor
from zero speed, and motor nameplate information (NPI) 38. User interface 30 is also
used to display a list of motor operating parameters, such as, for example motor output
voltage (rms), motor current (rms), motor input power, speed, torque, etc., to the user
for monitoring puiposes.
[0030] As shown in FIG. 1. drive control unit 16 includes a control algorithm
module 10. an existing or preset V/Hz curve 42. a signal generator 44 for generating the
SVM control, and a motor parameter calculator 46. Drive control unit 16 functions to
receive an output from drive power block unit 18, determine and monitor motor
parameter(s), and determine an optimal voltage and frequency based on the determined
motor parameter(s) to generate a SVM control scheme for operating motor drive 12.
[0031] According to an embodiment of the invention, drive control unit 16 receives
DC" bus voltage signal 48 and motor input current signals 50 from drive power block
unit 18. Motor input voltages are calculated using DC bus voltage signal 48 and PWM
switching signals 56. Signals 50 and motor input voltage signals may be obtained from
the AC power output of the motor drive 12, such as by way of wired or wireless sensors
that transmit the real-time voltage signals 48 and real-time current signals 50 thereto.
Alternatively, motor parameter calculator 46 may receive signals indicating motor speed
from a speed sensor or estimator integrated in motor drive 12. Drive control unit 16
may also receive boost voltage signal 36, which is used to produce starting torque to
accelerate AC motor 28 from zero speed, and a speed reference signal 52. Based on
received signals 36, 48. 50, drive control unit 16 transmits a series of switching signals
or switching commands 54 to PWM inverter 26, thereby forming a SVM control
scheme.
[0032] In operation, drive control unit 16 of motor drive system 10 operates in a
default mode/setting upon a start-up or reset of the motor drive 12. Operating at the
default setting, drive control unit 16 monitors DC bus voltage signal 48 and current
signals 50 from sensors, determines an operating point of existing V/Hz curve block 42
based on DC bus voltage signal 48 and current signals 50 and transmits default
switching commands 54 to PWM inverter 26 based on the prc-sct operating point.
According to one embodiment, drive control unit 16 receives a frequency (or speed)
command from an input device (not shown) in order to generate a frequency command
and a voltage magnitude command. The voltage magnitude command is given by a
function of the frequency command, typically referred to as a V/Hz curve. Drive
control unit 16 generates a three phase voltage command based on the frequency
command, which is used to control switching of an array of switches in PWM inverter
26. Specifically, signal generator 44 receives a voltage command 56 and a frequency
command 58 from existing V/Hz curve 42 and generates six PWM signals to control six
corresponding switches in PWM inverter 26. In other words, motor drive system 10
transmits voltage-frequency commands according to the static pre-set V/Hz profile in
default mode.
[0033] Upon an initial operation in default mode, drive control unit 16 then
transitions to operate in an energy-optimizing mode wherein control algorithm module
40 bypasses existing V/Hz curve block 42 and receives frequency reference 34, boost
voltage signal 36, and NPI 38 from drive user interface 30 as inputs. Control algorithm
module 40 also receives estimated or calculated motor parameters 60 from motor
parameter calculator 46. In the energy-optimizing mode, control algorithm module 40
uses the received DC bus voltage signal 48 and/or current signals 50 and NPI 38 to
calculate or estimate selected reference real-time motor parameters. In one embodiment
of the invention, the real-time motor parameters may be an average motor rms voltage,
an average motor rms current, an instantaneous motor input power factor, a motor
efficiency, or a motor slip (or speed). Control algorithm module 40 then determines if
the optimal operation is achieved by determining if any one of the determined real-time
motor parameters reaches its pre-defined tolerance zone, as described in more detail
with respect to FIG. 4. If the optimal operation is not attained, the algorithm adjusts the
voltage command with a fixed or variable step and keeps the same frequency command.
Otherwise, the algorithm maintains the same voltage and frequency command until a
new frequency reference is detected or an undesirable operation or an unstable motor
operation is detected. Control algorithm module 40 transmits the determined voltage
command 62 and frequency command 64 to signal generator 44. Using voltage and
frequency commands 62, 64 received from control algorithm module 40, signal
generator 44 transmits switching signal 54 to drive power block unit 18. Responsive
thereto, drive power block unit 18 synthesizes AC voltage waveforms with a fixed
frequency and amplitude for delivery to AC motor 28.
J0034] In energy-optimizing mode, drive control unit 16 is configured to
continuously monitor motor drive system 10 and transmit a series of modified switching
commands 54 to PWM inverter 26. Specifically, drive control unit 16 calculates motor
input voltages using DC bus voltage signal 48 and PWM switching signals 56 and
receives current signals 50 from sensors. Drive control unit 16calculates or estimates
one or more real-time motor parameters from the calculated motor input voltages,
current signals 50. and NPI 38. Control module 40 also determines if system instability,
an abrupt load change, or an undesirable operation is detected, as described in detail
below. Control module 40 further determines whether an optimal operation condition
has been reached based on the one or more real-time motor parameters. If control
module 10 docs not detect an optimal operation condition, system instability, an abrupt
load change, or an undesirable operation, control module 40 then generates incremented
(or decremented) frequency command 64 and/or incremented voltage (or decremented)
command 62 for each execution period and transmits the incremented voltage-frequency
commands 62, 64 to signal generator 44. For example, control module 40 may
increment (or decrement) only one command 62, 64, for example frequency command
64, while maintaining the previous voltage command 62, and transmit incremented
frequency command 64 and non-incremented voltage command 62 to signal generator
44. Alternatively, control module 40 may increment (or decrement) both frequency
command 64 and voltage command 62 and transmit both incremented commands 62, 64
io signal generator 44. Using the incremented (or decremented) voltage-frequency
commands, signal generator 44 modifies switching commands 54 transmitted to PWM
inverter 26 such that the real power input to AC motor 28 in energy-optimizing mode is
lower than the real power input using the original static V/Hz curve setting in default
mode.
