Sign In to Follow Application
View All Documents & Correspondence

Turbomachine With Axial Stop Member

Abstract: A turbomachine having an axial stop member arranged to restrain axial movement of a bearing assembly of the turbomachine, the axial stop member having a bore defined by a radially inner surface of the axial stop member which forms a close radial fit with a shaft of the turbo-machine, or a member mounted on the shaft to rotate with the shaft, an anti-rotation formation engageable with a complimentary formation provided on an outer race of the bearing assembly so as to rotationally fix the outer race relative to the axial stop member and wherein the axial stop member further comprises a lubricating fluid directing member and a lubricating fluid outlet, the lubricating fluid directing member being arranged to receive lubricating fluid that is flung radially outward from said axis, due to the rotation of the shaft, and to direct the lubricating fluid to the lubricating fluid outlet.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
27 November 2015
Publication Number
15/2016
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
Parent Application
Patent Number
Legal Status
Grant Date
2023-06-30
Renewal Date

Applicants

CUMMINS LTD
St. Andrews Road Huddersfield HD1 6RA

Inventors

1. ARCHER Jamie
30 Thick Hollins Meltham Holmfirth HD9 4DQ
2. HOLDEN Mark
105 Fishponds Drive Crigglestone Wakefield West Yorkshire WF4 3PD

