Abstract: A sample preparation and analysis system (10). The system (10) includes a housing (16) with a sample preparation station (12) and a sample analysis station (14) positioned within the housing (16). The sample analysis station (14) is spaced away from the sample preparation station (12). A transport assembly (50) is configured to move at least one sample within the housing (16) and between the sample preparation station (12) and the sample analysis station (14).
SYSTEM LAYOUT FOR AN AUTOMATED SYSTEM FOR SAMPLE
PREPARATION AND ANALYSIS
[0001] The present application claims the filing benefit of U.S. Provisional
Application Serial No. 61/408,180, filed October 29, 2010, the disclosure of which is
incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
[0002] The present invention relates generally to the field of sample
preparation and analysis and, more particularly, to systems and layouts for arranging
sample preparation and analysis instrumentations.
BACKGROUND OF THE INVENTION
[0003] Liquid chromatography mass spectrometry ("LCMS") is a powerful
analyte detection and measurement technique that has become the preferred
method of detecting small molecule, amino acid, protein, peptide, nucleic acid, lipid,
and carbohydrate analytes to a high accuracy for diagnostic purposes. However, the
instrumentation required for LCMS is technically complex and not well suited to the
typical hospital clinical lab or medical lab technician. These clinical labs have not
adopted LCMS diagnostics and, instead, generally use alternative diagnostic
techniques, including automated immunoassay. Alternatively, the clinical labs may
send the samples out to a central laboratory for analysis.
[0004] Therefore, there is a need for sample preparation and sample analysis
systems that are less complex to configure and use for preparing samples and
conducting a variety of different analyte assays, without requiring the expertise of
LCMS technologists, or the massive scale of a reference laboratory. There is yet
also a need for a sample preparation and sample analysis systems that improve the
efficiency of the time to result for a variety of different analyte assays.
SUMMARY OF THE INVENTION
[0005] The present invention overcomes the foregoing problems and other
shortcomings, drawbacks, and challenges of conventional sample preparation and
sample analysis systems. While the invention will be described in connection with
certain embodiments, it will be understood that the invention is not limited to these
embodiments. To the contrary, this invention includes all alternatives, modifications,
and equivalents as may be included within the spirit and scope of the present
invention.
[0006] In accordance with one embodiment of the present invention, a sample
preparation and analysis system includes a housing. A sample preparation station
and a sample analysis station are positioned within the housing and with the sample
analysis station is spaced away from the sample preparation station. A transport
assembly is configured to move at least one sample within the housing and between
the sample preparation station and the sample analysis station.
[0007] According to another embodiment of the present invention, an
automated biological specimen preparation and mass spectrometry analysis system
includes a sample preparation station and a sample analysis station. The sample
preparation station is configured to prepare samples that are taken from a plurality of
biological specimens. The sample analysis station includes a mass spectrometer
that is configured to quantify one or more analytes in the prepared samples. The
sample preparation and the sample analysis stations are contained within a housing
such that the mass spectrometer is lower than the sample analysis station.
[0008] According to yet another embodiment of the present invention, an
automated biological specimen preparation and analysis system includes a sample
preparation station and a sample analysis station. The sample preparation station is
configured to prepare samples that are taken from a plurality of biological specimens
and includes a first serviceable component, which may include a specimen rack
and/or a reagent rack. The sample analysis station configured to quantify one or
more analytes in the prepared samples and including a second serviceable
component, which may include a liquid chromatography column and/or a liquid
chromatography mobile phase container. A third serviceable component includes a
fluid container and/or a waste container. The sample preparation station, the sample
analysis station, and the third serviceable component are contained within a housing
such that the first, second, and third serviceable components are positioned closer to
a front face of the housing than to a back face of the housing.
[0009] Still another embodiment of the present invention is directed to an
automated biological specimen preparation and analysis system and includes a
sample preparation station and a sample analysis station. The sample preparation
station is configured to prepare samples that are taken from a plurality of biological
specimens. The sample analysis station is configured to quantify one or more
analytes in the prepared samples. A user interface is configured to receive and/or
convey information to a user. A housing contains the sample preparation and
sample analysis stations. The user interface s mounted to an exterior portion of the
housing and positioned between a left-hand sidewall and a right-hand sidewall of the
housing.
[0010] According to another embodiment of the present invention, an
automated biological specimen preparation and analysis system includes sample
preparation and sample analysis stations positioned within a housing. The sample
preparation station is configured to prepare samples taken from patient specimen.
The samples are prepared in accordance with an assay selected from a database
containing a plurality of unique assays. The sample analysis station includes an
analyzer that is dynamically reconfigurable according to the selected assay. Once
dynamically reconfigured, the analyzer analyzes the prepared sample. A transport
mechanism is configured to transport the prepared sample within the housing and
from the sample preparation station to the sample analysis station.
[001 ] The above and other objects and advantages of the present invention
shall be made apparent from the accompanying drawings and the descriptions
thereof.
BRIEF DESCRIPTION OF THE FIGURES
[0012] The accompanying drawings, which are incorporated in and constitute
a part of this specification, illustrate embodiments of the invention and, together with
the general description given above and the detailed description of the embodiments
given below, serve to explain the principles of the present invention. In the figures,
corresponding or like numbers or characters indicate corresponding or like
structures.
[0013] FIG. 1A is a perspective view of an automated sample preparation and
analysis system in accordance with one embodiment of the present invention.
[0014] FIG. 1B is a perspective view of an automated sample preparation and
analysis system in accordance with another embodiment of the present invention.
[0015] FIG. 2A is a top view of the automated sample preparation and
analysis system of FIG. 1A.
[0016] FIG. 2B is a top view of the automated sample preparation and
analysis system of FIG. B.
[0017] FIG. 3A is a side elevational view of the automated sample preparation
and analysis system of FIG. 1A with the front cover removed.
[0018] FIG. 3B is a side elevational view of the automated sample preparation
and analysis system of FIG. 1B with the front cover removed.
[0019] FIG. 4 is a schematic view of a sample preparation station and a
transport assembly of the automated sample preparation and analysis system of
FIG. A in accordance with one embodiment of the present invention.
[0020] FIG. 5 is a schematic view of a sample preparation station and a
sample analysis station of the automated sample preparation and analysis system of
FIG. 1A in accordance with one embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0021] FIG. A is a perspective illustration of an automated sample
preparation and analysis system 10 according to one exemplary embodiment of the
present invention (referred to hereinafter as "system" 10). The system 10 is
designed to automatically prepare a sample from a specimen for analysis and to
analyze the prepared sample according to a predetermined analyte assay selected
from a variety of different or unique analyte assays. As will be described in greater
detail below, the exemplary system 10 is particularly designed to perform two distinct
laboratory functions, i.e., sample preparation and sample analysis, in combination in
an automated system.