[0035) According to an exemplary embodiment, the pre-defined tolerance zone of a
motor reference parameter is defined as a small range around a pre-defined value, such
as, for example, its maximum and minimum value, its rated or nominal value, or any
specific value defined by the user. The trend of this real-time motor parameter is
monitored to determine if the real-time value of this motor reference parameter falls
within its pre-defined tolerance zone, e.g., if the real-time value of this motor parameter
is close enough to its maximum or minimum value. If the algorithm determines that the
motor parameter is within its tolerance zone, then optimal operation is attained. The
algorithm maintains the same voltage and frequency commands until a new frequency
reference or an unstable motor operation or an undesirable operation is detected.
According to this optimally maintained voltage-frequency command, the signal
generator 44 is caused to generate corresponding switching commands 54 (i.e., a SVM
control command) to cause the motor drive to operate at an optimal operation point at
which real power input to AC motor 28 is most efficiently utilized.
I0036J In energy-optimizing mode, drive control unit 16 is also configured to
continuously monitor for an abrupt load change, system instability, and/or undesirable
operation. If system instability and/or undesirable operation is confirmed, drive control
unit 16 transmits a series of modified switching commands switching commands 54 to
PWM inverter 26. During energy-optimizing mode, the system may become unstable
due to, for example, abrupt changes in the load or if motor slip (or speed) goes beyond a
slip (or speed) boundary. A system instability condition may be determined by
monitoring for abrupt changes in the value or rate-of-change of motor current, power
factor, or speed (or slip) signals or by monitoring the trend of real-time motor
paramet.:r(s), as discussed in detail below. By comparing the real-time motor
parametcr(s) and the ascertained trend of the real-time motor parameters) with their
pre-defined boundaries, control module 40 determines if system instability or an
undesirable operation is detected. If such system instability or an undesirable operation
is detected, control module 40 may transmit modified voltage-frequency commands to
signal generator 44 to attempt to regain system stability. Alternatively, control module
40 may enters a "master reset routine" to reset control of motor drive to the default
mode within one or more execution periods and increment (or decrement) voltage
command 62 to the original pre-set V/Hz curve or linear V/Hz curve, while transmitting
the same frequency command 64 to signal generator 44 to reacquire and maintain
system stability until the operating point of the load is considered stable. According to
one embodiment, frequency command 64 may be held constant until a user or an
external process controller demands a change in frequency reference 34.
]()037] Drive control unit 16 may also monitor real-time motor parameters for
application-specific boundary conditions, which may be pre-set by an operator to
indicate a real-time system condition that may not indicate an unstable or undesirable
system condition, but nonetheless be undesirable for the specific application. For
example, drive control unit 16 may monitor for a minimum voltage boundary, a
maximum voltage boundary, a maximum current boundary, a maximum slip (minimum
speed) boundary, a minimum power factor boundary, a maximum torque boundary, or a
maximum motor temperature boundary.
[0038] During energy-optimizing mode, however, a reduced voltage command may
cause a decrease in motor speed. Therefore, drive control unit 16 may be further
programmed to monitor motor speed and increase the frequency command 64 such that
the motor operates at the desired speed while operating in energy-optimizing mode
according to a "slip compensation mode" such that a motor shaft speed is held constant
at the synchronous speed of the frequency reference J ref 34. Beneficially, the V/Hz
curve (either linear, quadratic, or other similar settings (e.g., a flux minimization
settingi) can thus be adjusted to optimize the V/Hz ratio so that minimal torque is
developed in the motor to meet a load torque demand, as compared to a pre-sct V/Hz
curve where the torque developed is constant.
10039] Assuming the actual motor fundamental frequency fx closely matches the
drive frequency command Jcmj 64 (i.e., ./, — fcmci), the motor synchronous speed
(Osvl, can be calculated according to:
where p is the number of poles of motor 28. As shown in FIG. 6, due to the actual
loading condition of the load (i.e., the shape of the load characteristic curve), the actual
motor shaft speed (Or when the drive frequency command 64 is jcmd (thus the motor
fundamental frequency is ./, = ./„.,/ ) is always slightly lower than the synchronous
speed Cx)svn . The percentage difference between the synchronous speed 0)svn and
motor shaft speed is defined according to:
where ,v is motor slip. Therefore, in order to compensate the speed drop due to load, the
drive frequency command 64 can be set slightly higher than frequency reference 34 so
that the actual motor shaft speed equals to the synchronous speed of the original
frequency reference 34. This is the "slip compensation mode."
[0040] The slip compensation mode may be used when the user or drive outer-loop
controller expects the motor shaft speed to match the synchronous speed of the
frequency reference 34 (in this case, frequency reference 34 is given as essentially a
'"speed reference.") For example, for a 4-pole induction motor, when a user sets
frequency reference 34 at 40 Hz in the drive user interface, the user often expects the
motor to operate at the synchronous speed of 40 Hz (i.e., 2400 rpm). However, if the
drive sends a frequency command 62 of 40 Hz, the actual motor speed will be slightly
lower than 2400 rpm due to actual loading condition (according to FIG. 6), for instance,
at 2375 rpm. Using Eqn. 2. the slip of the motor may be calculated as
In order to operate the motor at a user expected 2400 rpm, the drive sends a frequency
command 62. which slightly greater than the frequency reference 34 of 40 Hz, for
example 40.2 Hz. Under this higher frequency the motor shaft speed is 2400 rpm that
matches the users "speed reference."