Specification

TURBOMACHINE WITH AXIAL STOP MEMBER
The present invention relates to a turbomachine and has particular, but not exclusive,
application to a turbomachine in the form of a turbocharger or a power turbine.
Turbochargers are well known devices for supplying air to the intake of an
internal combustion engine at pressures above atmospheric (boost pressures). A
conventional turbocharger essentially comprises an exhaust gas driven turbine wheel
mounted on a rotatable shaft within a turbine housing. Rotation of the turbine wheel
rotates a compressor wheel mounted on the other end of the shaft within a compressor
housing. The compressor wheel delivers compressed air to the intake manifold of the
engine, thereby increasing engine power.
The turbocharger shaft is supported by a central bearing housing disposed
between the turbine and compressor wheels. The turbocharger shaft rotates within a
bearing cartridge housed in an axial bore of the bearing housing.
The turbocharger shaft is conventionally supported for rotation in a bearing
housing by a bearing assembly comprising inner and outer races radially separated by
bearing elements, the bearing housing having a bore through which the shaft extends.
Lubricating fluid, in the form of oil, is fed to the bearing assembly under
pressure from the oil system of the engine via an oil inlet, gallery and passages.
Typically, an outer surface of the outer race has shallow annular recesses for receipt of
the lubricating oil, which provide annular clearances between the inner surface of the
bearing housing and the outer surface of the outer race. The recesses provide a thin
film of oil between the outer race and the bearing housing. The film acts as a squeeze
film damper and damps rotary motion and vibration caused by rotation of the shaft.
From the recesses, the oil flows into the bearing assembly through inlet passages in
the outer race. The oil then flows through the bearing assembly, to provide lubrication
within the assembly, before passing out of the bearing assembly through an outlet in
the outer race to an oil sump. It is important that the outlet is oriented correctly to
ensure that the lubricating fluid within the bearing assembly is able to drain under the
action of gravity to a lubricating fluid sump.
The inner race of the bearing assembly is fixed to the turbocharger shaft and
rotates with the turbocharger shaft. It is necessary for the outer race to be fitted freely
within the bearing housing, to allow for assembly, thermal expansion and the squeeze
film damping. However, the outer race needs to be constrained to prevent both axial
and rotational movement of the outer race. This is necessary to ensure that the outlet
in the outer race is oriented correctly to ensure that the lubricating fluid within the
bearing assembly is able to drain under the action of gravity to a lubricating fluid sump.
This is also necessary to ensure that the inlet passages in the outer race are correctly
oriented relative to the bearing housing, so as to allow oil to pass through the inlet
passages into the bearing assembly. Correctly orienting the outer race of the bearing
assembly, during assembly of the turbocharger, can be problematic. In addition, it can
be difficult to maintain the outer race of the bearing assembly in the correct orientation,
during operation of the turbocharger.
Typical current designs use a pin that passes from the bearing housing into the
outer race, so as to rotationally fix the outer race relative to the bearing housing.
However, such an arrangement can be difficult to assemble, requires multiple
component parts and accordingly is relatively expensive.
Furthermore, providing an effective sealing system to prevent oil leakage from
the central bearing housing into the compressor or turbine housing can be problematic.
Oil leakage is regarded as a particular problem at the compressor end of the
turbocharger since at low boost pressures (e.g. when the engine is idling or when the
turbocharger is operated in engine braking mode) there can be a significant pressure
drop from the bearing housing to the compressor housing which encourages oil
leakage into the compressor housing. In order to counter such leakage it is known to
include an oil slinger as part of a thrust bearing assembly at the compressor end of the
bearing housing. An oil slinger is an annular component which rotates with the
turbocharger shaft and has surfaces or passages arranged for propelling oil away from
the shaft as it rotates, and in particular from the passage through the bearing housing
into the compressor housing. Generally an annular splash chamber defined in the
bearing housing collects the oil displaced by the slinger, provides for its recirculation
and typically allows it to drain to a sump.
Whereas the turbine of a turbocharger drives a compressor, in a power turbine
the end of the turbine shaft remote from the turbine wheel transmits power via a
mechanical coupling. In a turbocompound engine two turbines are provided in series
with a power turbine connected in series with the turbine of a turbocharger. The power
turbine is used to generate additional power and a gear wheel may be fixed to the end
of the power turbine shaft in order to transmit that power to the crankshaft of the engine
via an appropriate coupling (such as for example a fluid coupling or a gear or other
drive mechanism), hydraulically, mechanically or electrically. As with a turbocharger,
the shaft of a power turbine is supported on bearing assemblies, including appropriate
lubricating systems, located within a bearing housing connected to the turbine housing.
The bearing arrangement at the turbine end of the shaft may be substantially the same
as that found in a turbocharger, although the bearing arrangement at the drive end of
the shaft may be a ball bearing assembly.
One of the objects of the present invention, amongst others, is to obviate or
mitigate the problems associated with locating an outer race of a bearing assembly in a
correct orientation during assembly, with restraining the outer race in a correct
orientation during operation and with problems of oil leakage in a turbomachine.
According to a first aspect of the present invention there is provided a
turbomachine comprising: a shaft rotatable about a rotational axis; a turbine wheel
provided at one end of the shaft for rotation about the rotational axis within a turbine
housing; the shaft being supported for rotation in a bearing housing by a bearing
assembly comprising inner and outer races radially separated by bearing elements, the
bearing housing having a bore through which the shaft extends, the bearing assembly
being disposed in the bore, wherein the turbomachine further comprises an axial stop
member arranged to restrain axial movement of the bearing assembly, a bore is
provided in said axial stop member, through which the shaft passes, the bore is defined
by a radially inner surface of the axial stop member which forms a close radial fit with
the shaft, or a member mounted on the shaft to rotate with the shaft, an anti-rotation
formation engageable with a complementary formation provided on the outer race of
the bearing assembly so as to rotationally fix the outer race relative to the axial stop
member and wherein the axial stop member further comprises a lubricating fluid
directing member and a lubricating fluid outlet, the lubricating fluid directing member
being arranged to receive lubricating fluid that is flung radially outward from said axis,
due to the rotation of the shaft, and to direct the lubricating fluid to the lubricating fluid
outlet.
This is advantageous in that the axial stop member is multi-functional. It acts to
restrain both axial and rotational movement of the bearing assembly, it acts as a baffle
to reduce the amount of lubricating fluid that, for example, needs to be handled by a
lubricating fluid slinger and ensures that lubricating fluid is directed to a desired
location. Accordingly, the axial stop member replaces multiple components that would
otherwise be needed to provide these functions. This results in a saving in cost,
complexity, weight and space.
The anti-rotation formation is preferably integrally formed with the axial stop
member. This is advantageous in that the invention provides a one piece component,
with multiple functions, thereby providing a simplified assembly process and therefore
lower assembly costs.
Preferably the anti-rotation formation is a lug and the complementary formation
is a slot, or vice versa.
Preferably the bearing housing is provided with a formation that is engageable
with the anti-rotation formation of the axial stop member so as to rotationally fix the
axial stop member relative to the bearing housing. This is advantageous in that it fixes
the axial stop member in a desired orientation relative to the bearing housing. In this
case, the anti-rotation formation of the axial stop member is engageable with both the
complementary formation of the outer race of the bearing assembly and the bearing
housing formation.
This is advantageous in that when the anti-rotation formation of the axial stop
member is engaged with the complementary formation of the outer race of the bearing