[0022] In one embodiment, the system 0 includes a sample preparation
station 12 for preparing various samples and a sample analysis station 14, which
includes a suitable analyzer, such as a liquid chromatography mass spectrometer
("LCMS"), a gas chromatography mass spectrometer ("GCMS"), a surface
desorption/ionizer directly coupled to a mass spectrometer; a liquid chromatography
ultra-violet spectrometer ("LC/UV-VIS"), or a fluorescence spectrometer, for
example, for analyzing the prepared samples according to selected analyte assays.
The sample preparation station 12 and the sample analysis station 14 are
interconnected in an automated manner as will be described in detail below and
may, in fact, be enclosed within a unitary cover 16.
[0023] The unitary cover 16 is designed to be compartmental, permitting
relative isolation of each station 12, 14. For example, according to the exemplary
system depicted in FIG. 1A, the unitary cover 16 is formed of metal partitions and
includes separate compartments for each of the sample preparation station 12 and
the sample analysis station 14, for example, any associated liquid chromatography
pumps, a centrifuge rotor, one or more power units, controllers 2 1, 23, mobile phase
containers 128, and waste containers 70.
[0024] FIG. 1B, like FIG. 1A is a perspective illustration of an automated
sample preparation and analysis system 10' and were similar numbers with primes
refer to similar features.
[0025] Referring still to FIGS. 1A and 1B and now also to FIGS. 2A and 2B,
the sample preparation station 12 of the system 10 may include a sample
preparation station 20 and a sample preparation controller 2 1 that controls selected
functions or operations of the sample preparation station 20. The sample
preparation station 20 is configured to receive one or more specimens, to sample the
specimens to prepare the samples for analysis according to a variety of preselected
analyte assays, and to transport the prepared samples for analysis to the sample
analysis station 14. In some embodiments, the sample preparation station 20 is
configured to prepare the sample such that the prepared sample is chemically
compatible with the sample analysis station 14 according to the selected analyte
assay to be performed by the sample analysis station 14.
[0026] The sample analysis station 14, in like manner, includes a sample
analysis station 24 and a sample analysis controller 23 that controls selected
functions or operations of the sample analysis station 24. The sample analysis
station 24 is configured to receive the prepared sample from the sample preparation
station 20 via a transport mechanism described in greater detail below. The sample
analysis station 24 then analyzes the prepared sample according to a selected
analyte assay to obtain a result for that sample. The sample result may be
transmitted to the sample preparation controller 2 1, which may validate the results.
[0027] While not specifically shown, a general controller may be used to
control the sample preparation controller 2 1 and the sample analysis controller 23 or,
alternatively, the sample analysis controller 23 may be made a slave to the master
sample preparation controller 2 , or vice versa. Further, while the designation of the
sample preparation controller 2 1 and the sample analysis controller 23 as provided
herein seems to indicate that the sample preparation station 20 and the sample
analysis station 24 comprise two opposing sides of the system 0, the stations 12,
14 may encompass the same area or footprint. Indeed, in accordance with the
present invention, in some embodiments the sample preparation station 20 and the
sample analysis station 24 need not be encompassed within the same housing or
unit.
[0028] The sample preparation station 20 includes a specimen dock 26 having
one or more specimen racks 28. Each specimen rack 28 includes one or more
specimen rack positions capable of holding a specimen container 30. The specimen
containers 30 are configured to contain the acquired biological or environmental
specimens, which may be any specimen containing or suspected of containing an
analyte of interest. These patient specimens or environmental samples may be
analyzed for one or more analytes, which may include, but are not limited to, drugs,
pro-drugs, metabolites of drugs, metabolites of normal biochemical activity, peptides,
proteins, antibiotics, metabolites of antibiotics, toxins, microorganisms (including
bacteria, fungi, and parasites), and infectious agents (including viruses and prions).
Further, any of the foregoing samples, alone or in combination, may be suspended in
an appropriate media, for example, within a blood culture or a screening booth.
[0029] The specimen container 30, itself, may include any suitable labware,
such as a vessel, a vial, a test tube, or any other suitable container known in the art.
One or more of the specimen racks 28 may be designated, or otherwise labeled
(e.g., by placement of the rack 28 within the sample preparation station 20 or with a
barcode or an RFID antenna), as priority racks 28a, or STAT, for introducing
specimen containers 30 having urgent specimens. The sample preparation station
20 further includes a reagent station 36 containing multiple reagent racks 38. Each
reagent rack 38 includes one or more reagent rack positions capable of holding one
or more reagent containers 40 that contain solvents and/or reagents, some of which
may be comprised of a volatile liquid.
[0030] A touch screen display 32 or other similar user interface is positioned
on the upper half of the system 10 and in a central position of the housing 16.
Placing the touch screen display 32 within the footprint of the system 10 rather than
as a stand-alone computer or as an appendage attached to the side of the system
10 reduces the overall footprint of the system 10 and frees floor space in the
laboratory environment. Given the overall length of the system 10, placement of the
touch screen display 32 centrally reduces the maximum distance between the touch
screen display 32 and each of the sample preparation station 12 and the sample
analysis station 14. Reducing this distance, as much as possible, is advantageous
for the user who needs to review messages provided on the touch screen display 32,
for example, specimen addition or reagent replenishment instructions, while nearly
simultaneously attending to the user serviceable components of the system 10, for
example, adding specimen racks or new reagent containers to the system 10.
Additionally, the touch screen display 32 is mounted in a manner to make the
interface adjustable, both for height as well as for angle of incline, to optimize its
position for each individual user.
[0031] A patient sample (referred to hereinafter as "sample"), or a portion of a
particular specimen contained within a specimen container 30 is transferred to an
open-top sample vessel 44 (also known as a reaction vessel, but referred to
hereinafter as "vessel" 44) to be prepared for analysis. The vessels 44 may be
stored within, and introduced from, a storage station (not shown) of the sample
preparation station 20. Within the storage station, the vessels 44 may reside in
plates (not shown) or other appropriate mass storage containers. As various ones of
the vessels 44 are transferred and periodically leaving empty plates, the plates may
be discarded through a waste chute 48 from the sample preparation station 20.
[0032] When a specimen is sampled, one or more vessels 44 are transferred
to a sampling station 46 from the storage station by way of a transport assembly 50
(FIG. 4). The transport assembly 50 (FIG. 4) may include a robot assembly
operating on one or more tracks 52 and configured to move in at least one of an x-y
direction, an x-y-z direction, or a rotary direction. An exemplary track system and
associated transport bases are described in detail in co-owned U.S. Patent No.
6,520,313, entitled "Arrangement and Method for Handling Test Tubes in a
Laboratory," naming inventors Kaarakainen, Korhonen, Makela, and which is hereby
incorporated by reference in its entirety herein.