[00411 Still referring to FIG. 1, during energy-optimizing mode existing V/Hz curve
block 47 may be dealt with in several ways according to embodiments of the invention.
According to one embodiment, control algorithm module 40 may be implemented in
drive application software, while the existing V/Hz curve block 42 may be implemented
in drive firmware. In such an embodiment, existing V/Hz curve block 42 may continue
to produce voltage and frequency commands, but such commands may not pass to
signal generator 44. Alternatively, both control algorithm module 40 and existing V/Hz
curve block 12 may be implemented in drive firmware. In this case, existing V/Hz
curve block 42 may be disabled or removed.
f0042J Referring now to FIG. 2, the general structure of a motor drive system 66 is
shown according to an embodiment of the invention. Motor drive system 66 includes
an AC motor drive 68, a drive user interface 70, and a standalone external control
module 72. A drive control unit 74 included within motor drive system 66 comprises a
static V/Hz curve block 76, a signal generator 78, and a motor parameter calculator 80,
which receives DC bus voltage signal 82 and motor current signals 84 from a drive
power block unit 86.
[0043] Control module 72 includes an energy control algorithm module 88 as a
separate hardware module external to the existing hardware of motor drive 68 and may
be installed in an existing motor drive and exchange data through existing drive
communications, such as, for example. ModBus, Device Net, Ethernet, and the like.
Control module 72 uses a set of voltage sensors 90 to measure the three phase line-to-
line voltages of a motor 92. Control module 72 also includes a set of current sensors 94
to measure the three phase currents of motor 92. Where no neutral point is available,
control module 72 includes at least two current sensors for a three-wire system. As the
three phase currents add to zero, the third current may be calculated from the other two
current values. However, while a third sensor is optional, such sensor increases the
accuracy of the overall current calculation.
[0044] Control module 72 also includes an internal motor parameters calculator 96,
which calculates estimates a set of reference motor parameters 98, such as, for example,
rms voltage, rms current, slip (or speed), power factor, and efficiency, to be input to
control algorithm module 88. Motor nameplate information (NPI) 100 is obtained from
motor drive 68 through communications or inputted by a user in control module 72. A
frequency reference 102 is also input to external control module 72 through drive
communications.
[0045] Similar to the procedure described with respect to FIG. 1, during an energy-
optimizing mode, the logic contained in control algorithm module 88 essentially
replaces static V/Hz curve block 76. Control algorithm module 88 receives frequency
reference 102 and NPI 100 from motor drive 68, as well as calculated/estimated
reference motor parameters 98 from motor parameters calculator 96 as inputs. Module
88 generates a frequency command 104 and a voltage command 106 using these inputs
and control module 72 sends these commands 104, 106 to signal generator 78.
10046] According to this embodiment, since control algorithm module 88 is located
externally from motor drive 68, static V/Hz curve block 76 may be kept as is, producing
a set of preset voltage commands ION and frequency commands 110. However, these
preset commands 108, 1 10 are not passed to signal generator 78.
[0047J FIG. 3 illustrates a motor drive system 112 including an external control
module 114 according to another embodiment of the invention. Similar to the motor
drive system described with respect to FIG. 2, motor drive system 112 includes a motor
drive 116, a drive control unit 118, and a drive user interface 120. However, unlike the
motor d.'ive system of i:IG. 2, external module 114 does not have its own voltage and
current sensors or an internal motor parameter calculator. Instead, external module 114
obtains a frequency reference 122, a NPI 124, and calculated and/or estimated motor
parameters 126 through drive communications. According to one embodiment, external
module 114 may be implemented in an extension card slot of motor drive 116 to
provide energy optimizing functionality to motor drive 116.
1004SJ Referring now to FIG. 4, a controller implemented, energy-optimizing
technique 128 for dynamically controlling a motor drive, such as AC motor drive 12 of
FIG. 1, is set forth according to an embodiment of the invention. As described in detail
below, technique 128 dynamically adjusts voltage and frequency applied to the motor
based on motor or load demand, which effectively adjusts the shape or profile of the
prc-set V/Hz curve internal to motor drive 12. Technique 128 monitors the value of one
or more motor parameters until the motor parameter(s) fall within a pre-defined
tolerance zone. While adjusting voltage and frequency, technique 128 also monitors for
abrupt load changes or motor instabilities or undesirable operations, which may signify
potential motor failure or undesirable motor operation.
[0049] Technique 128 begins at STEP 130 by obtaining motor namcplate parameters
(NPI), such as, for example, rated horse power (HP), full load amperes (FLA), rated
soilage, rated speed (RPM), rated frequency (Hz), rated power factor, and rated
efficiency. At STEP 130, user configuration parameters are also obtained, which may
include a given percentage of FLA, a user-defined slip boundary, for example. At
STEP 132, technique 128 defines a set of boundaries for selected reference motor
parameters, including, for example, voltage, current, speed (slip), power factor, and
efficiency. For example, a voltage boundary condition, V bound, may be defined as a
percentage of a quadratic V/Hz curve (e.g., 80%); a current boundary, IJbound, may be
defined as a percentage of FLA; a slip boundary, s__bound, may be defined to
correspond to a rated slip at a rated frequency or be user-defined; and a maximum
change in current, delta I hound, may be defined as a percentage of FLA (e.g., 20%).