assembly and the bearing housing formation, the outer race of the bearing assembly is
oriented in a desired orientation relative to the bearing housing. Accordingly, during
assembly, the engagement of said formations acts to automatically align the outer race
of the bearing assembly in a desired rotational orientation, relative to the bearing
housing.
Preferably the bearing housing formation is a slot and the anti-rotation formation
is a lug, or vice versa.
Preferably the turbomachine comprises a lubricating sump, the outer race of the
bearing assembly is provided with a lubricating fluid outlet and the anti-rotation
formation of the axial stop member, the complementary formation of the outer race of
the bearing assembly and the bearing housing formation are arranged such that when
they are engaged, the lubricating fluid outlet is fluidly connected to the lubricating fluid
sump.
This is advantageous in that when said formations are engaged, the outer race
of the bearing assembly is automatically oriented such that the lubricating fluid outlet in
the outer race is fluidly connected to a lubricating fluid sump. Furthermore, this desired
orientation of the outer race bearing assembly is maintained during operation of the
turbocharger due to the engagement of said formations.
Preferably the lubricating fluid outlet and the lubricating fluid sump are arranged
such that, in this orientation, the lubricating fluid may drain from the bearing assembly,
through the lubricating fluid outlet and to the lubricating fluid sump under the action of
gravity.
The inner surface of the axial stop member that defines said bore preferably
forms a non-contact seal with the shaft, or a member mounted on the shaft to rotate
with the shaft. An example of such a member mounted on the shaft to rotate with the
shaft is a lubricating fluid slinger. This is advantageous in that the non-contact seal
prevents lubricating fluid passing from the bearing assembly through the axial stop
member.
Preferably the inner surface of the axial stop member that defines said bore
extends substantially around the circumference of the shaft, or a member mounted on
the shaft.
The lubricating fluid directing member is preferably integrally formed with the
axial stop member. This is advantageous in that the invention provides a one piece
component, with multiple functions, thereby providing a simplified assembly process
and therefore lower assembly costs.
Preferably the lubricating fluid directing member is arranged such that
lubricating fluid that is received by the lubricating fluid directing member is directed by
the lubricating fluid directing member, under the action of gravity, to the lubricating fluid
outlet of the axial stop member. Preferably the anti-rotation formation of the axial stop
member, the complimentary formation of the of the outer race of the bearing assembly
and the bearing housing formation are arranged such that when they are engaged, the
lubricating fluid directing member is oriented such that lubricating fluid that is received
by the lubricating fluid directing member is directed by the lubricating fluid directing
member, under the action of gravity, to the outlet.
Preferably the lubricating fluid directing member extends from an upper end, in
a circumferential direction about the shaft axis to the lubricating fluid outlet. Preferably
the lubricating fluid directing member is concavely curved about said shaft axis.
Preferably the lubricating fluid directing member substantially encloses a
circumferential section of the shaft, or of a member mounted on the shaft to rotate with
the shaft.
Preferably the lubricating fluid directing member is radially outwardly spaced
from the radially inner wall of the axial stop member that defines said bore. Preferably
the lubricating fluid directing member is radially outwardly spaced from the shaft, or a
member mounted on the shaft, so as to define a radial clearance between the
lubricating fluid directing member and the shaft, or a member mounted on the shaft to
rotate with the shaft. This is advantageous in that allows the lubricating fluid directing
member to handle a relatively large volume of lubricating fluid.
The lubricating fluid directing member may be formed by one or more surfaces,
guide vanes, channels, conduits or the like.
Preferably the lubricating fluid directing member forms a chamber around the
shaft, or a member mounted on the shaft, for receiving lubricating fluid that is flung
radially outward from said axis, due to the rotation of the shaft, or member.
Preferably at least one wall of the chamber is radially outwardly spaced from
the radially inner wall of the axial stop member that defines said bore. This is
advantageous in that it provides the chamber with a relatively large volume, thereby
allowing the chamber to handle a relatively large volume of lubricating fluid. By way of
contrast, if the at least one surface formed a close radial fit with the shaft then the
lubricating fluid would be squeezed between the shaft and the at least one surface as it
passed along the at least one surface. This would slow the travel of the lubricating fluid
along the at least one surface, which could cause the lubricating fluid to back up within
the chamber, which could result in leakage of the lubricating fluid from the axial stop
member.
Preferably the at least one wall of the chamber is radially outwardly spaced
from the shaft, or a member mounted on the shaft to rotate with the shaft, so as to
define a radial clearance between the at least one wall and the shaft, or said member.
Preferably the at least one wall of the chamber is concavely curved, with a
centre of curvature that is substantially concentric with said axis, and has a radius that
is greater than that of the inner wall of the axial stop member that defines said bore.
Preferably the at least one wall of the chamber is a plurality of said walls, i.e. a
plurality of walls radially spaced and shaped as stated above.
Preferably the axial stop member comprises a plate. Preferably the plate has a
section which protrudes from a surface of the plate and said chamber is formed by said
protruding section.
Preferably the turbomachine comprises a lubricating fluid sump and the
lubricating fluid outlet of the axial stop member is fluidly connected to the lubricating
fluid sump.
Preferably a lubricating fluid slinger is mounted on the shaft, so as to rotate with
the shaft, and comprises a slinging formation arranged to propel lubricating fluid away
from the shaft as the shaft rotates.
Preferably an area of the turbomachine that surrounds the lubricating fluid
slinger is recessed to define a chamber for capturing lubricating fluid that is propelled
from the shaft, as the shaft rotates. Preferably the chamber is fluidly connected to a
lubricating fluid sump.
Preferably the lubricating fluid slinger is provided with a sealing arrangement to
provide a seal between the lubricating fluid slinger and a radially adjacent surface of
the turbo machine, within which the lubricating fluid slinger rotates. The sealing
arrangement preferably comprises a sealing ring supported on one of a surface of the
lubricating fluid slinger or the radially adjacent surface of the turbo machine and an
annular groove which receives said sealing ring, provided on the other of the lubricating
fluid slinger and said radially adjacent surface.
Preferably the lubricating fluid slinger is mounted on the shaft such that at least
a first section of the lubricating fluid slinger is received within the bore of the axial stop
member and the radially inner surface of the axial stop member that defines the bore
forms a close radial fit with the lubricant fluid slinger. Preferably the close radial fit
forms a non-contact seal.
The turbomachine may be a turbocharger comprising a compressor having an
impeller wheel mounted on the shaft such that rotation of the turbine wheel causes
rotation of the impeller wheel, wherein a compressor back plate is provided between
the bearing housing and the impeller wheel, the compressor back plate having an inner
surface which defines a bore, through which the shaft passes, a second section of the
lubricating fluid slinger is received within the bore and the inner surface that defines
said bore forms a close radial fit with the second section of the lubricating fluid slinger.
This is advantageous in that the close radial fit prevents lubricating fluid passing
through the compressor back plate and into the compressor housing. The close radial
fit preferably forms a non-contact seal.
The above arrangement provides an effective three stage sealing arrangement.
At a first stage, the lubricating fluid passing from the bearing assembly is flung radially
outward, by the rotating turbocharger shaft, and is received by the oil directing
member, which directs the lubricating fluid to a sump, via the lubricating fluid outlet. In
addition, the close radial fit of the bore in the axial stop member with the shaft, or a
member mounted on the shaft, substantially prevents lubricating fluid from passing
through the axial stop member. Accordingly, the majority of the lubricating fluid from the
bearing assembly is prevented from passing through the axial stop member and is