[0033] The sampling station 46 may include a rotatable table 94 having a
vessel cap opening and closing device 96 for opening and closing a hinged lid of the
vessel, if present. One having ordinary skill in the art will appreciate that alternative
embodiments of a transport mechanism to transport a portion of a particular
specimen contained within a specimen container 30 to the vessel 44 may be used
without departing from the scope of embodiments of the invention.
[0034] While not shown, the transport assembly 50 may further include a
gripper, or other like device, to capture and release the vessel 44 or a transport
handle 54 associated with a vessel rack 56, if used, to simultaneously transport two
or more vessels 44 within the system 10.
[0035] In another embodiment, not shown, the transport assembly 50 may
include a robot assembly configured to move in at least one of an x-y direction, an xy-
z direction, or a rotary direction and which may include an automated liquid
handler. According to this embodiment, the automated liquid handler may aspirate
and dispense a volume of a liquid between two or more vessels 44 within the system
0 to transport the liquid between two or more stations within the system 10.
[0036] In still other embodiments, the transport assembly 50 may further
include carousels, i.e., a circular revolving disc, or autosamplers having multiple
vessel positions therein to provide transport function and allow for a temporary,
intermediate vessel storage function.
[0037] The transport assembly 50 may further comprise a sample pipette
assembly 58 (FIG. 4) having a pipette shaft 60 (FIG. 4) that is movable, for example
via a robotic device, in one or more of the x-y-z directions and between two or more
of the specimen dock 26, the reagent station 36, and the sampling station 46.
[0038] The sample pipette assembly 58 may aspirate an aliquot of the
specimen from the specimen container 30 from within the specimen dock 26 and
dispense the aliquot of the specimen into the vessel 44 within the sampling station
46. Additionally, or alternatively, the sample pipette assembly 58 may aspirate an
aliquot of a desired reagent from one of the reagent containers 40 within the reagent
station 36 and dispense the aliquot of the desired reagent into the vessel 44 within
the sampling station 46, which may or may not previously include the sample, i.e.,
the aliquot of the specimen.
[0039] According to still another embodiment, the sample is selected from a
culture plate using a commercially-available colony picker instrument, for example,
the PICKOLO (Tecan Group, Ltd., Mannedorf, Switzerland) or the QPIX (Genetix,
now part of Molecular Devices, San Jose, CA). The colony picker is capable of
collecting an aliquot of the specimen 23 from a colony, optionally, a pre-selected or
pre-designated colony, on a culture plate and depositing the sample into the vessel
44. The colony-containing vessel may then be mixed, as described above, to lyse
the cells and denature the proteins in order to stabilize the sample for later microbial
analysis.
[0040] The sample within the vessel 44 is transferred via the transport
assembly 50 from the sampling station 46 to a secondary processing station 72. The
secondary processing station 72 includes, for example, one or more of a mixing
station 74, an incubation station, and a matrix interference removal station (shown
specifically herein as a centrifuge 76).
[0041] The matrix interference removal station, if included within the
secondary processing station 72, may be incorporated in either of an on-line or off¬
line configuration (e.g., the on-line configuration being a configuration in which the
sample moves between one or more stations of the sample preparation station 20
through fluidic connections without being contained in a vessel 44, the off-line
configuration being a configuration in which the sample is transported within a vessel
44 between stations of the sample preparation station 20). In embodiments that
include an on-line matrix interference removal station, the analyte-containing
prepared sample may flow directly from the matrix interference removal station to the
next station, such as through tubing. This second station may include, for example,
a second matrix interference removal station (not shown). In embodiments that
include an off-line matrix interference removal station, the analyte-containing
prepared sample is collected from the matrix interference removal station and placed
into a vessel 58 if not already contained in a vessel 44.
[0042] The matrix interference removal station is operable to separate one or
more of residual proteins, phospholipids, salts, metabolites, carbohydrates, nucleic
acids, and/or other substances that may otherwise interfere with subsequent
processing or analysis of the desired analytes and prior to transferring the now
prepared sample to the sample analysis station 24. In some embodiments, the
matrix interference removal station separates contaminants from the analytecontaining
prepared sample, or more simply, the "prepared sample" (for example, by
separating precipitated solids from a resulting supernatant liquid, wherein the
supernatant liquid forms the prepared sample). The matrix interference removal
station may include, for example, one or more of a phase separation station (not
shown), a centrifuge (illustrated as reference number 76 in FIG. 2A and reference
number 76' in FIG. 2B), a sonicator (not shown), a heating station (not shown), a
flash freeze station (not shown), an affinity purification station (not shown), or a
filtration station (not shown).
[0043] In still other embodiments, the matrix interference removal station may
include an affinity extraction or purification station, for example, an immunoaffinity
extraction or purification system. An exemplary immunoaffinity system may use a
Mass Spectrometry Immunoassay ("MSIA") antibody enriched substrate, such as the
commercially-available MSIA substrate from Intrinsic Bioprobes Inc. (Tempe, AZ)
and that is described in US Patent No. 6,783,672, the disclosure of which is
incorporated herein in its entirety. Alternatively still, the matrix interference removal
station may, in yet other embodiments, include additional techniques known in the
art of chemical separation, such as liquid-liquid extraction, solid phase supported
liquid extraction, random access media column extraction, monolithic column
extraction, dialysis extraction, dispersive solid phase extraction, solid phase microextraction,
immunoaffinity extraction, and size exclusion using membrane filters with
gravity, vacuum, or centrifugation. Many of these techniques may be practiced off¬
line or on-line, as appropriate, if fluid connections are created between subsequent
steps of the method. Additionally, many of these techniques may be practiced in a
variety of formats including, for example, using a column or cartridge format, using a
pipette tip format, using a magnetic bead format, or using a plate or chip format.
[0044] Embodiments of the system 0 that include a phase separation
component may include an on- or off-line solid phase extraction station (not shown)
having a vacuum and/or positive pressure source (not shown) to assist in moving the
sample through a solid phase extraction matrix. The solid phase extraction matrix, in
turn, may include one or more suitable porous stationary phase material layers.
According to one embodiment, the solid phase extraction matrix (not shown) further
includes one or more filters arranged on one or both sides of the porous stationary
phase material. The solid phase extraction matrix may be arranged, for example,
within a column, cartridge, a pipette tip, or in a plate or chip format.
[0045] In still yet another embodiment, the matrix interference removal station
may include two or more matrix interference removal methods in series. According
to this embodiment, the first matrix interference removal station, for example a phase
separation station, removes precipitated proteins while the second matrix
interference removal station, for example a solid phase extraction station, removes
additional residual proteins, phospholipids, and salts from the sample prior to
analysis. Additional examples of combinations of matrix interference removal
techniques include, but are not limited to, solid phase extraction followed by liquidliquid
extraction, phase separation followed by size exclusion affinity liquid
chromatography, solid phase extraction followed by size exclusion affinity liquid
chromatography, and immunoaffinity extraction prior to or following any of the
aforementioned methods.