(00501 At STEP 134, a set of tolerance zones are defined for selected motor
parameters for determining optimal operation. Such tolerance zones may include a
voltage tolerance zone, a current tolerance zone, a speed (slip) tolerance zone, a power
factor tolerance zone, and/or an efficiency tolerance zone, for example. According to an
embodiment of the invention, a tolerance zone may be determined based on a defined
boundary condition according to:
Tolerance Zone ~ x * Boundary Condition (Eqn. 1),
where x represents a selected percentage range. Using Eqn. 1, a voltage tolerance zone
may be defined as Vjoljzone = ]100% - 105%] * VJ>ound, for example. Likewise, a
current tolerance /.one, / joljzone and a slip tolerance zone, sjolzone, may be defined
as / lol zone = ]95% - 100%] * IJnmnd and sJoljzone = ]95% - 100%] * sjbound,
I'cspcctp. els.
(0051] At STEP 136, technique 128 supplies an initial, default, or start-up set of
voltage-frequency commands to a command generator. Default or start-up set of
voltage-frequency commands may be, for example, based on voltage-frequency
commands of a prc-set or static V/Hz curve or saved voltage-frequency commands from
a previous successful start-up event.
[0052] Technique 128 obtains a frequency reference from a user or an outer loop
process controller of the motor drive at STEP 138. At STEP 140, technique 128
determines if the change of frequency reference is significant enough for the drive
control to respond. Specifically, technique 128 may compare a current frequency
reference to a previous frequency reference value to determine if the current frequency
reference is identical to the previous frequency reference. Alternatively, technique 128
nia\ det.-nninc if the difference between the two values is greater than a preset tolerance
value (e.g., 0.1 Hz). If the frequency reference is changed (or the change is greater than
the preset tolerance value) 142, technique 128 applies a new reference frequency and a
new voltage from the original V/Hz setting, a linear V/Hz setting, or other pre-defined
value/setting at this frequency as frequency and voltage commands at STEP 144.
Alternatively, if the frequency reference has changed by a small amount (e.g.. <0.1 Hz)
the voltage command may remain unchanged while changing the frequency command.
Technique 128 then proceeds to STEP 146 and calculates or estimates one or more real-
time motor parameters, which may correspond to a motor voltage, a motor current, a
motor speed, a motor power factor, and/or a motor efficiency, for example.
10053) Referring back to STEP 140, if the frequency reference is unchanged (or the
change is less than a preset tolerance value) 148, technique 128 proceeds directly to
STEP 146 and calculates or estimates real-time motor parameters using a current set of
voltage and frequency commands. At STEP 150, technique 128 monitors for a motor
transient status, such as, for example, an abrupt load change. Tf no transient status is
delected 152. technique 128 monitors for an undesirable motor operation condition at
STEP 154. which may be a detected motor current beyond a current boundary or a
detected motor voltage beyond a voltage boundary, for example. If no undesirable
motor operation condition is detected 156, technique 128 monitors for an unstable
operation condition at STEP 158. To determine if an unstable operating condition
exists, technique 128 may analyze the monitored real-time line voltage and current, a
change in value between reference line voltage and/or current and real-time line voltage
and/or current measurements, one or more real-time motor parameters values, and/or the
motor parameter trend to determine an unstable operation condition. An unstable
operation condition may be detected if a motor slip (or speed) is beyond a slip (or
speed) boundary, for example. Also, an unstable operation condition may be reflected
by an abrupt change in line voltage or current, an abrupt change in a motor parameter,
or by the value of the real-time motor parameter, such as, for example, a motor
tempera:ure, torque, slip, power factor, or efficiency outside a threshold.
(0054) If an unstable operation condition is not detected 160, technique 128
determines if optimal operation is reached at STEP 162 by determining if any one of the
selected reference parameters is within its defined tolerance zone, as defined at STEP
136. If no selected reference parameter is within its defined tolerance zone 164,
technique 128 adjusts the voltage command at a fixed or variable step at STEP 166.
For example, technique 128 may reduce the voltage command by a preset pulse value,
thereby causing a modified switching signal to be transmitted to the inverter. In one
embodiment, the technique 128 increments the voltage command by a pulse value of -
10 volts. That is, the modified voltage command is 10 volts lower than the default
voltage command. Alternatively, if the motor drive is operating at an optimal operation
point 168 (i.e., a motor parameter is within its tolerance zone), technique 128 maintains
the current voltage command and frequency command. At STEP 170, technique 128
enters a wait step, wherein technique 128 waits for an algorithm execution period before
returning to STEP 138. Technique 128 then continues cycling through STEPS 138 and
I 78 to monitor for changes in motor status.
10055] Referring back to STEPS 150, 154, and 158, if technique 128 detects any one
of a motor transient status 172, an undesirable motor operation condition 174, or an
unstable motor operation condition 176, technique 128 enters a master reset subroutine
at STEP 178. During the master reset subroutine, the frequency command remains
unchanged and within a few steps (i.e., algorithm fast execution periods), the voltage
command is increased to a linear V/Hz setting or an original V/Hz setting.
Alternatively, master reset subroutine may selectively increment the voltage-frequency
command to reach the stable condition by backtracking to the last stable condition or
attempting to correct the overshoot by decreasing the previously used increment or
pulse value of the voltage-frequency command. For example, if the previous pulse
value was -10 volts, technique 128 may increase the previously incremented voltage-
frequency command by -i 5 volts to reach a stable point between the two most recent
increments of the voltage-frequency command. Once a stable condition is achieved,
technique returns to STEP 138.
[0056J According to one embodiment, preset execution periods may be assigned to
each step of technique 128. For example, each of STEPS 138 - 178 may be assigned to
one of a fast execution period, TJaxt, used for monitor, protection, and master reset
(e.g.. 0.> seconds) and a slow execution period, Tjslow, used for a drive command
update period to update the operation of the drive and motor (e.g., 10 seconds). It is
contemplated that a default value for TJ'ast and T_slow may vary depending on the time
constant of the motor and load.