directed to the lubricating fluid sump. This ensures that lubricating fluid that passes
through the axial stop member to the second stage is kept to a minimum. At the second
stage, the lubricating fluid slinger acts to fling lubricating fluid radially outward from the
shaft, to said lubricating fluid chamber, where it passes to the lubricating fluid sump. At
the third stage, the sealing arrangement of the lubricating fluid slinger prevents any
remaining lubricating fluid, that passed through the first and second sealing stages,
from passing into the compressor housing.
Preferably the turbomachine comprises an abutment member and the bearing
assembly is provided between the axial stop member and the abutment member such
that the axial stop member restrains axial movement of the bearing assembly in a first
axial direction and the abutment member restrains axial movement of the bearing
assembly in a second axial direction which is substantially opposite to the first axial
direction. Preferably the abutment member is formed by the bearing housing.
The axial stop member preferably abuts the bearing assembly, or an
intermediate member provided between the axial stop member and the bearing
assembly.
The axial stop member preferably comprises a first surface which mates with a
complementary shaped surface of the bearing assembly, or of an intermediate member
provided between the axial stop member and the bearing assembly. This is
advantageous in that it substantially minimises any freedom of movement of the
bearing assembly in the axial direction. Said first surface and said complementary
surface are preferably substantially planar.
The bearing elements may be in the form of rollers, ball bearings, etc.
Preferably the bearing elements are rolling element bearings. The bearing assembly
may comprise a cartridge. The cartridge may form the outer race. The bearing
assembly may be an angular contact ball bearing assembly.
According to a second aspect of the invention there is provided an internal
combustion engine comprising a turbomachine according to the first aspect of the
invention.
The turbomachine is preferably a turbocharger.
All of the features described herein may be combined with any of the above
aspects, in any combination.
A specific embodiment of the present invention will now be described, by way of
example only, with reference to the accompanying drawings in which:
Figure 1 is a sectioned view along the longitudinal axis of a turbocharger
embodying the present invention;
Figure 2 is an enlarged view of section A of Figure 1;
Figure 3 is a rear perspective view of an axial stop member of the turbocharger
of Figures 1 and 2 ;
Figure 4 is a front perspective view of the axial stop member of Figure 3 ;
Figure 5 is a sectioned view along the longitudinal axis of the axial stop member
of Figures 3 and 4 ;
Figure 6 is a front elevational view of the axial stop plate of Figures 3 to 5 , and
Figure 7 is an exploded rear perspective view of the axial stop member and a
bearing assembly of the turbocharger shown in Figures 1 and 2 .
Referring now to the drawings, the illustrated turbocharger comprises a turbine
1 connected to a compressor 2 via a central bearing housing 3 . The turbine 1
comprises a turbine wheel 4 that rotates within a turbine housing (not shown).
Similarly, the compressor 2 comprises a compressor impeller 6 that rotates within a
compressor housing (not shown). The turbine wheel 4 and compressor impeller 6 are
mounted on opposite ends of a common turbocharger shaft 8 that extends through an
axial bore 8a defined by an inner surface of the central bearing housing 3 . The
turbocharger shaft 8 is substantially cylindrical.
In use, the turbine wheel 4 is rotated by exhaust gas from an outlet manifold of
an internal combustion engine. The exhaust gas flows from an inlet (not shown),
provided in the turbine housing, to an exhaust gas outlet (not shown), also provided in
the turbine housing. Rotation of the turbine wheel 4 in turn rotates the compressor
impeller 6 , which draws intake air through a compressor inlet (not shown), provided in
the compressor housing, and delivers boost air to the inlet manifold of the internal
combustion engine via an outlet volute (not shown), also provided in the compressor
housing.
The shaft 8 is supported for rotation in the central bearing housing 3 by a
bearing assembly 13 disposed in the bore 8a.
The bearing assembly 13 comprises a cartridge having inner and outer rings
that are radially separated by bearing elements 42. The inner and outer rings are
axially elongated and have inwardly facing surfaces that define inner and outer races
40, 4 1 for the bearing elements 42. The inner and outer races 40, 4 1 have first and
second ends 99, 100. In this instance, the bearing elements 42 are in the form of
spheres. However, it will be appreciated that other bearing element designs may be
used such as, for example, rollers which may be cylindrical, barrel-shaped or tapered.
Lubricating fluid, in the form of, oil is fed to the bearing assembly 13 under
pressure from the oil system of the engine via an oil inlet, gallery and passages (not
shown). An outer surface of the outer race 4 1 has a plurality of shallow annular
recesses 16 for receipt of the lubricating oil, which provide annular clearances between
the inner surface of the bearing housing 3 and the outer surface of the outer race 4 1 of
around 0.03mm or less. The recesses 16 provide a thin film of oil between the outer
race 4 1 of the bearing assembly 13 and the bearing housing 3 . The film acts as a
squeeze film damper and damps rotary motion and vibration caused by rotation of the
shaft 8 . From the recesses 16, the oil flows into the bearing assembly 13 through an
inlet 17, formed by one or more passages, in the outer race 4 1. The outer race 4 1 is
also provided with an oil outlet 110, which is fluidly connected to an oil sump 104.
A compressor back plate 29 is mounted between the compressor impeller
wheel 6 and the bearing housing 3 . The compressor back plate 29 is axially and
rotationally fixed relative to the bearing housing 3 and separates the compressor
impeller wheel 6 from the bearing housing 3 .
A bore 28 extends axially between first and second end faces of the
compressor back plate 29. The bore 28 is of substantially circular cross sectional
shape, centred on the shaft axis. The bore 28 is defined by a radially inner surface of
the compressor back plate 29. The turbocharger shaft 8 passes through the bore 28.
Oil leakage, particularly at the compressor end of the turbocharger, is a problem
as at low boost pressures (e.g. when the engine is idling or when the turbocharger is
operated in engine braking mode) there can be a significant pressure drop from the
bearing housing 3 to the compressor housing which encourages oil leakage through
the compressor back plate, into the compressor impeller wheel 6 .
A first oil slinger 50 is mounted on the shaft 8 between the compressor wheel 2
and the bearing assembly 13. In use, the first oil slinger 50 rotates with the shaft 8 and
acts to propel oil radially outwards from the shaft 8 , as it rotates. The first oil slinger 50
is generally annular and extends in an axial direction between first and second ends
5 1 , 52. The first oil slinger 50 is provided with an oil slinging formation in the form of an
annular projection 53, which projects from an outer surface of the oil slinger 50, and
acts to propel oil away from the shaft 8 as it rotates. The annular projection 53 extends
radially outward from an outer surface of the first oil slinger 50 and is disposed
approximately half way along the length of the first oil slinger 50.
The first end 5 1 of the first oil slinger 50 is disposed adjacent to a rear surface
of the compressor impeller wheel 6 and the second end 52 of the first oil slinger 50 is
disposed adjacent to the first end 99 of the inner and outer races 4 1, 42 of the bearing
assembly 13.
A section of the first oil slinger 50 between the oil slinging formation 53 and the
first end 5 1 of the oil slinger 50 is received within the bore 28 in the compressor back
plate 29. The area of the compressor back plate 29 that surrounds the first oil slinger
50 is recessed to define an annular chamber 6 1 . Oil that is flung radially outward from
the oil sligner 50 hits the surfaces of the compressor back plate 29 that define the
chamber 6 1 and runs down said surfaces to a drain 62 that is fluidly connected to the
oil sump 104. This prevents the oil from entering the compressor housing.
The first oil slinger 50 is provided with a sealing arrangement to provide a seal
between the first oil slinger 50 and the radially adjacent inner surface of the
compressor back plate 29 that defines the bore 28, in which first oil slinger 50 rotates.
The first oil slinger 50 is provided with a substantially annular groove 70, which
receives a sealing ring (not shown). The sealing ring is housed within the groove 70
and forms a seal with the radially adjacent inner surface of the compressor back plate
29 that defines the bore 28. Alternatively, in a reciprocal arrangement, the annular
groove 70 may be provided in the compressor back plate 29.
The sealing arrangement is provided on the opposite side of the oil slinging
