Sign In to Follow Application
View All Documents & Correspondence

"Vapour Turbine"

Abstract: Vapour turbine operating with geothermal vapours containing corrosive agents such as chlorides and/or sulfides in particular. The turbine comprises a series of rotor blades made of a nickel alloy containing a quantity of nickel ranging from 55% to 59% by weight to avoid the washing of the geothennal vapours, maintaining a high useful life of the series of rotor blades and vapour turbine.

Get Free WhatsApp Updates!
Notices, Deadlines & Correspondence

Patent Information

Application #
Filing Date
20 December 2005
Publication Number
5/2010
Publication Type
INA
Invention Field
MECHANICAL ENGINEERING
Status
Email
Parent Application
Patent Number
Legal Status
Grant Date
2017-07-31
Renewal Date

Applicants

NUOVO PIGNONE S.P.A
VIA FELICE MATTEUCCI, 2, 50127 FLORENCE, ITALY

Inventors

1. CORTESE CARLO
VIA FERRARA, 9, I-59100 PRATO, ITALY
2. BENDINELLI PAOLO
VIA ROSSINI, 69, I-56030 QUATTRO STRADE DI LAVAIANO-LARI, PISA, ITALY
3. DE IACO MARCO
VIA VITTORIO EMANUELE II, 277, I-50134 FIRENZE, ITALY
4. COSI LORENZO
VIA TOSELLI, 176, I-50124 FIRENZE, ITALY
5. ANSELMI MARCO
VIA FAENTINA, 57, I-50133 FIRENZE, ITALY

Specification

VAPOUR TURBINE
The present invention relates to a vapour turbine which can be used for obtaining energy from geothermal vapours.
Vapour turbines which operate with geothermal vapours come into contact with aggressive and/or corrosive substances for the components of the turbine itself.
Even small quantities of aggressive substances such as chlorides and sulfides, cause the corrosion of the vapour turbine components, such as rotor blades, stator blades and sealing laminas.
The materials currently used for vapour turbine components are martensitic stainless steels which are strongly subject to corrosion phenomena on the part of aggressive and/or corrosive agents.
The corrosion is particularly high in the transition area between overheated vapour and damp vapour (Dew Point).
In this area, the solid particles contained in the geothermal vapour form large deposits on the surface of the blades.
During the functioning of the turbine, the deposits accelerate the corrosion process under way, due to the increase in localized concentration of corrosive agents such as chlorides and sulfides.
Corrosion of the turbine components jeopardizes the correct functionality of the turbine itself as well as the preventive maintenance plan programmed for it.
In order to reduce maintenance interventions and consequently also substitution of the components themselves, the geothermal vapours containing aggressive substances in a higher quantity than a predetermined percentage, are "washed" with water.
This reduces the concentration of aggressive substances present in the geothermal vapours.
A first disadvantage is that the washing operations of geothermal vapours causes an increase in the running and maintenance costs of the plant, also increasing its com-
plexity.
Another disadvantage is that washing the vapour reduces the enthalpy available at the turbine inlet and consequently the useful work of the turbine itself is reduced.
An objective of the present invention is to provide a vapour turbine operating with overheated geothermal vapours normally containing corrosive agents which avoids die washing of said geothermal vapours.
A further objective is to provide a vapour turbine operating with geothermal vapours, normally containing corrosive agents which has a high conversion efficiency of the energy available at the inlet.
Another objective to provide a vapour turbine which operates with overheated geothermal vapours and which has a high useful life.
Yet another objective to provide a vapour turbine operating with geothermal vapours, containing corrosive agents, having reduced maintenance costs.
These objectives according to the present invention are achieved by providing a vapour turbine as illustrated in claim 1.
Further characteristics of the invention are indicated in the subsequent claims.
The characteristics and advantages of a vapour turbine operating with geothermal vapours will appear more evident from the following illustrative and non-limiting description of the present invention.
According to the present invention, a vapour turbine is provided, operating with geothermal vapours containing aggressive or corrosive agents such as chlorides and/or sulfides in particular.
The vapour turbine comprises a series of rotor blades made of a nickel alloy containing a quantity of nickel ranging from 55% to 59% by weight to avoid the washing of said geothermal vapours, at the same time maintaining a high useful life of said series of rotor blades and said vapour turbine.
It is advantageously possible to convert, by means of said turbine, a greater quantity of energy as the non-washed geothermal vapours have a higher enthalpy with respect to washed geothermal vapours.
Said turbine is advantageously particularly efficient for geothermal vapours containing a quantity of chlorides higher than 2 ppm avoiding the washing thereof.
Said nickel alloy is preferably a nickel-chromium-molybdenum-niobium alloy.
Said nickel alloy preferably comprises a quantity of chromium ranging from 19% to 22.5% by weight, a quantity of molybdenum ranging from 7.0% to 9.5% by weight, a quantity of niobium ranging from 2.75% to 4% by weight.
Said nickel alloy is preferably a super-alloy of nickel known commercially as IN-CONEL 725.
Said turbine preferably also comprises a series of stator blades made of a nickel-chromium-molybdenum alloy to avoid the washing of said geothermal vapours, at the same time maintaining a high useful life of said series of stator blades and the vapour turbine itself.
Said nickel-chromium-molybdenum alloy preferably comprises a quantity of nickel ranging from 54% to 58% by weight, a quantity of chromium ranging from 21% to 23% by weight, a quantity of molybdenum ranging from 12% to 14.5% by weight.
Said nickel-ehromium-molybdenum alloy is preferably a super-alloy of nickel known commercially as HASTELLOY C22.
Said turbine preferably also comprises a series of sealing laminas made of said nickel-chromium-molybdenum alloy and in particular made of HASTELLOY C22.
The purpose of this is to avoid the washing of said geothermal vapours, maintaining a high useful life of said series of rotor blades, stator blades and sealing laminas of said vapour turbine.
According to a further aspect of the present invention, the use of a series of rotor blades made of a nickel-chromium-molybdenum-niobium alloy, in particular made of INCONEL 725, for a vapour turbine operating with geothermal vapours containing corrosive agents, such as chlorides and/or sulfides in particular, is evident, to avoid the washing of said geothermal vapours, maintaining a high useful life of said series of rotor blades.
Advantageously a vapour turbine of the present invention is capable of operating with
overheated geothermal vapour and is also capable of avoiding washing operations of the geothermal vapour when this contains corrosive substances such as chlorides and/or sulfides in a quantity higher than 2 ppm.
It can thus be seen that a vapour turbine according to the present invention achieves the objectives specified above.
The vapour turbine of the present invention thus conceived can undergo numerous modifications and variants, all included in the same inventive concept.
Furthermore, in practice, their dimensions and components can vary according to technical demands.