(0057] FIG. 5 shows a series of graphs of real-time motor parameters determined
using a control technique such as that described with respect to FIGS. 1 - 4 for a motor
having a rated power of approximately 125 hp, which corresponds to a full voltage of
approximately 268.4 V of a static and pre-set linear V/Hz curve with a 35 Hz frequency
command. FIG. 5 illustrates motor power factor 180, input real power 182, motor
current 184, and motor slip 186 as a function of voltage. As shown, input real power
182 follows an approximately linear path as voltage is decreased from rated power
while keeping the frequency command constant at 3.5 Hz. Motor power factor 180,
however, follows an approximately quadratic curve. A tolerance zone 188 is defined
corresponding to a desired range for a motor parameter, such as, for example, current.
As shown in FIG. 5, at a given operation point 190 within tolerance zone 188 the motor
input real power 182 is reduced to an optimal operating power 192 of approximately 14
kW by reducing voltage from full voltage of the pre-set V/Hz curve to a voltage of 168
V corresponding to operation point 190. Thus, by decreasing voltage to reach operating
point 190, real power 182 is reduced.
[0058] While additional energy savings may be possible by reducing the voltage to
an operation point outside tolerance zone 188, such a decrease may have negative
effects on motor stability if voltage is reduced too much. As shown in FIG. 5, at voltage
values less than approximately 168 V, slip 186 increases rapidly. A slip 186 greater
than approximately 3% may be undesirable and can cause motor instability. Therefore,
tolerance zone 188 may be selected as an optimal operating point since it ensures that
slip 186 stays below the pre-deftned slip boundary of 3%. Also, at voltages beyond
tolerance zone 188, current 182 increases as well, potentially leading to an over-current
condition.
[0059) FIG. 6 illustrates real-time energy savings 194 achieved using the dynamic
energy-optimizing control strategy set forth with respect to FIG. 4. Load characteristic
curve 196 is a characteristic torque/speed curve that describes a certain load, such as, for
example, a pump. Curve 198 is a torque/speed curve of a traditional motor drive
operated at an operating point with a given frequency command fcmd according to a
static and prc-sct V/Hz curve. According to one embodiment, frequency command fcmj
may be equal to a frequency reference fref, which is typically given to the drive by the
user or an outer-loop controller. The drive controls the motor to have an actual
fundamental frequency of f] that closely tracks the frequency command fcmd. The actual
fundamental frequency fi in the motor determines the motor synchronous speed U)syn by:
where p is the number of poles. Synchronous speed is a constant value for a certain
motor at a fixed frequency. It is an imaginary maximum possible speed that the motor
could re.ich under absolute no-load conditions, or when torque is zero.) The intersection
point 200 between curve 196 and curve 198 determines the actual operating point of the
motor under this condition, with a motor speed coi 202 and an output torque T] 204.
10060) Curve 206 is a torque/speed curve of an optimized motor drive operated
within a tolerance zone at an operating point with the same frequency command fcmd (as
results, same actual frequency fi and synchronous speed U)syn), such as operating point
188 of F1G. 5. The intersection point 208 between curve 206 and curve 196 determines
the actual operating point of the motor under this optimal operating condition, with a
motor speed uh 210 and an output torque T) 212.
10061] As shown in FIG. 6, at a given frequency command fcmd, the traditional motor
drive operates at torque 204. The optimized motor drive, on the other hand, operates at
a lower torque 212. This decrease in torque from operation point 200 to operation point
208 results in reduced input power 194 and therefore energy savings. It is noticeable
that as the optimizing control is applied, the actual motor speed typically drops slightly
depending on the torque/speed characteristic curve of a specific load. This is typically
acceptable for applications where precise speed control is not needed, such as pump,
compressors, and fans.
[0062] According to one embodiment of the invention, energy savings 194 may be
calculated based on a comparison of the initial voltage-frequency command and the
modi tied voltage-frequency command corresponding to operation within the tolerance
zone of die motor parameter, and displayed as a digital power savings value on a motor
drive, such as motor drive 12 of FIG. 1, for example. The displayed energy savings
may indicate either an instantaneous energy savings and'or a cumulative energy savings
over a prc-set time period or during the lifetime of the drive. Also, energy savings 194
may be used to calculate a carbon reduction resulting from the decreased energy usage,
which may be displayed on a carbon reduction meter on motor drive 12.
10063] Referring now to FIG. 7, an optimized torque speed curve is illustrated for
applications where precise speed control is desired according to an embodiment of the
invention. Load characteristic curve 214 is a characteristic torque/speed curve that
describes a certain load, such as, for example, a pump. A first motor characteristic
curve 216 represents a torque/speed curve of a traditional motor drive operated at an
operating point with a given frequency command fcmd according to a static and pre-set
V/l I/, curve 218. A second motor characteristic curve 220 is a torque/speed curve of an
optimized motor drive. As shown in FIG. 7, curves 216, 220 intersect load
characteristic curve 214 at an intersection point 222 having a common speed and torque.
(0064] This intersection point 222 is a result of operating a motor drive in an
application where precise speed control is desired. In such an application, an outer-loop
process controller is typically included to adjust the frequency command and, together
with energy optimizing control method described with respect to FIG. 4, settle the
motor operating point to the intersection point 222 of curves 214 and 218. In this
example, the outer-loop controller will slightly increase the frequency command fc„,dS0
that it is slightly greater than the frequency reference fref (in turn, the synchronous
speed, from wsynI IO 0Jsyn2) and eventually settle down to the original operating point at
speed W] and output torque T]. The output power P2 will be equal to the original output
pouer P i.