formation to the bearing assembly 13, i.e. between the oil slinging formation 53 and the
first end 5 1 of the oil slinger 50.
An annular axial stop plate 34 is provided between the compressor back plate
29 and the bearing housing 3 . The axial stop plate 34 is axially fixed relative to the
bearing housing 3 by being clamped between opposed surfaces of the compressor
back plate 29 and the bearing housing 3 . A first end face 36 of the axial stop plate 34
abuts the outer race 4 1 of the bearing assembly 13 and a second end face 37 of the
axial stop plate 34 abuts the compressor back plate 29. The axial stop plate 34 has a
radial dimension that extends beyond that of the bearing assembly 13 and bears
against a surface of the compressor back plate 29 at its outer periphery. In use, the
axial stop plate 34 is designed to resist axial thrust forces exerted on the bearing
assembly 13 by the shaft 8 .
The outer race 4 1 of the bearing assembly 13 is received in the bore 8a of the
bearing housing 3 between the first end face 36 of the axial stop plate 34 and an
annular shoulder 24 formed by a radially inward projecting step on an inner surface of
bearing housing 3 . The housing of the outer race 4 1 between the axial stop plate 34
and the annular shoulder 24 axially fixes the outer race 4 1 relative to the bearing
housing 3 . Specifically, the axial stop plate 34 restrains axial movement of the outer
race 4 1 of the bearing assembly 13 in a first axial direction and the annular shoulder 24
restrains axial movement of the outer race 4 1 in a second axial direction which is
substantially opposite to the first axial direction.
In the current embodiment, the first end face 36 of the axial stop plate 34 and
the annular shoulder 24 of the bearing housing 3 respectively abut the outer race 4 1 of
the bearing assembly 13. However, it will be appreciated, that one or more
intermediate members may be provided between the first end face 36 of the axial stop
plate 34 and the outer race 4 1 and/or between the annular shoulder 24 and the outer
race 4 1.
The first end face 36 of the axial stop plate 34 is substantially planar and mates
with the first end 99 of the outer race 4 1 of the bearing assembly 13, which is also
substantially planar. This is advantageous in that it substantially minimises any
freedom of movement of the outer race 4 1 of the bearing assembly 13 in the axial
direction.
A bore 35 extends axially between the first and second end faces 36, 37 of the
plate 34. The bore 35 is of substantially circular cross sectional shape, centred on the
shaft axis. The bore 35 is defined by a radially inner surface 38 of the axial stop plate
34.
The turbocharger shaft 8 passes through the bore 35. The bore 35 is sized and
dimensioned for receipt of the first oil slinger 50. Specifically, a section of the first oil
slinger 50 between the oil slinging formation 53 and the second end 52 of the oil slinger
50 is received within the bore 35.
The second end face 37 of the plate 34 is provided with a protruding section 90,
which protrudes away from the second end face 37 in the axial direction. The bore 35
is provided in said protruding section 90 and is defined by an inner surface 38 of the
protruding section 90. The inner surface 38 provides an annular sealing surface that
forms a close radial fit with the outer surface of the first oil slinger 50, so as to provide a
non-contact seal. Accordingly, the axial stop plate 34 acts to prevent oil from passing
from the bearing assembly 13, through the axial stop plate 34.
The protruding section 90 comprises an annular recess 7 1, which effectively
enlarges the bore 35 in the radial direction. The recess 7 1 does not extend across the
full axial extent of the plate 34 thus leaving a narrow annular land 70 on the inner
periphery of the protruding section 90.
The recess 7 1 defines a chamber 3 1 that extends in the circumferential
direction around a circumferential section of the first oil slinger 50. The chamber 3 1 is
for receiving oil that is flung radially outward from the turbocharger shaft 8 , or from the
first oil slinger 50, as it rotates. The chamber 3 1 is fluidly connected to the oil sump
104.
The chamber 3 1 is bounded by first and second side walls 42, 43. The first and
second side walls 42, 43 are concavely curved and extend in a circumferential direction
around the oil slinger 50 from respective upper ends to respective lower ends. The first
and second side walls 42, 43 have a centre of curvature that is substantially concentric
with the turbocharger axis.
Upper and lower ends of the first and second side walls 42, 43 are spaced apart
in the circumferential direction. The upper ends of the first and second side walls 42, 43
are joined by a substantially straight upper wall 44, which is substantially horizontal.
The lower ends of the side walls 42, 43 are fluidly connected by a channel 47 to
an outlet 105 provided in a lower peripheral edge of the axial stop plate 34. The
channel 47 is formed by opposed and substantially parallel channel walls 45, 46. The
channel walls 45, 46 are extensions of the first and second side walls 42, 43
respectively and extend substantially vertically downwards from the lower ends of the
first and second side walls 42, 43 respectively, to the outlet 105. The outlet 105 is
fluidly connected to the oil sump 104.
The side walls 42, 43 and the upper wall 44 extend from a first of the channel
walls 45 to a second of the channel walls 46, in the circumferential direction, so as to
substantially enclose a circumferential section of the first oil slinger 50.
The side walls 42, 43, upper wall 44 and channel walls 45, 46 each form oil
directing members. They are arranged such oil that is flung radially outward from the
turbocharger shaft 8 , or from the first oil slinger 50, as it rotates impinges against the
respective oil directing member and is directed downwardly along the side walls 42, 43,
or off the upper wall 44, through the channel 47, under the action of gravity, to the
outlet 105.
The first and second side walls 42, 43 and the upper wall 44 of the chamber 3 1
are radially outwardly spaced from the inner wall 38 of the axial stop member 34 that
defines said bore 35 so as to define a radial clearance between the respective surface
and the first oil slinger 50. This is advantageous in that it provides the chamber 3 1 with
a relatively large volume, thereby allowing the chamber 3 1 to handle a relatively large
volume of oil. By way of contrast, if the surfaces 42, 43, 44 formed a close radial fit with
the first oil slinger 50 then the oil would be squeezed between the shaft 8 and the
respective surfaces. This would slow the travel of the oil along the surfaces, which
could cause the oil to back up within the chamber 3 1, which could result in leakage of
the oil from the axial stop plate 34.
The oil directing members are integrally formed with the axial stop plate 34.
This is advantageous in that the axial stop plate 34 provides a one piece component
that acts to restrain both axial movement of the bearing assembly 13 as well as acting
as a baffle to ensure that lubricating oil is directed to a desired location.
The axial stop plate 34 is also rotationally fixed relative to the bearing housing
3 . The axial stop plate 34 further comprises an anti-rotation formation in the form of a
lug 80 that projects in the axial direction from the first end face 36 of the axial stop plate
34. The lug 80 has a generally rectangular cross sectional shape.
The bearing housing 3 is provided with a formation in the form of a generally
rectangular slot 106 (which is shown in cross section in Figure 2) that is engageable
with the lug 80 of the axial stop plate 34 so as to so as to rotationally fix the axial stop
plate 34 relative to the bearing housing 3 . This is advantageous in that it fixes the axial
stop plate 34 in a desired orientation relative to the bearing housing 3 .
In a reciprocal arrangement, the axial stop plate 34 may be provided with a slot
and the bearing housing 3 provided with a lug. In addition, although in the current
embodiment the cooperating formations are a lug and slots, it will be appreciated that
any suitable cooperating formations may be used.
The outlet 105 in the axial stop plate 34, the lug 80 of the axial stop plate 34
and the slot 106 in the bearing housing 3 are arranged such that when the lug 80 is
engaged with said slot 106, the outlet 105 in the axial stop plate 34 is oriented such
that its oil outlet 105 is fluidly connected to the oil sump 104. In addition, the channel 47
is oriented downwardly, such that oil received within the chamber 3 1 is directed
downwardly, under the action of gravity, to the outlet 105.
This is advantageous in that, during assembly, the engagement of the lug 80
and slot 106 acts to automatically align the axial stop plate 34 in a desired rotational
orientation relative to the bearing housing 3 , so as to allow the gravity drain of oil to the
oil sump 104. This therefore makes the assembly process easier, quicker and less
prone to errors.
Furthermore, this desired orientation of the axial stop plate 34 is maintained
during operation of the turbocharger due to the engagement of the lug 80 and slot 106.
The outer race 4 1 of the bearing assembly 13 is provided with a complementary