[0046] After the sample has passed through the secondary processing station
72, the prepared sample is transported via the transport assembly 50 to an analysis
staging station 78. The analysis staging station 78 includes two or more vessel
positions 82 (FIG. 2A) or two or more vessel rack positions 82' (FIG. 2B) for
accepting vessels 44 or vessel racks 56, respectively. Each vessel position 82 may
be stationary within the analysis staging station 78 such that once an individual
vessel 44 is placed within a vessel position 82 of the analysis staging station 78, its
position does not change but for transfer by the transport assembly 50.
[0047] When a particular prepared sample is selected for analysis, the vessel
44 containing the prepared sample is transferred via the transport assembly 50 from
the analysis staging station 78 to an injector station 84. The injector station 84 may
include an injector pipette assembly 86 (FIG. 4) to transfer an aliquot of the prepared
sample from the vessel 44 to the sample analysis station 24. The injector pipette
assembly 84 includes a pipette shaft 88 (FIG. 4) that may be constructed in a
manner that is similar to the sample pipette assembly 58 that was described in detail
above.
[0048] The injector station 84 may include a rotatable table 94 having a
structure that is similar to the sampling station 46 and may include a vessel cap
opening and closing device 96 for opening and closing a hinged lid, if present, and
as shown in FIG. 2B.
[0049] As described in detail above, a sample of a specimen is prepared at
the sample preparation station 20 before that prepared sample is moved to the
sample analysis station 24. As such, at least some of the movable portions of the
sample preparation station 20, including the sampling station 46, the transport
assembly 50, the rotatable tables 94, and the injector pipette assembly 84, acting
individually or in concert, may comprise a transport mechanism to transport the
prepared sample from the sample preparation station 2 to the sample analysis
station 14. One having ordinary skill in the art will appreciate that alternative
embodiments of a transport mechanism to transport a prepared sample from a
sample preparation station 12 to a sample analysis station 14 may be used without
departing from the scope of embodiments of the invention. In the exemplary
embodiment, the transport mechanism may comprise the injector pipette assembly
84, which removes an aliquot of the prepared sample for dispensing to the sample
analysis station 24.
[0050] Turning now to the details of the sample analysis station 24, and in
particular to FIGS. 2A-3B and 5, one embodiment of the sample analysis station 24
may be an LCMS system having a liquid chromatography station 102 and a mass
spectrometer station 104. The liquid chromatography station 102 (referred to
hereinafter as "LC station" 102) may include one, two, or more injection ports 106,
108 for accepting the aliquot of the prepared sample from the injector pipette
assembly 86 for analysis. The injection ports 106, 108 may be connected on-line to
one or more chromatography columns (e.g., a preparatory column 110 or an
analytical column 112) for separation of the prepared sample into analytes of interest
eluting at one or more elution times and a plurality of ancillary or waste eluents. As
shown in the illustrative embodiments, the LC station 102 includes two separation
channels, i.e., LC channels 110, 112 (a third LC channel 118 shown in phantom).
Each LC channel 110, 112, 118 includes one preparatory column 114 and one
analytical column 116, arranged in series. The preparatory column 114, according to
some embodiments, may be a size exclusion affinity liquid chromatography column
used for, in essence, matrix interference removal. The analytical column 116 may
be a reversed-phase LC column for analyte isolation.
[0051] In other embodiments, the preparatory column 114 may be a
conventional size exclusion column or any other liquid chromatography column that
may be utilized as a matrix interference removal device.
[0052] Each of the two LC channels 114, 16 is associated upstream with a
respective injector port 106, 108 and associated downstream with a single mass
spectrometer 120 of the mass spectrometer station 104 in a manner that enables
multiplexing or staggered sample introduction into the mass spectrometer 20 as
described in detail below.
[0053] Referring still to FIG. 5, each LC channel 114 , 116 may be further
associated with at least one pump 124 and at least one valve 126 to control the flow
of the mobile phases and the prepared sample through the sample analysis station
24.
[0054] The mobile phase is pumped to an injection valve 26 having a
rotatable center 134 and six ports fluidically coupled to one injection port 106, 108
one or more of the mobile phase supplies 128, 128' (FIGS. 3A, 3B), the waste
container 70, 70' (FIGS. 3A, 3B), the columns 110, 112, and a fluid loop 132
connecting Port-2 to Port-5.
[0055] The injected, prepared sample moves through the columns 110, 112 in
a known manner such that at least one of the analytes of interest will elute off the
columns at a retention time that differs from the retention time of other analytes of
interest and/or the matrix components, i.e., eluents. The eluents and analytes from
both of the first and second LC channels 114, 116 are directed into a valve 139
(which may also include an auxiliary port 138) where the eluents are directed into the
waste container 70, 70' (FIGS. 3A, 3B) while the analytes are directed to an
ionization source 142 of the mass spectrometer station 112. Alternative methods of
sample introduction may include, but are not limited to, on-line methods (such as,
flow injection analysis, direct infusion, and injection loops) and off-line methods (such
as, solid phase extraction, blood spot surface coatings, matrix-assisted laser
desorption/ionization ("MALDl") plate coatings, or coatings on general surfaces), may
also be used to introduce the sample to the mass spectrometer 120.
[0056] As shown in FIG. 5 , an atmospheric pressure ionization (either
electrospray ionization ("ESI") or atmospheric pressure chemical ionization ("APCI"))
device (referred to generally herein as "nebulizing ionizer") is used for ionizing the
analytes received by the ionization source 140. In that regard, the nebulizing ionizer
includes a capillary, probe, or needle (referred hereinafter as "needle" 142) having a
solvent conduit therein (not shown) and surrounded by a gas conduit therein (not
shown). An outlet of the gas conduit is positioned about 0.1 mm to about 0.2 mm
proximally to an outlet of the solvent conduit. In ESI operation a voltage generator
144 is electrically coupled to the needle 142 and is operable to create a high voltage
difference between the needle 142 and the counter-electrode that is either at the
mass spectrometer 120.
[0057] In use, a solvent is supplied to the solvent conduit at a rate ranging
from about 400 pL/min to about 2000 pL/min; however, one of ordinary skill in the art
will readily appreciate that the solvent supply varies with the particular ionization
source selected. The particular solvent used is dependent on the chemical nature of
the analyte in study, and the methodology for selection of an appropriate solvent is
well known to those of ordinary skill in the art. A gas, typically an inert gas such as
N2, is supplied to the gas conduit at pressures ranging from about 0 bar to about
7 bar. The voltage generator 144 is activated and provides a voltage potential,
typically ranging from about -5 kV to about 5 kV, to the solvent within the needle 142.