10065) However, because the second motor characteristic curve 220 is associated
with lower voltage applied to the motor, the motor core losses will be reduced.
Therefore, energy saving are achieved from the motor core loss reduction at a reduced
voltage. A stable operation is achievable with the interactions between the energy-
optimizing algorithm and the external process controller, because in this system, the
outer-loop process control time constant (in tens of seconds or minutes) is at least 10
times faster than the time constant of the energy-optimizing algorithm (in seconds).
[0066] FIGS. 8-10 show a comparison of motor voltage (FIG. 8), motor input current
(FIG.9). and motor input real power (FIG. 10) measured under four different motor
drive control conditions using a 50 hp open-loop motor drive at 40 Hz operation: a
Linear V/Hz setting 224; a Quadratic V/Hz setting 226; a Flux Minimization setting
228; and an energy optimization setting 230, such as that described with respect to FIG.
4. As shown in FIGS. 8-10, the Flux Minimization setting 228 gives the minimal
current and the energy optimization setting 230 gives the minimal input real power,
which leads to maximum energy savings.
[0067] While several embodiments of the invention are described with respect to an
AC motor and AC motor drive, it is contemplated that the energy-optimizing technique
set forth herein may be applied to a wide variety of applications. For example, the
energy-optimizing technique may be used in hybrid vehicles to minimize power output
or draw from a battery system or in an uninterruptible power supply (UPS) with a
variable load, such as for lighting systems. The technique may also be used in any
application that uses a PWM inverter, such as, for example, semiconductor applications
having PWM power converters or in general inverter applications to change a switching
algorithm. The technique can be used for a variety of voltage levels, including low-
voltage, medium-voltage and high-voltage applications.
[0068] A technical contribution for the disclosed method and apparatus is that it
provides for a control unit implemented technique for modifying a voltage-frequency
command of an AC motor drive. Based on a modified voltage-frequency command, the
technique controls switching time of a series of switches in a motor control device to
reduce a motor torque and a motor input power.
[0069] Therefore, according to one embodiment of the present invention, a control
system is programmed to input an initial voltage-frequency command to the AC motor
drive based on an initial voltage/frequency (V/Hz) curve, receive a real-time output of
the AC motor drive generated according to the initial voltage-frequency command, and
feedback a plurality of modified voltage-frequency commands to the AC motor drive,
each of the plurality of modified voltage-frequency commands comprising a deviation
from the initial V/Hz curve. The control system is also programmed to determine a
real-time value of the motor parameter corresponding to each of the plurality of
modified voltage-frequency commands and feedback a modified voltage-frequency
command to the AC motor drive so that the real-time value of the motor parameter is
within a motor parameter tolerance range.
[0070] The control system for controlling an AC motor drive can be viewed as
having units (virtual) to perform or conduct the aforementioned acts of a processor. For
example, the control system comprises a unit to input an initial voltage-frequency
command to the AC motor drive based on an initial voltage/frequency (V/Hz) curve,
and a unit to receive a real-time output of the AC motor drive generated according to the
initial voltage-frequency command. The control system also comprises a unit to
feedback a plurality of modified voltage-frequency commands to the AC motor drive,
each of the plurality of modified voltage-frequency commands comprising a deviation
from the initial V/Hz curve, a unit to determine a real-time value of the motor parameter
corresponding to each of the plurality of modified voltage-frequency commands, and a
unit to feedback a modified voltage-frequency command to the AC motor drive so that
the real-time value of the motor parameter is within a motor parameter tolerance range.
[0071] According to another embodiment of the present invention, a method for
controlling a motor drive output includes operating a motor drive according to a static
voltage-frequency profile to generate an output power and determining a value of a
specified motor parameter corresponding to the static voltage-frequency profile. The
method also includes determining a tolerance zone of the specified motor parameter,
selectively modifying the static voltage-frequency profile during operation of the motor
drive to generate a reduced motor input power, and operating the motor drive at a
voltage-frequency setting corresponding to a value of the specified motor parameter
within the tolerance zone.
[0072] According to yet another embodiment of the present invention, a motor drive
is configured to supply power to a load. The motor drive includes an inverter designed
to provide power to the load and a controller operationally connected to control
operation of the inverter. The controller is configured to cause the inverter to adjust a
voltage-frequency setting during operation of the motor drive to cause the inverter to
operate according to each of a plurality of varied voltage-frequency settings and monitor
a real-time value of a motor parameter corresponding to each voltage-frequency setting.
The controller is also configured to identify a tolerance zone for the motor parameter
and cause the inverter to operate according to the voltage-frequency setting such that the
motor parameter is within the tolerance zone.
[0073] The present invention has been described in terms of the preferred
embodiment, and it is recognized that equivalents, alternatives, and modifications, aside
from those expressly stated, are possible and within the scope of the appending claims.
We Claim:
1. A motor drive configured to supply power to a load, the motor drive comprising:
an inverter designed to provide power to the load; and
a controller operationally connected to control operation of the inverter, the
controller configured to:
adjust a voltage-frequency setting during operation of the motor drive to
cause the inverter to operate according to each of a plurality of varied voltage-frequency settings;
monitor a real-time value of a motor parameter corresponding to each
voltage-frequency setting;
identify a tolerance zone for the motor parameter; and
cause the inverter to operate according to the voltage-frequency setting
such that the motor parameter is within the tolerance zone.