formation in the form of a slot 8 1 (see Figure 7). The lug 80 is engageable with the slot
8 1 so as to rotationally fix the outer race relative to the axial stop plate 34.
The lug 80 of the axial stop plate 34 is engageable with both the slot 8 1 of the
outer race 4 1 of the bearing assembly 13 and the slot 106 in the bearing housing 3 .
Accordingly, when the lug 80 is engaged with both the slot 8 1 of the outer race 4 1 of
the bearing assembly 13, the outer race 4 1 of the bearing assembly 13 is fixed in a
certain, desired, orientation relative to the bearing housing 3 .
Specifically, the outlet 110 in the outer race 4 1, the lug 80 of the axial stop plate
34 and the slots 8 1 , 106 in the outer race 4 1 and bearing housing 3 are arranged such
that when the lug 80 is engaged with said slots 8 1 , 106, the outlet 110 in the outer race
is oriented such that it is fluidly connected to the oil sump 104 such that oil can drain
from the bearing assembly 13 under the action of gravity to the sump 104.
This is advantageous in that, during assembly, the engagement of the lug 80
and slots 8 1 , 106 acts to automatically align the outer race 4 1 of the bearing assembly
13 in a desired rotational orientation relative to the bearing housing 3 , so as to allow
the gravity drain of oil to the oil sump 104. This therefore makes the assembly process
easier, quicker and less prone to errors.
Furthermore, this desired orientation of the outer race 4 1 of the bearing
assembly is maintained during operation of the turbocharger due to the engagement of
the lug 80 and slots 8 1, 106.
In a reciprocal arrangement, the axial stop plate 34 may be provided with a slot
8 1 and the outer race 4 1 of the bearing assembly 13 provided with the lug 80.
The lug 80 is integrally formed with the axial stop plate 34. This is
advantageous in that the axial stop plate 34 provides a one piece component that acts
to restrain both axial and rotational movement of the bearing assembly 13.
The above arrangement provides an effective three stage sealing arrangement.
At a first stage, the lubricating oil passing from the bearing assembly 13 is flung radially
outward, by the rotating turbocharger shaft 8 , and is received within the chamber 3 1 of
the axial stop plate 34. The oil directing members that form the walls of the chamber 3 1
direct the lubricating oil to the sump 104, via the outlet 105 in the axial stop plate 34. In
addition, the close radial fit of the inner wall 38 that defines the bore 35 in the axial stop
plate 34, with the first oil slinger 50 substantially prevents oil from passing through the
axial stop plate 34. Accordingly, the majority of the lubricating oil from the bearing
assembly 13 is prevented from passing through the axial stop plate 34 and is directed
to the lubricating fluid sump 104. This ensures that lubricating oil that passes through
the axial stop plate 34 to the second stage is kept to a minimum.
At a second stage, the first oil slinger 50 acts to fling lubricating oil radially
outward from the shaft 8 , to said annular chamber 6 1 , where it passes to the lubricating
fluid sump 104.
At a third stage, the sealing arrangement of the first oil slinger 50 substantially
prevents any remaining lubricating oil, that passed through the first and second sealing
stages, from passing into through the compressor back plate 29 and into the
compressor impeller wheel 6 .
At the turbine end of the shaft 8 , the turbine wheel 4 is connected to the
turbocharger shaft 8 at an integrally formed seal boss 2 1 , which extends through a
turbine end 22 of the bore 8a. The boss 2 1 has a larger diameter than that of the
remainder of the shaft 8 , forming a shoulder 55 that projects radially outward from the
remainder of the shaft 8 .
The boss 2 1 is sealed with respect to the bore 8a by means of a piston ring 23
and groove combination. The piston ring 23 is supported by an annular wall 33 that
defines the turbine end of the bore 8a. The piston ring 23 extends radially inwards into
an annular groove 25 defined in the outer surface of the boss 2 1 so as to provide a
seal.
Axially in-board of the groove 25 the outer surface of the boss 2 1 has a
recessed profile to define a second oil slinger 26. The second oil slinger 26 rotates with
the turbocharger shaft 8 and its recessed outer surface is arranged to propel oil away
from the shaft 8 as it rotates, in particular to prevent the oil from passing through the
bearing housing 3 and into the turbine housing. The area of the bearing housing 3 that
surrounds the second oil slinger 26 is recessed to define an annular chamber 27 that
captures the dispersed oil and includes a drain.
In light of the above, it can be seen that the axial stop plate 34 is advantageous
in that it provides a one piece component that is multi-functional. It acts to restrain both
axial and rotational movement of the bearing assembly 13, it acts as a baffle to reduce
the amount of lubricating oil that needs to be handled by an oil slinger and ensures that
oil is directed to a desired location, i.e. to a sump 104. Accordingly, the axial stop plate
34 replaces multiple components that would otherwise be needed to provide these
functions. This results in a saving in cost, complexity, weight and space.
Furthermore, during assembly, the axial stop plate 34 provides a means of
automatically orienting the outer race 4 1 of the bearing assembly 13 in a desired
rotational orientation, relative to the bearing housing 3 , so that the outlet 105 is fluidly
connected to the oil sump 104. This therefore makes the assembly process easier,
quicker and less prone to errors.
Furthermore, this desired orientation of the outer race 4 1 of the bearing
assembly is maintained during operation of the turbocharger due to the engagement of
the lug 80 and slots 8 1, 106.
It will be appreciated that numerous modifications to the above described
design may be made without departing from the scope of the invention as defined in
the appended claims.
For example, in the current embodiment, the oil directing members 42, 43, 44
45, 46 of the axial stop plate 34 form a chamber 3 1 that extends in the circumferential
direction around the first oil slinger 50, for receipt of oil flung radially outwardly from the
rotating shaft 8 , or from a member 50 mounted on the shaft 8 for rotation with the shaft
8 . However, it will be appreciated that the axial stop plate 34 may comprise any
suitable arrangement of one or more oil directing members that are arranged to
received oil flung radially outwardly from the rotating shaft 8 , or from a member 50
mounted on the shaft 8 for rotation with the shaft 8 , and to direct the received oil to the
oil outlet 105. Accordingly, the above invention is not limited to where the oil directing
member(s) form a chamber around the shaft, or a member 50 mounted on the shaft 8
for rotation with the shaft 8 . For example, the lubricating fluid directing member(s) may
be formed by one or more surfaces, guide vanes, channels, conduits or the like.
In the described embodiment, the first oil slinger 50 is received within the bore
35 in the axial stop plate 34. However, it will be appreciated that, where an oil slinger
50, or other member, is not received within the bore 35, the bore 35 may form a close
radial fit directly with the turbocharger shaft 8 , so as to provide a non-contact seal
directly with the shaft 8 . In this case, the chamber 3 1 substantially encloses a
circumferential section of the shaft 8 . The first and second side walls 42, 43 and the
upper wall 44 of the chamber 3 1 are radially outwardly spaced from the inner wall 38
that defines said bore 35 so as to define a radial clearance between the respective
surfaces and the shaft 8 .
Alternatively, the bore 35 may form a close radial fit with any other member
mounted on a shaft, for rotation with the shaft.
In the described embodiment, the lubricating fluid used in the turbocharger is
oil. However, it will be appreciated that any suitable lubricating fluid may be used, with
the first oil slinger 50 adapted for use with such a lubricating fluid.
The described and illustrated embodiments are to be considered as illustrative
and not restrictive in character, it being understood that only the preferred
embodiments have been shown and described and that all changes and modifications
that come within the scope of the inventions as defined in the claims are desired to be
protected. It should be understood that while the use of words such as "preferable",
"preferably", "preferred" or "more preferred" in the description suggest that a feature so
described may be desirable, it may nevertheless not be necessary and embodiments
lacking such a feature may be contemplated as within the scope of the invention as
defined in the appended claims. In relation to the claims, it is intended that when
words such as "a," "an," "at least one," or "at least one portion" are used to preface a
feature there is no intention to limit the claim to only one such feature unless
specifically stated to the contrary in the claim. When the language "at least a portion"
and/or "a portion" is used the item can include a portion and/or the entire item unless
specifically stated to the contrary.