WHAT IS CLAIMED IS:
1. A vapour turbine operating with geothermal vapours containing corrosive
agents such as chlorides and/or sulfides in particular, characterized in that it com
prises a series of rotor blades made of a nickel alloy containing a quantity of nickel
ranging from 55% to 59% by weight to avoid the washing of said geothermal vapours,
maintaining a high useful life of said series of rotor blades and of said vapour turbine .
2. The turbine according to claim 1, characterized in that said nickel alloy is a
nickel-chromium-molybdenum-niobium alloy.
3. The turbine according to claim 1 or 2, characterized in that said nickel alloy comprises a quantity of chromium ranging from 19% to 22,5% by weight, a quantity of molybdenum ranging from 7.0% to 9.5% by weight, a quantity of niobium ranging from 2.75% to 4% by weight.
4. The turbine according to any of the claims from 1 to 3, characterized in that it comprises a series of stator blades made of a nickel-chromium-molybdenum alloy to avoid the washing of said geothermal vapours, maintaining a high useful life of said series of stator blades and of said vapour turbine.
5. The turbine according to claim 4, characterized in that said nickel-chromium-molybdenum alloy preferably comprises a quantity of nickel ranging from 54% to 58% by weight, a quantity of chromium ranging from 21% to 23% by weight, a quantity of molybdenum ranging from 12% to 14.5% by weight.
6. The turbine according to claim 4 or 5, characterized in that it comprises a series of sealing laminas made of said nickel-chromium-molybdenum alloy to avoid the washing of said geothermal vapours, maintaining a high useful life of said series of sealing laminas and said vapour turbine.
7. Use of a series of rotor blades made of a nickel-chromium-molybdenum-niobium alloy for a vapour turbine operating with geothermal vapours containing corrosive agents, such as chlorides and/or sulfides in particular, to avoid the washing of said geothermal vapours, maintaining a high useful life of said series of rotor blades.
8. A vapour turbine as previously described and illustrated and for the purposes specified above.