2. The motor drive of claim 1 wherein the tolerance zone comprises a range of
values of the motor parameter corresponding to an optimized operation of the motor drive; and
wherein the monitored real-time motor parameter comprises one of an rms
voltage, an rms current, a motor speed, a motor slip, a motor power factor, and a motor
efficiency.
3. The motor drive of claim 1 wherein the controller is configured to:
detect an undesirable motor condition based on a real-time value of at least one of
a motor power factor, efficiency, motor slip, motor speed, voltage, current, torque, and
temperature: and
upon detection of the undesirable motor condition, adjust the voltage-frequency
setting.
4. The motor drive of claim 1 wherein the controller is configured to adjust at least
one of a motor voltage and a motor frequency to adjust the voltage-frequency setting during
operation of the motor drive to minimize at least one of a motor torque and a motor input power.
5. The motor drive of claim 1 wherein the controller is configured to determine a
value of an instability identification parameter based on the monitored real-time value of the
motor parameter, the instability identification parameter comprising at least one of a motor
voltage, a motor current, a motor torque, a motor speed, a motor slip, a motor power factor, a
motor efficiency, and a motor temperature.
6. The motor drive of claim 5 wherein the controller is configured to:
detect a motor instability condition based on the value of the instability
identification parameter; and
adjust the voltage-frequency setting if the motor instability condition is detected.
7. The motor drive of claim 6 wherein the controller is further configured to detect at
least one of the motor instability condition and a transient motor condition based on a monitored
rate-of-change of the instability identification parameter.
8. The motor drive of claim 6 wherein the controller is configured to reset the
voltage-frequency setting within a period to match one of the initial V/Hz curve, a linear V/Hz
curve, and a pre-defined V/Hz curve if the motor instability condition is detected.
9. A method for controlling a motor drive output comprising:
operating a motor drive according to a static voltage-frequency profile to generate
an output power:
determining a value of a specified motor parameter corresponding to the static
voltage-frequency profile;
determining a tolerance zone of the specified motor parameter;
selectively modifying the static voltage-frequency profile during operation of the
motor drive to generate a reduced motor input power; and
operating the motor drive at a voltage-frequency setting corresponding to a value
of the specified motor parameter within the tolerance zone.
10. The method of claim 9 wherein selectively modifying the default voltage-
frequency profile comprises:
adjusting a voltage-frequency setting during operation of the motor drive such
that a reduced motor input power is generated according to a dynamic voltage-frequency profile;
and
determining a value of the specified motor parameter for each voltage-frequency
setting of the dynamic voltage-frequency profile.
11. The method of claim 9 wherein determining the value of the specified motor
parameter comprises determining the value of one of a motor rms voltage, a motor rms current, a
motor input power, a motor speed, a motor slip, a motor power factor, a motor efficiency, and a
motor temperature.
ABSTRACT
A system and method for controlling an AC motor drive includes a control system
programmed with an energy algorithm configured to optimize operation of the motor
drive. Specifically, the control system input an initial voltage-frequency command to
the AC motor drive based on an initial voltage/frequency (V/Hz) curve, receives a real
time output of the AC motor drive generated according to the initial voltage-frequency
command. and feedback a plurality of modified voltage-frequency commands to the AC
motor drive. each of the plurality of modified voltage-frequency commands comprising
a deviation from the initial V/Hz curve. The control system also determines a real-time
value of the motor parameter corresponding to each of the plurality of modified voltage
frequency commands. and feeds back a modified voltage-frequency command to the AC
motor drive so that the real-time value of the motor parameter is within a motor
parameter tolerance range.