CLAIMS:
A turbomachine comprising: a shaft rotatable about a rotational axis; a turbine
wheel provided at one end of the shaft for rotation about the rotational axis
within a turbine housing; the shaft being supported for rotation in a bearing
housing by a bearing assembly comprising inner and outer races radially
separated by bearing elements, the bearing housing having a bore through
which the shaft extends, the bearing assembly being disposed in the bore,
wherein the turbomachine further comprises an axial stop member arranged to
restrain axial movement of the bearing assembly, a bore is provided in said
axial stop member, through which the shaft passes, the bore is defined by a
radially inner surface of the axial stop member which forms a close radial fit with
the shaft, or a member mounted on the shaft to rotate with the shaft, an antirotation
formation engageable with a complementary formation provided on the
outer race of the bearing assembly so as to rotationally fix the outer race
relative to the axial stop member and wherein the axial stop member further
comprises a lubricating fluid directing member and a lubricating fluid outlet, the
lubricating fluid directing member being arranged to receive lubricating fluid that
is flung radially outward from said axis, due to the rotation of the shaft, and to
direct the lubricating fluid to the lubricating fluid outlet.
A turbomachine according to claim 1 wherein the anti-rotation formation
integrally formed with the axial stop member.
A turbomachine according to either of claims 1 or 2 wherein the anti-rotation
formation is a lug and the complementary formation is a slot, or vice versa.
A turbomachine according to any preceding claim wherein the bearing housing
is provided with a formation that is engageable with the anti-rotation formation
of the axial stop member so as to rotationally fix the axial stop member relative
to the bearing housing.
5 . A turbomachine according to claim 4 wherein the turbomachine comprises a
lubricating sump, the outer race of the bearing assembly is provided with a
lubricating fluid outlet and the anti-rotation formation of the axial stop member,
the complementary formation of the outer race of the bearing assembly and the
bearing housing formation are arranged such that when they are engaged, the
lubricating fluid outlet is fluidly connected to the lubricating fluid sump.
A turbomachine according to claim 5 wherein the lubricating fluid outlet and the
lubricating fluid sump are arranged such that lubricating fluid may drain from the
bearing assembly, through the lubricating fluid outlet, to the lubricating fluid
sump under the action of gravity.
A turbomachine according to any preceding claim wherein the inner surface of
the axial stop member that defines said bore extends substantially around the
circumference of the shaft, or a member mounted on the shaft to rotate with the
shaft.
A turbomachine according to any preceding claim wherein the lubricating fluid
directing member is integrally formed with the axial stop member.
A turbomachine according to any preceding claim wherein the lubricating fluid
directing member is arranged such that lubricating fluid that is received by the
lubricating fluid directing member is directed by the lubricating fluid directing
member, under the action of gravity, to the lubricating fluid outlet of the axial
stop member.
A turbomachine according to claim 9 when dependent on claim 4 wherein the
anti-rotation formation of the axial stop member, the complimentary formation of
the outer race of the bearing assembly and the bearing housing formation are
arranged such that when they are engaged, the lubricating fluid directing
member is oriented such that lubricating fluid that is received by the lubricating
fluid directing member is directed by the lubricating fluid directing member,
under the action of gravity, to the lubricating fluid outlet of the axial stop plate.
A turbomachine according to either of claims 9 or 10 wherein the lubricating
fluid directing member extends from an upper end, in a circumferential direction
about the shaft axis to the lubricating fluid outlet of the axial stop plate.
12. A turbomachine according to claim 11 wherein the lubricating fluid directing
member is concavely curved about said shaft axis.
A turbomachine according to any preceding claim wherein the lubricating fluid
directing member substantially encloses a circumferential section of the shaft,
or of a member mounted on the shaft to rotate with the shaft.
A turbomachine according to any preceding claim wherein the lubricating fluid
directing member is radially outwardly spaced from the radially inner wall of the
axial stop member that defines said bore.
A turbomachine according to any preceding claim wherein the lubricating fluid
directing member is radially outwardly spaced from the shaft, or a member
mounted on the shaft, so as to define a radial clearance between the lubricating
fluid member and the shaft, or a member mounted on the shaft to rotate with
the shaft.
A turbomachine according to any preceding claim wherein the lubricating fluid
directing member forms a chamber around the shaft, or a member mounted on
the shaft to rotate with the shaft, for receiving lubricating fluid that is flung
radially outward from said axis, due to the rotation of the shaft, or member.
A turbomachine according to claim 16 wherein at least one wall of the chamber
is radially outwardly spaced from the radially inner wall of the axial stop member
that defines said bore.
A turbomachine according to either of claims 16 or 17 wherein the at least one
wall of the chamber is radially outwardly spaced from the shaft, or a member
mounted on the shaft to rotate with the shaft, so as to define a radial clearance
between the at least one wall and the shaft, or said member.
19. A turbomachine according to any preceding claim wherein the axial stop
member comprises a plate.
A turbomachine according to claim 19 wherein the plate has a section which
protrudes from a surface of the plate and said chamber is formed by said
protruding section.
A turbomachine according to any preceding claim wherein the turbomachine
comprises a lubricating fluid sump and the lubricating fluid outlet of the axial
stop member is fluidly connected to the lubricating fluid sump.
A turbomachine according to any preceding claim wherein a lubricating fluid
slinger is mounted on the shaft, so as to rotate with the shaft, and comprises a
slinging formation arranged to propel lubricating fluid away from the shaft as the
shaft rotates.
A turbomachine according to claim 22 wherein an area of the turbomachine that
surrounds the lubricating fluid slinger is recessed to define a chamber for
capturing lubricating fluid that is propelled from the shaft, as the shaft rotates.
A turbomachine according to either of claims 22 or 23 wherein the lubricating
fluid slinger is provided with a sealing arrangement to provide a seal between
the lubricating fluid slinger and a radially adjacent surface of the turbo machine,
within which the lubricating fluid slinger rotates.
A turbomachine according to any of claims 22 to 24 wherein the lubricating fluid
slinger is mounted on the shaft such that a first section of the lubricating fluid
slinger is received within the bore of the axial stop member and the radially
inner surface of the axial stop member that defines the bore forms a close radial
fit with the lubricant fluid slinger.
A turbomachine according to claim 25 wherein the turbomachine comprises a
compressor having an impeller wheel mounted on the shaft such that rotation of
the turbine wheel causes rotation of the impeller wheel, wherein a compressor
back plate is provided between the bearing housing and the impeller wheel, the
compressor back plate having an inner surface which defines a bore, through
which the shaft passes, a second section of the lubricating fluid slinger is
received within the bore and the inner surface that defines said bore forms a
close radial fit with the second section of the lubricating fluid slinger.
27. A turbomachine according to any preceding claim wherein the axial stop
member comprises a first surface which mates with a complimentary shaped
surface of the bearing assembly, or of an intermediate member provided
between the axial stop member and the bearing assembly.
28. An internal combustion engine comprising a turbomachine according to any
preceding claim.
29. A turbomachine substantially as described herein, with reference to the
accompanying drawings.
30. An internal combustion engine substantially as described herein, with reference
to the accompanying drawings.