Documents

Application Documents

# Name Date
1 3417-del-2005-gpa.pdf 2011-08-21
1 3417-DEL-2005-RELEVANT DOCUMENTS [28-09-2023(online)].pdf 2023-09-28
2 3417-DEL-2005-Correspondence-070422.pdf 2022-04-08
2 3417-del-2005-form-5.pdf 2011-08-21
3 3417-DEL-2005-GPA-070422.pdf 2022-04-08
3 3417-del-2005-form-3.pdf 2011-08-21
4 3417-DEL-2005-Others-070422.pdf 2022-04-08
4 3417-del-2005-form-2.pdf 2011-08-21
5 3417-del-2005-form-18.pdf 2011-08-21
5 3417-DEL-2005-ASSIGNMENT WITH VERIFIED COPY [28-02-2022(online)]-1.pdf 2022-02-28
6 3417-del-2005-form-1.pdf 2011-08-21
6 3417-DEL-2005-ASSIGNMENT WITH VERIFIED COPY [28-02-2022(online)].pdf 2022-02-28
7 3417-DEL-2005-FORM-16 [28-02-2022(online)]-1.pdf 2022-02-28
7 3417-del-2005-description (complete).pdf 2011-08-21
8 3417-DEL-2005-FORM-16 [28-02-2022(online)].pdf 2022-02-28
8 3417-del-2005-correspondence-others.pdf 2011-08-21
9 3417-del-2005-claims.pdf 2011-08-21
9 3417-DEL-2005-POWER OF AUTHORITY [28-02-2022(online)].pdf 2022-02-28
10 3417-del-2005-abstract.pdf 2011-08-21
10 3417-DEL-2005-PROOF OF ALTERATION [18-12-2019(online)].pdf 2019-12-18
11 3417-del-2005-Others-(11-05-2016).pdf 2016-05-11
11 3417-DEL-2005-RELEVANT DOCUMENTS [20-03-2019(online)].pdf 2019-03-20
12 3417-del-2005-Correspondence Others-(11-05-2016).pdf 2016-05-11
12 3417-DEL-2005-RELEVANT DOCUMENTS [23-03-2018(online)].pdf 2018-03-23
13 3417-del-2005-Assignment-(11-05-2016).pdf 2016-05-11
13 3417-DEL-2005-PatentCertificate31-07-2017.pdf 2017-07-31
14 3417-DEL-2005-PatentCertificateCoverLetter.pdf 2017-07-31
14 3417-DEL-2005_EXAMREPORT.pdf 2016-06-30
15 3417-DEL-2005-Correspondence-230217.pdf 2017-02-26
15 Petition Under Rule 137 [21-02-2017(online)].pdf_65.pdf 2017-02-21
16 3417-DEL-2005-Power of Attorney-230217.pdf 2017-02-26
16 Petition Under Rule 137 [21-02-2017(online)].pdf 2017-02-21
17 Form 13 [21-02-2017(online)].pdf 2017-02-21
17 Abstract [22-02-2017(online)].pdf 2017-02-22
18 Claims [22-02-2017(online)].pdf 2017-02-22
18 Other Document [22-02-2017(online)].pdf 2017-02-22
19 Correspondence [22-02-2017(online)].pdf 2017-02-22
19 Examination Report Reply Recieved [22-02-2017(online)].pdf 2017-02-22
20 Description(Complete) [22-02-2017(online)].pdf 2017-02-22
20 Description(Complete) [22-02-2017(online)].pdf_156.pdf 2017-02-22
21 Description(Complete) [22-02-2017(online)].pdf 2017-02-22
21 Description(Complete) [22-02-2017(online)].pdf_156.pdf 2017-02-22
22 Correspondence [22-02-2017(online)].pdf 2017-02-22
22 Examination Report Reply Recieved [22-02-2017(online)].pdf 2017-02-22
23 Claims [22-02-2017(online)].pdf 2017-02-22
23 Other Document [22-02-2017(online)].pdf 2017-02-22
24 Form 13 [21-02-2017(online)].pdf 2017-02-21
24 Abstract [22-02-2017(online)].pdf 2017-02-22
25 3417-DEL-2005-Power of Attorney-230217.pdf 2017-02-26
25 Petition Under Rule 137 [21-02-2017(online)].pdf 2017-02-21
26 3417-DEL-2005-Correspondence-230217.pdf 2017-02-26
26 Petition Under Rule 137 [21-02-2017(online)].pdf_65.pdf 2017-02-21
27 3417-DEL-2005-PatentCertificateCoverLetter.pdf 2017-07-31
27 3417-DEL-2005_EXAMREPORT.pdf 2016-06-30
28 3417-del-2005-Assignment-(11-05-2016).pdf 2016-05-11
28 3417-DEL-2005-PatentCertificate31-07-2017.pdf 2017-07-31
29 3417-del-2005-Correspondence Others-(11-05-2016).pdf 2016-05-11
29 3417-DEL-2005-RELEVANT DOCUMENTS [23-03-2018(online)].pdf 2018-03-23
30 3417-del-2005-Others-(11-05-2016).pdf 2016-05-11
30 3417-DEL-2005-RELEVANT DOCUMENTS [20-03-2019(online)].pdf 2019-03-20
31 3417-del-2005-abstract.pdf 2011-08-21
31 3417-DEL-2005-PROOF OF ALTERATION [18-12-2019(online)].pdf 2019-12-18
32 3417-del-2005-claims.pdf 2011-08-21
32 3417-DEL-2005-POWER OF AUTHORITY [28-02-2022(online)].pdf 2022-02-28
33 3417-del-2005-correspondence-others.pdf 2011-08-21
33 3417-DEL-2005-FORM-16 [28-02-2022(online)].pdf 2022-02-28
34 3417-del-2005-description (complete).pdf 2011-08-21
34 3417-DEL-2005-FORM-16 [28-02-2022(online)]-1.pdf 2022-02-28
35 3417-DEL-2005-ASSIGNMENT WITH VERIFIED COPY [28-02-2022(online)].pdf 2022-02-28
35 3417-del-2005-form-1.pdf 2011-08-21
36 3417-DEL-2005-ASSIGNMENT WITH VERIFIED COPY [28-02-2022(online)]-1.pdf 2022-02-28
36 3417-del-2005-form-18.pdf 2011-08-21
37 3417-DEL-2005-Others-070422.pdf 2022-04-08
37 3417-del-2005-form-2.pdf 2011-08-21
38 3417-DEL-2005-GPA-070422.pdf 2022-04-08
38 3417-del-2005-form-3.pdf 2011-08-21
39 3417-del-2005-form-5.pdf 2011-08-21
39 3417-DEL-2005-Correspondence-070422.pdf 2022-04-08
40 3417-DEL-2005-RELEVANT DOCUMENTS [28-09-2023(online)].pdf 2023-09-28
40 3417-del-2005-gpa.pdf 2011-08-21