[0058] It would be readily appreciated that other ionization techniques are
known and may be implemented as necessary or desired. For instance, ionization
sources 140 suitable for ionization of liquid samples may include, for example,
heated electrospray ionization ("HESI"), nanospray ionization ("NSI"), thermospray,
sonic spray, atmospheric pressure photoionization ("APPI"), laser diode thermal
desorption ("LDTD"), atmospheric sampling glow discharge ionization source
("ASGDI"), paperspray ionization techniques capable of extracting a specimen from
a dried bloodspot, and inductively-coupled plasma ("ICP"). Ionization sources 140
that are suitable for ionization of gas samples may include, for example, chemical
ionization ("CI"), electron impact ("El"), resonance enhanced multi-photon ionization
("REMPI"), resonance multi-photon detachment ("RMPD"), glow discharge, and
spark ionization. Furthermore, the ionization sources 140 for gas samples may be
adapted for use with liquid samples. Ionization sources 140 that are suitable for
desorbtion and ionization of a sample from a surface include, for example, MALDI,
surface-assisted laser desorption/ionization ("SALDI"), surface-enhanced laser
desorption/ionization ("SELDI"), desorption electrospray ionization ("DESI"), direct
analysis in real time ("DART"), discontinuous atmospheric pressure interface
("DAPI"), laser diode thermal desorption ("LDTD"), and field desorption. This listing
of possible ionization sources 140 is not exhaustive and may include other ionization
sources and/or permutations as would be readily understood by those of ordinary
skill in the art of mass spectroscopy and analytical chemistry.
[0059] A skimmer 147, positioned distal to a corona discharge electrode 145,
acts in conjunction with an auxiliary gas (not shown, but directed between the outlets
and the skimmer 47) to contain and/or focus the gas phase ions into a vacuum
chamber of the mass spectrometer 120. The auxiliary gas may be supplied at rates
that range generally from about 0 L/min to about 15 L/min.
[0060] Referring still to FIG. 5, the illustrative example of the mass
spectrometer 120 includes an interface 146 with the ionization source 140, a mass
filter 148, and an ion detector 150. The regions containing the mass filter 148 and
the ion detector 150 are maintained under vacuum. This interface 146 includes an
orifice 152 of a skimmer cone 154 that provides an opening into a higher vacuum
chamber containing the mass filter 148 while maintaining vacuum pressures.
[0061] In the illustrated example, the mass filter 148 is shown to be a
conventional quadrupole operating as a mass filter; however, those skilled in the art
will understand the determination by which the appropriate mass filter modality for a
given assay is selected. In fact, other mass spectrometer embodiments may
include, for example, a single quadrupole modalities, time-of-f light ("TOF") or
exactive modalities, ion trap ("OT") modalities, hybrid modalities, such as Q-TOF,
TOF-TOF, Q-Exactive, LTQ-orbitrap, and LTQ-FT, or a mass spectrometer modified
for proton transfer.
[0062] Still other modalities are available, and may include, for example, ion
cyclotron resonance ("ICR") or magnetic sector-based analyzers. While these
modalities offer high resolution and specificity, each is also very expensive.
Furthermore, other detectors/analyzers may be used with, or in place of the mass
spectrometer. For example, these detectors may include, for example,
electrochemical devices, nuclear magnetic resonance ("NMR"), absorbance,
fluorescence, refractive index, pH, and/or conductivity.
[0063] In some embodiments, the resolution of the MS technique may be
enhanced by employing "tandem mass spectrometry" or "MS/MS" for example via
use of a triple quadrupole mass spectrometer.
[0064] It would be readily appreciated that by incorporating the various
components of the sample preparation station 12 and the sample analysis station 14
into a single system 10 may create certain contamination risks not otherwise
observed in off-line systems. Therefore, the various components of these stations
12, 14 may be compartmentalized to reduce the risk of contamination between the
stations 12, 14 and to permit localized abatement for contamination risks posed by
specific station 12, 14.
[0065] Contamination risks include, for example, vibration, heat, electrical,
liquid, and other sources of contamination common to the included components
and/or automated clinical instruments. Contamination may be further reduced by
including a ventilation system for each of the sample preparation station 12 and the
sample analysis station 14 so as to control air flow through that station 12, 14 and to
accommodate the anticipated heat generation by that station 12, 14. In similar
manner, reagent storage areas, specimen storage areas, and sample storage areas
may include individual refrigeration systems to maintain those portions at a lower
relative temperature.
[0066] The housing 16 may be configured to have a front face 160 proximate
to the user and an opposing rear face 168 (FIG. 2A), a top surface 162 positioned
above a bottom surface 170 proximate to the floor, and a right-hand sidewall 164
and an opposing left-hand sidewall 166. References to terms such as "above,"
"upper," "below," and "lower" are for convenience of description only and represent
only one possible frame of reference for describing a particular embodiment. In that
regard, the system 10 is designed to include as many laboratory user touch points at
or near the front face of the housing 16 as possible. For example, as depicted in
FIG. 1A, each of the LC columns 110, 112, specimen racks 28, reagent racks 38, a
water and/or methanol supply 122, a washing solution supply 92, the waste
containers 70 buffer and mobile phase containers 128, reaction vessel plates (not
shown), and disposable pipette tip plates 66 (in a tip storage station 64) are
positioned at the front face of the housing 16 of the system 10 to allow easy access
for replenishment and routine maintenance by the user. Similarly, those portions of
the stations 12, 14 that do not require regular access by the user are positioned
within the system 0 space away from the front face of the system 10. For example,
LC pumps 124, power supplies 162, and controllers 2 1, 23 may be positioned within
the housing 16 and spaced away from those components that are placed for easy
access, generally referred to as "serviceable components."
[0067] Also, those components that may require attention by a service
technician providing service to the system 10 are positioned to provide accessible, if
not optimally convenient, access. For example, the LC pumps 124, which may
require access by the service technician, may be positioned behind the waste
containers 70 such that the serviceable component waste containers 70 may be
removed to service the LC pumps 124.
[0068] Further, the laboratory user touch points are designed with a
preference for the front face of the system 10, rather than the side of the system 10,
to reduce the system footprint in the laboratory environment; if the laboratory user
does not require regular access to the side of the system 10, the laboratory can pack
other instruments closer to the system 10.
[0069] One of ordinary skill in the art will readily appreciate that incorporation
of the centrifuge 76 into an integral housing with the analytical instrumentation of the
system 10 may cause undesirable interference with those analytical instruments. In
this integral configuration example, the ability of the analytical instruments to perform
with a particular reliability may be compromised. This may be due to, at least in part,
the high rotational speed required to draw down the precipitating solids from the
supernatant liquid. Therefore, it may be necessary for embodiments of the system
10 including an integrated centrifuge 76 to further include features that reduce
transmission of vibrations thereof to other components of the system 10. Moreover,
because of the desire to reduce the overall footprint of the system 10, the overall
size of the centrifuge 76 may be reduced and/or configured to be a standalone
centrifuge 76 that is not integral with other components of the system 10, but yet
accessible by the transport assembly 50.