Documents

Application Documents

# Name Date
1 10872-DELNP-2015-FORM 4 [15-05-2024(online)].pdf 2024-05-15
1 Form 5 [27-11-2015(online)].pdf 2015-11-27
2 10872-DELNP-2015-IntimationOfGrant30-06-2023.pdf 2023-06-30
2 Form 3 [27-11-2015(online)].pdf 2015-11-27
3 Form 1 [27-11-2015(online)].pdf 2015-11-27
3 10872-DELNP-2015-PatentCertificate30-06-2023.pdf 2023-06-30
4 Drawing [27-11-2015(online)].pdf 2015-11-27
4 10872-DELNP-2015-CLAIMS [30-06-2020(online)].pdf 2020-06-30
5 Description(Complete) [27-11-2015(online)].pdf 2015-11-27
5 10872-DELNP-2015-COMPLETE SPECIFICATION [30-06-2020(online)].pdf 2020-06-30
6 10872-DELNP-2015.pdf 2015-11-28
6 10872-DELNP-2015-DRAWING [30-06-2020(online)].pdf 2020-06-30
7 10872-delnp-2015-GPA-(28-01-2016).pdf 2016-01-28
7 10872-DELNP-2015-FER_SER_REPLY [30-06-2020(online)].pdf 2020-06-30
8 10872-DELNP-2015-OTHERS [30-06-2020(online)].pdf 2020-06-30
8 10872-delnp-2015-Form-1-(28-01-2016).pdf 2016-01-28
9 10872-delnp-2015-Correspondence Others-(28-01-2016).pdf 2016-01-28
9 10872-DELNP-2015-FER.pdf 2019-12-31
10 10872-DELNP-2015-FORM 3 [22-11-2019(online)].pdf 2019-11-22
10 Form 3 [01-06-2016(online)].pdf 2016-06-01
11 10872-DELNP-2015-FORM 3 [27-05-2019(online)].pdf 2019-05-27
11 Form 3 [18-11-2016(online)].pdf 2016-11-18
12 10872-DELNP-2015-FORM 3 [30-11-2018(online)].pdf 2018-11-30
12 Form 18 [13-04-2017(online)].pdf 2017-04-13
13 10872-DELNP-2015-FORM 3 [02-12-2017(online)].pdf 2017-12-02
13 10872-DELNP-2015-FORM 3 [22-05-2018(online)].pdf 2018-05-22
14 10872-DELNP-2015-FORM 3 [02-12-2017(online)].pdf 2017-12-02
14 10872-DELNP-2015-FORM 3 [22-05-2018(online)].pdf 2018-05-22
15 10872-DELNP-2015-FORM 3 [30-11-2018(online)].pdf 2018-11-30
15 Form 18 [13-04-2017(online)].pdf 2017-04-13
16 10872-DELNP-2015-FORM 3 [27-05-2019(online)].pdf 2019-05-27
16 Form 3 [18-11-2016(online)].pdf 2016-11-18
17 Form 3 [01-06-2016(online)].pdf 2016-06-01
17 10872-DELNP-2015-FORM 3 [22-11-2019(online)].pdf 2019-11-22
18 10872-delnp-2015-Correspondence Others-(28-01-2016).pdf 2016-01-28
18 10872-DELNP-2015-FER.pdf 2019-12-31
19 10872-delnp-2015-Form-1-(28-01-2016).pdf 2016-01-28
19 10872-DELNP-2015-OTHERS [30-06-2020(online)].pdf 2020-06-30
20 10872-DELNP-2015-FER_SER_REPLY [30-06-2020(online)].pdf 2020-06-30
20 10872-delnp-2015-GPA-(28-01-2016).pdf 2016-01-28
21 10872-DELNP-2015-DRAWING [30-06-2020(online)].pdf 2020-06-30
21 10872-DELNP-2015.pdf 2015-11-28
22 10872-DELNP-2015-COMPLETE SPECIFICATION [30-06-2020(online)].pdf 2020-06-30
22 Description(Complete) [27-11-2015(online)].pdf 2015-11-27
23 10872-DELNP-2015-CLAIMS [30-06-2020(online)].pdf 2020-06-30
23 Drawing [27-11-2015(online)].pdf 2015-11-27
24 10872-DELNP-2015-PatentCertificate30-06-2023.pdf 2023-06-30
24 Form 1 [27-11-2015(online)].pdf 2015-11-27
25 Form 3 [27-11-2015(online)].pdf 2015-11-27
25 10872-DELNP-2015-IntimationOfGrant30-06-2023.pdf 2023-06-30
26 Form 5 [27-11-2015(online)].pdf 2015-11-27
26 10872-DELNP-2015-FORM 4 [15-05-2024(online)].pdf 2024-05-15

Search Strategy

1 sstpo10872_01-04-2019.pdf

ERegister / Renewals

3rd: 30 Aug 2023

From 28/04/2016 - To 28/04/2017

4th: 30 Aug 2023

From 28/04/2017 - To 28/04/2018

5th: 30 Aug 2023

From 28/04/2018 - To 28/04/2019

6th: 30 Aug 2023

From 28/04/2019 - To 28/04/2020

7th: 30 Aug 2023

From 28/04/2020 - To 28/04/2021

8th: 30 Aug 2023

From 28/04/2021 - To 28/04/2022

9th: 30 Aug 2023

From 28/04/2022 - To 28/04/2023

10th: 30 Aug 2023

From 28/04/2023 - To 28/04/2024

11th: 15 May 2024

From 28/04/2024 - To 28/04/2025

12th: 22 Apr 2025

From 28/04/2025 - To 28/04/2026