| Section | Controller | Decision Date |
|---|---|---|
| # | Name | Date |
|---|---|---|
| 1 | 4991-KOLNP-2011-(12-12-2011)-SPECIFICATION.pdf | 2011-12-12 |
| 1 | 4991-KOLNP-2011-IntimationOfGrant08-04-2019.pdf | 2019-04-08 |
| 2 | 4991-KOLNP-2011-(12-12-2011)-PCT REQUEST FORM.pdf | 2011-12-12 |
| 2 | 4991-KOLNP-2011-PatentCertificate08-04-2019.pdf | 2019-04-08 |
| 3 | 4991-KOLNP-2011-Written submissions and relevant documents (MANDATORY) [05-04-2019(online)].pdf | 2019-04-05 |
| 3 | 4991-KOLNP-2011-(12-12-2011)-PCT PRIORITY DOCUMENT NOTIFICATION.pdf | 2011-12-12 |
| 4 | 4991-KOLNP-2011-Written submissions and relevant documents (MANDATORY) [20-03-2019(online)].pdf | 2019-03-20 |
| 4 | 4991-KOLNP-2011-(12-12-2011)-INTERNATIONAL PUBLICATION.pdf | 2011-12-12 |
| 5 | 4991-KOLNP-2011-HearingNoticeLetter.pdf | 2019-02-13 |
| 5 | 4991-KOLNP-2011-(12-12-2011)-GPA.pdf | 2011-12-12 |
| 6 | 4991-KOLNP-2011-ABSTRACT [12-02-2018(online)].pdf | 2018-02-12 |
| 6 | 4991-KOLNP-2011-(12-12-2011)-FORM-5.pdf | 2011-12-12 |
| 7 | 4991-KOLNP-2011-Annexure [12-02-2018(online)].pdf | 2018-02-12 |
| 7 | 4991-KOLNP-2011-(12-12-2011)-FORM-3.pdf | 2011-12-12 |
| 8 | 4991-KOLNP-2011-CLAIMS [12-02-2018(online)].pdf | 2018-02-12 |
| 8 | 4991-KOLNP-2011-(12-12-2011)-FORM-2.pdf | 2011-12-12 |
| 9 | 4991-KOLNP-2011-(12-12-2011)-FORM-1.pdf | 2011-12-12 |
| 9 | 4991-KOLNP-2011-CORRESPONDENCE [12-02-2018(online)].pdf | 2018-02-12 |
| 10 | 4991-KOLNP-2011-(12-12-2011)-DRAWINGS.pdf | 2011-12-12 |
| 10 | 4991-KOLNP-2011-FER_SER_REPLY [12-02-2018(online)].pdf | 2018-02-12 |
| 11 | 4991-KOLNP-2011-(12-12-2011)-DESCRIPTION (COMPLETE).pdf | 2011-12-12 |
| 11 | 4991-KOLNP-2011-OTHERS [12-02-2018(online)].pdf | 2018-02-12 |
| 12 | 4991-KOLNP-2011-(12-12-2011)-CORRESPONDENCE.pdf | 2011-12-12 |
| 12 | 4991-KOLNP-2011-PETITION UNDER RULE 137 [12-02-2018(online)].pdf | 2018-02-12 |
| 13 | 4991-KOLNP-2011-(12-12-2011)-CLAIMS.pdf | 2011-12-12 |
| 13 | 4991-KOLNP-2011-FER.pdf | 2017-09-08 |
| 14 | 4991-KOLNP-2011-(12-12-2011)-ABSTRACT.pdf | 2011-12-12 |
| 14 | 4991-KOLNP-2011-FORM-18.pdf | 2012-04-24 |
| 15 | 4991-KOLNP-2011-(15-02-2012)-ASSIGNMENT.pdf | 2012-02-15 |
| 15 | ABSTRACT-4991-KOLNP-2011.jpg | 2012-01-24 |
| 16 | 4991-KOLNP-2011-(15-02-2012)-CORRESPONDENCE.pdf | 2012-02-15 |
| 17 | ABSTRACT-4991-KOLNP-2011.jpg | 2012-01-24 |
| 17 | 4991-KOLNP-2011-(15-02-2012)-ASSIGNMENT.pdf | 2012-02-15 |
| 18 | 4991-KOLNP-2011-FORM-18.pdf | 2012-04-24 |
| 18 | 4991-KOLNP-2011-(12-12-2011)-ABSTRACT.pdf | 2011-12-12 |
| 19 | 4991-KOLNP-2011-(12-12-2011)-CLAIMS.pdf | 2011-12-12 |
| 19 | 4991-KOLNP-2011-FER.pdf | 2017-09-08 |
| 20 | 4991-KOLNP-2011-(12-12-2011)-CORRESPONDENCE.pdf | 2011-12-12 |
| 20 | 4991-KOLNP-2011-PETITION UNDER RULE 137 [12-02-2018(online)].pdf | 2018-02-12 |
| 21 | 4991-KOLNP-2011-(12-12-2011)-DESCRIPTION (COMPLETE).pdf | 2011-12-12 |
| 21 | 4991-KOLNP-2011-OTHERS [12-02-2018(online)].pdf | 2018-02-12 |
| 22 | 4991-KOLNP-2011-(12-12-2011)-DRAWINGS.pdf | 2011-12-12 |
| 22 | 4991-KOLNP-2011-FER_SER_REPLY [12-02-2018(online)].pdf | 2018-02-12 |
| 23 | 4991-KOLNP-2011-(12-12-2011)-FORM-1.pdf | 2011-12-12 |
| 23 | 4991-KOLNP-2011-CORRESPONDENCE [12-02-2018(online)].pdf | 2018-02-12 |
| 24 | 4991-KOLNP-2011-CLAIMS [12-02-2018(online)].pdf | 2018-02-12 |
| 24 | 4991-KOLNP-2011-(12-12-2011)-FORM-2.pdf | 2011-12-12 |
| 25 | 4991-KOLNP-2011-Annexure [12-02-2018(online)].pdf | 2018-02-12 |
| 25 | 4991-KOLNP-2011-(12-12-2011)-FORM-3.pdf | 2011-12-12 |
| 26 | 4991-KOLNP-2011-ABSTRACT [12-02-2018(online)].pdf | 2018-02-12 |
| 26 | 4991-KOLNP-2011-(12-12-2011)-FORM-5.pdf | 2011-12-12 |
| 27 | 4991-KOLNP-2011-HearingNoticeLetter.pdf | 2019-02-13 |
| 27 | 4991-KOLNP-2011-(12-12-2011)-GPA.pdf | 2011-12-12 |
| 28 | 4991-KOLNP-2011-Written submissions and relevant documents (MANDATORY) [20-03-2019(online)].pdf | 2019-03-20 |
| 28 | 4991-KOLNP-2011-(12-12-2011)-INTERNATIONAL PUBLICATION.pdf | 2011-12-12 |
| 29 | 4991-KOLNP-2011-Written submissions and relevant documents (MANDATORY) [05-04-2019(online)].pdf | 2019-04-05 |
| 29 | 4991-KOLNP-2011-(12-12-2011)-PCT PRIORITY DOCUMENT NOTIFICATION.pdf | 2011-12-12 |
| 30 | 4991-KOLNP-2011-PatentCertificate08-04-2019.pdf | 2019-04-08 |
| 30 | 4991-KOLNP-2011-(12-12-2011)-PCT REQUEST FORM.pdf | 2011-12-12 |
| 31 | 4991-KOLNP-2011-(12-12-2011)-SPECIFICATION.pdf | 2011-12-12 |
| 31 | 4991-KOLNP-2011-IntimationOfGrant08-04-2019.pdf | 2019-04-08 |
| 1 | 4991KOLNP2011Searchstrategy_04-08-2017.pdf |