[0070] The mobile phase reagents 28 that feed the LC pumps 124 may be
positioned above the LC pumps 124. As depicted in FIG. 3A and 3B, the mobile
phase reagents 128 are positioned in the upper right quadrant of the system 10.
Positioning the mobile phases above the LC pumps 124 and valves permits gravity
to assist the feed of liquid mobile phase reagents 128, which results in easier priming
of the LC tubing and the creation of fewer bubbles in the LC lines as compared to
placing the mobile phase reagents 128 adjacent or below the LC pumps 124. Also,
the mobile phase reagents 128 may be positioned near the front face of the
instrument and at a height that falls approximately between the shoulders and waist
of the average user.
[0071] According to one embodiment, the mass spectrometer 120 is
positioned in the lower portion of the instrument. Because the mass spectrometer
120 is relatively heavy, placing the mass spectrometer 120 in a lower position
improves the balance and stability of the overall system 10. More specifically, as
depicted in FIGS. 3A-3B, the mass spectrometer 120 is positioned in the lower right
quadrant of the system 10.
[0072] The mass spectrometer 120 is positioned on a support that is
moveable horizontally with respect to the housing, for example, a sliding drawer,
capable of moving the mass spectrometer into and out of the system footprint.
Placing the mass spectrometer 120 on a drawer provides several benefits, including
improved access to all sides of the instrument for routine maintenance and servicing,
improved manufacturing efficiency by permitting the mass spectrometer 120 to be
installed onto the drawer and then slidingly inserted into the housing 16, eliminating
the step of inserting a bulky and heavy component within a restricted space inside
the housing 16, and relative isolation of the sensitive mass spectrometer 120 from
vibrational, thermal, electrical, liquid and other contamination emanating from other
components of the system 10.
[0073] The serviceable components of the mass spectrometer 120 are
positioned on the front face of the mass spectrometer 120 or on the top of the mass
spectrometer 120, rather than on or near the rear of the mass spectrometer 120.
Serviceable components include, but are not limited to, the ionization source 140.
However, due to its size and shape, placing the ionization source 40 on the front of
the mass spectrometer 20 creates a protrusion on the front of the system 10,
extending beyond the front plane of the housing 16. Therefore, the ionization source
140 is designed to be removed during system transport and installed onto the mass
spectrometer 120 during installation of the system 10 within the laboratory
environment.
[0074] Due to the relative height of the mass spectrometer 120, and also due
to the relative height of the sample preparation station 12, it is preferred that the
mass spectrometer 120 is positioned in a quadrant of the system 10 opposite from
the sample preparation station 12. For example, as depicted in FIG. 3A, the mass
spectrometer 120 is positioned in the right quadrant and at a lower height as
compared to the sample preparation station 12, which is positioned in the left
quadrant and at a higher height than the mass spectrometer 120 of the system 10;
however, in FIG. 3B, both the mass spectrometer 120' and the sample preparation
station 12' are positioned in the left half of the system 10'. Additionally, due to the
possibility of vibrational and liquid contamination emanating from the sample
preparation station 12, which contamination may interfere with the operational
precision of the mass spectrometer 120, it is preferred that the sample preparation
station 12 is located not directly above the mass spectrometer 120.
[0075] Also in consideration for the relative height of the mass spectrometer
120, and for the relative height of the LC pumps 124, it is preferred that the LC
pumps 124 are positioned not directly above the mass spectrometer 120. However,
the mass spectrometer 120 is preferably positioned relatively close to the LC pumps
124, which LC pumps 124 are located in the central lower portion of the overall
system 10, as depicted in FIG. 3A-3B. Placing the LC pumps 124 relatively close to
the mass spectrometer 120 is important to minimize, as much as possible, the
distance of the fluidic connections between the LC pumps 124 and the mass
spectrometer 120, which thereby reduces the liquid dead volume in the LC system
lines and also reduces the risk of degradation of the chromatography caused by the
separated liquid traveling over a distance.
[0076] While most of the system components are located within the housing
16, one or more components may optionally be located remotely from the system 10,
either adjacent to the system 10 or at some distance from the system 10, but
integrated into the system 10 using tubing or the like. For example, mechanical
pumps, including roughing pumps, a nitrogen generator or other inert gas sources for
operation of the mass spectrometer 120 may be located in a separate frame or
frames. Due to their thermal output, as well as their noise and vibration, placement
of these components within the housing 16 is not advantageous. While these
components could be integrated within the housing 16, they also can be located
remotely without denigrating system performance. Having the option to locate these
components remotely, for example, in another location within the same laboratory
environment, or even in an adjacent room within the overall laboratory, provides
significant installation flexibility for the laboratory operator.
[0077] While the present invention has been illustrated by a description of
various embodiments, and while these embodiments have been described in some
detail, they are not intended to restrict or in any way limit the scope of the appended
claims to such detail. Additional advantages and modifications will readily appear to
those skilled in the art. The various features of the invention may be used alone or
in any combination depending on the needs and preferences of the user. This has
been a description of the present invention, along with methods of practicing the
present invention as currently known. However, the invention itself should only be
defined by the appended claims.
[0078] What is claimed is:
A sample preparation and analysis system, comprising:
a housing;
a sample preparation station positioned within the housing;
a sample analysis station positioned within the housing and interconnected in
an automated manner with the sample preparation station; and
a transport assembly configured to move at least one sample within the
housing in an automated manner between the sample preparation station and the
sample analysis station.
2. An automated biological specimen preparation and mass spectrometry
analysis system for analyzing a plurality of biological specimens, comprising:
a sample preparation station configured to prepare samples taken from the
plurality of biological specimens; and
a sample analysis station including a mass spectrometer configured to
quantify one or more analytes in one or more of the prepared samples;
wherein the sample preparation station and the sample analysis station are
contained within a housing and such that the mass spectrometer is positioned at a
height that is lower than a height of the sample preparation station.
3. The automated biological specimen preparation and mass spectrometry
analysis system of claim 2 , wherein the mass spectrometer is spaced away from the
sample preparation station.
4. The automated biological specimen preparation and mass spectrometry
analysis system of claim 2 , wherein the sample preparation station is positioned
substantially within the upper quadrant of a first end of the housing.
5 . The automated biological specimen preparation and mass spectrometry
analysis system of claim 4, wherein the mass spectrometer is positioned
substantially within the lower quadrant of a second end of the housing.
6 . The automated biological specimen preparation and mass spectrometry
analysis system of claim 2 , wherein the mass spectrometer is positioned on a
support that is moveable horizontally with respect to the housing.
7. The automated biological specimen preparation and mass spectrometry
analysis system of claim 2, wherein the sample analysis station further includes one
or more liquid chromatography pumps positioned at a height that is lower than a
height of the sample preparation station.