ERegister / Renewals

3rd: 03 Aug 2017

From 20/12/2007 - To 20/12/2008

4th: 03 Aug 2017

From 20/12/2008 - To 20/12/2009

5th: 03 Aug 2017

From 20/12/2009 - To 20/12/2010

6th: 03 Aug 2017

From 20/12/2010 - To 20/12/2011

7th: 03 Aug 2017

From 20/12/2011 - To 20/12/2012

8th: 03 Aug 2017

From 20/12/2012 - To 20/12/2013

9th: 03 Aug 2017

From 20/12/2013 - To 20/12/2014

10th: 03 Aug 2017

From 20/12/2014 - To 20/12/2015

11th: 03 Aug 2017

From 20/12/2015 - To 20/12/2016

12th: 03 Aug 2017

From 20/12/2016 - To 20/12/2017

13th: 03 Aug 2017

From 20/12/2017 - To 20/12/2018

14th: 28 Nov 2018

From 20/12/2018 - To 20/12/2019

15th: 10 Dec 2019

From 20/12/2019 - To 20/12/2020

16th: 15 Dec 2020

From 20/12/2020 - To 20/12/2021

17th: 16 Dec 2021

From 20/12/2021 - To 20/12/2022

18th: 14 Dec 2022

From 20/12/2022 - To 20/12/2023