8 . The automated biological specimen preparation and mass spectrometry
analysis system of claim 7, wherein the sample analysis station further includes at
least one liquid chromatography mobile phase container positioned at a height that is
higher than a height of the one or more liquid chromatography pumps.
9 . The automated biological specimen preparation and mass spectrometry
analysis system of claim 2 , wherein the mass spectrometer includes an ionization
source positioned towards a front face of the housing.
10. The automated biological specimen preparation and mass spectrometry
analysis system of claim 9, wherein the ionization source is removable during
transport of the system.
1 . The automated biological specimen preparation and mass spectrometry
analysis system of claim 2, further comprising:
one or more of a roughing pump or a nitrogen generator positioned outside of
the housing and coupled to the mass spectrometer.
12. The automated biological specimen preparation and mass spectrometry
analysis system of claim 2 , wherein
the sample preparation station is positioned substantially on one side of the
housing, at a height that is greater than a height of a base of the mass spectrometer;
the mass spectrometer is positioned substantially on the other side of the
housing, at a height that is less than a height of a base of the sample preparation
station; and
the sample analysis station further includes one or more liquid
chromatography pumps and at least one liquid chromatography mobile phase
container, the at least one liquid chromatography mobile phase container being
positioned at a height that is greater than a height of the one or more liquid
chromatography pumps.
13. An automated biological specimen preparation and analysis system for
analyzing a plurality of biological specimens, comprising:
a sample preparation station configured to prepare samples taken from the
plurality of biological specimens and including a first serviceable component selected
from one or more of a specimen rack and a reagent rack;
a sample analysis station configured to quantify one or more analytes in one
or more of the prepared samples and including a second serviceable components
selected from one or more of a liquid chromatography column and a liquid
chromatography mobile phase container; and
a third serviceable component selected from one or more of a fluid container
and a waste container,
wherein the sample preparation station, the sample analysis station, and the
third serviceable component are contained within a housing such that the first,
second, and third serviceable components are positioned closer to a front face of the
housing than to a back face of the housing.
14. The automated biological specimen preparation and analysis system of claim
13, further comprising:
a fourth serviceable components selected from one or more of a reaction
vessel plate, a disposable pipette tip plate, a washing solution container, a waste
fluid container, and a reaction vessel waste container, the fourth serviceable
component being positioned closer to the front face of the housing than to the back
face of the housing.
15. The automated biological specimen preparation and analysis system of claim
13, wherein the sample analysis station further includes a mass spectrometer and a
serviceable ionization source.
16. An automated biological specimen preparation and analysis system for
analyzing a plurality of biological specimens comprising:
a sample preparation station configured to prepare samples taken from the
plurality of biological specimens;
a sample analysis station configured to quantify one or more analytes in one
or more of the prepared samples;
a user interface configured to receive, convey, or both information to a user;
and
a housing containing the sample preparation station and the sample analysis
station,
wherein the user interface is mounted to an exterior portion of the housing
and positioned between a left-hand sidewall of the housing and a right-hand sidewall
of the housing.
7. The automated biological specimen preparation and analysis system of claim
16, wherein the user interface is adjustable in one or more of a vertical orientation,
an angle of incline, or an angle of rotation.
18. A sample preparation and analysis system, comprising:
a housing;
a sample preparation station positioned within the housing and configured to
prepare a sample taken from a specimen in accordance with an assay selected from
a database containing a plurality of unique assays;
a sample analysis station positioned within the housing and space away from
the sample preparation station, the sample analysis station comprising an analyzer,
the analyzer being dynamically reconfigurable in response to the selected assay to
analyze the prepared sample in accordance with the selected assay; and
a transport mechanism configured to transport the prepared sample within the
housing and from the sample preparation station to the sample analysis station.
19. The sample preparation and analysis system of claim 18, wherein the
transport mechanism includes at least one of a transport assembly, a rotatable table,
an injector pipette assembly, a fluidic coupler, or combinations thereof.
20. The sample preparation and analysis system of claim 18, wherein the
analyzer includes a mass spectrometer
2 1. The sample preparation and analysis system of claim 18, wherein the
analyzer is a liquid chromatography mass spectrometer.
| # | Name | Date |
|---|---|---|
| 1 | 3738-DELNP-2013-IntimationOfGrant22-03-2023.pdf | 2023-03-22 |
| 1 | 3738-DELNP-2013.pdf | 2013-05-08 |
| 2 | 3738-delnp-2013-Form-5.pdf | 2013-08-20 |
| 2 | 3738-DELNP-2013-PatentCertificate22-03-2023.pdf | 2023-03-22 |
| 3 | 3738-delnp-2013-Form-3.pdf | 2013-08-20 |
| 3 | 3738-DELNP-2013-FORM 3 [25-01-2023(online)].pdf | 2023-01-25 |
| 4 | 3738-DELNP-2013-Information under section 8(2) [25-01-2023(online)].pdf | 2023-01-25 |
| 4 | 3738-delnp-2013-Form-2.pdf | 2013-08-20 |
| 5 | 3738-delnp-2013-Form-1.pdf | 2013-08-20 |
| 5 | 3738-DELNP-2013-FORM 3 [22-02-2022(online)].pdf | 2022-02-22 |
| 6 | 3738-DELNP-2013-Information under section 8(2) [22-02-2022(online)].pdf | 2022-02-22 |
| 6 | 3738-delnp-2013-Correspondence-others.pdf | 2013-08-20 |
| 7 | 3738-DELNP-2013-FORM 3 [11-05-2021(online)].pdf | 2021-05-11 |
| 7 | 3738-delnp-2013-Claims.pdf | 2013-08-20 |
| 8 | 3738-DELNP-2013-Information under section 8(2) [11-05-2021(online)].pdf | 2021-05-11 |
| 8 | 3738-delnp-2013-GPA-(10-07-2014).pdf | 2014-07-10 |
| 9 | 3738-DELNP-2013-FORM 3 [08-12-2020(online)].pdf | 2020-12-08 |
| 9 | 3738-delnp-2013-Form-3-(10-07-2014).pdf | 2014-07-10 |
| 10 | 3738-delnp-2013-Correspondence-Others-(10-07-2014).pdf | 2014-07-10 |
| 10 | 3738-DELNP-2013-Information under section 8(2) [04-12-2020(online)].pdf | 2020-12-04 |
| 11 | 3738-DELNP-2013-FORM 3 [13-05-2020(online)].pdf | 2020-05-13 |
| 11 | Other Patent Document [24-02-2017(online)].pdf_451.pdf | 2017-02-24 |
| 12 | 3738-DELNP-2013-Information under section 8(2) [13-05-2020(online)].pdf | 2020-05-13 |
| 12 | Other Patent Document [24-02-2017(online)].pdf_450.pdf | 2017-02-24 |
| 13 | 3738-DELNP-2013-FORM 3 [24-10-2019(online)].pdf | 2019-10-24 |
| 13 | Other Patent Document [24-02-2017(online)].pdf_449.pdf | 2017-02-24 |
| 14 | 3738-DELNP-2013-Information under section 8(2) (MANDATORY) [24-10-2019(online)].pdf | 2019-10-24 |
| 14 | Other Patent Document [24-02-2017(online)].pdf | 2017-02-24 |
| 15 | 3738-DELNP-2013-Information under section 8(2) (MANDATORY) [05-04-2019(online)].pdf | 2019-04-05 |
| 15 | Form 3 [24-02-2017(online)].pdf | 2017-02-24 |
| 16 | 3738-DELNP-2013-ABSTRACT [04-04-2019(online)].pdf | 2019-04-04 |
| 16 | 3738-DELNP-2013-FORM 3 [28-07-2017(online)].pdf | 2017-07-28 |
| 17 | 3738-DELNP-2013-Information under section 8(2) (MANDATORY) [07-02-2018(online)].pdf | 2018-02-07 |
| 17 | 3738-DELNP-2013-CLAIMS [04-04-2019(online)].pdf | 2019-04-04 |
| 18 | 3738-DELNP-2013-DRAWING [04-04-2019(online)].pdf | 2019-04-04 |
| 18 | 3738-DELNP-2013-FORM 3 [07-02-2018(online)].pdf | 2018-02-07 |
| 19 | 3738-DELNP-2013-FER_SER_REPLY [04-04-2019(online)].pdf | 2019-04-04 |
| 19 | 3738-DELNP-2013-Information under section 8(2) (MANDATORY) [09-08-2018(online)].pdf | 2018-08-09 |
| 20 | 3738-DELNP-2013-FORM 3 [04-04-2019(online)].pdf | 2019-04-04 |
| 20 | 3738-DELNP-2013-FORM 3 [09-08-2018(online)].pdf | 2018-08-09 |
| 21 | 3738-DELNP-2013-FER.pdf | 2018-10-09 |
| 21 | 3738-DELNP-2013-OTHERS [04-04-2019(online)].pdf | 2019-04-04 |
| 22 | 3738-DELNP-2013-FER.pdf | 2018-10-09 |
| 22 | 3738-DELNP-2013-OTHERS [04-04-2019(online)].pdf | 2019-04-04 |
| 23 | 3738-DELNP-2013-FORM 3 [04-04-2019(online)].pdf | 2019-04-04 |
| 23 | 3738-DELNP-2013-FORM 3 [09-08-2018(online)].pdf | 2018-08-09 |
| 24 | 3738-DELNP-2013-Information under section 8(2) (MANDATORY) [09-08-2018(online)].pdf | 2018-08-09 |
| 24 | 3738-DELNP-2013-FER_SER_REPLY [04-04-2019(online)].pdf | 2019-04-04 |
| 25 | 3738-DELNP-2013-DRAWING [04-04-2019(online)].pdf | 2019-04-04 |
| 25 | 3738-DELNP-2013-FORM 3 [07-02-2018(online)].pdf | 2018-02-07 |
| 26 | 3738-DELNP-2013-CLAIMS [04-04-2019(online)].pdf | 2019-04-04 |
| 26 | 3738-DELNP-2013-Information under section 8(2) (MANDATORY) [07-02-2018(online)].pdf | 2018-02-07 |
| 27 | 3738-DELNP-2013-ABSTRACT [04-04-2019(online)].pdf | 2019-04-04 |
| 27 | 3738-DELNP-2013-FORM 3 [28-07-2017(online)].pdf | 2017-07-28 |
| 28 | 3738-DELNP-2013-Information under section 8(2) (MANDATORY) [05-04-2019(online)].pdf | 2019-04-05 |
| 28 | Form 3 [24-02-2017(online)].pdf | 2017-02-24 |
| 29 | 3738-DELNP-2013-Information under section 8(2) (MANDATORY) [24-10-2019(online)].pdf | 2019-10-24 |
| 29 | Other Patent Document [24-02-2017(online)].pdf | 2017-02-24 |
| 30 | 3738-DELNP-2013-FORM 3 [24-10-2019(online)].pdf | 2019-10-24 |
| 30 | Other Patent Document [24-02-2017(online)].pdf_449.pdf | 2017-02-24 |
| 31 | 3738-DELNP-2013-Information under section 8(2) [13-05-2020(online)].pdf | 2020-05-13 |
| 31 | Other Patent Document [24-02-2017(online)].pdf_450.pdf | 2017-02-24 |
| 32 | 3738-DELNP-2013-FORM 3 [13-05-2020(online)].pdf | 2020-05-13 |
| 32 | Other Patent Document [24-02-2017(online)].pdf_451.pdf | 2017-02-24 |
| 33 | 3738-delnp-2013-Correspondence-Others-(10-07-2014).pdf | 2014-07-10 |
| 33 | 3738-DELNP-2013-Information under section 8(2) [04-12-2020(online)].pdf | 2020-12-04 |
| 34 | 3738-DELNP-2013-FORM 3 [08-12-2020(online)].pdf | 2020-12-08 |
| 34 | 3738-delnp-2013-Form-3-(10-07-2014).pdf | 2014-07-10 |
| 35 | 3738-delnp-2013-GPA-(10-07-2014).pdf | 2014-07-10 |
| 35 | 3738-DELNP-2013-Information under section 8(2) [11-05-2021(online)].pdf | 2021-05-11 |
| 36 | 3738-DELNP-2013-FORM 3 [11-05-2021(online)].pdf | 2021-05-11 |
| 36 | 3738-delnp-2013-Claims.pdf | 2013-08-20 |
| 37 | 3738-DELNP-2013-Information under section 8(2) [22-02-2022(online)].pdf | 2022-02-22 |
| 37 | 3738-delnp-2013-Correspondence-others.pdf | 2013-08-20 |
| 38 | 3738-delnp-2013-Form-1.pdf | 2013-08-20 |
| 38 | 3738-DELNP-2013-FORM 3 [22-02-2022(online)].pdf | 2022-02-22 |
| 39 | 3738-DELNP-2013-Information under section 8(2) [25-01-2023(online)].pdf | 2023-01-25 |
| 39 | 3738-delnp-2013-Form-2.pdf | 2013-08-20 |
| 40 | 3738-delnp-2013-Form-3.pdf | 2013-08-20 |
| 40 | 3738-DELNP-2013-FORM 3 [25-01-2023(online)].pdf | 2023-01-25 |
| 41 | 3738-DELNP-2013-PatentCertificate22-03-2023.pdf | 2023-03-22 |
| 41 | 3738-delnp-2013-Form-5.pdf | 2013-08-20 |
| 42 | 3738-DELNP-2013-IntimationOfGrant22-03-2023.pdf | 2023-03-22 |
| 42 | 3738-DELNP-2013.pdf | 2013-05-08 |
| 1 | 3738DELNP2013pdf_06-12-2017.pdf |