Abstract: The invention is directed to a process for the preparation of a cyclic carbamate starting with o-aminobenzyl alcohol and/or a suitable salt thereof, which is reacted with a cyclisation agent selected from phosgene, diphosgene, triphosgene and mix o tures thereof, and in that the reaction carried out in the presence of an aqueous base, and a water- immiscible organic solvent, said organic solvent mainly comprising at least one compound selected from C2 -alkyl C2 -carboxylates and mixtures of at least one C2 -alkyl C2 -carboxylate with at least one Cs-s-alkane.
Process for the synthesis of cyclic carbamates
Description
The invention is to a process for the preparation of compounds of formula
and suitable salts thereof, wherein R1 through R5 are as defined below.
Some of the cyclic carbamates of formula I are key intermediates for the preparation of
pharmaceuticals and agrochemicals and as precursors for compounds in the material sciences.
WO-A-98/27073 provides a cyclisation reaction of an o-aminobenzyl alcohol of the formula
with phosgene in an organic solvent system containing heptanes and tetrahydrofuran.
WO-A-98/51676 and WO-A-99/61026 provide a related cyclisation process of such an o-amino
benzyl alcohol with phosgene in a biphasic solvent system comprising methyl t rt-butyl
ether/water or toluene/water in the presence of potassium hydrogencarbonate.
The problem to be solved was to supply an alternative process for the production of the
compound of formula I in high yield and quality.
The problem is solved by the process of claim 1.
Provided is a process for the preparation of a compound of formula
and/or a suitable salt thereof, w ere n
R1 is selected from the group consisting of hydrogen, Ci-6-alkyl and (Ci -6-alkoxy)carbonyl, any
alkyl or alkoxy optionally being substituted with one or more halogen atoms, R is selected from
the group consisting of hydrogen, Ci- -alkyl, (Ci -6-alkoxy)carbonyl, C 3-8-alkenyl, C3-8-alkynyl
and C3-6-cycloalkyl, wherein each alkyl, alkoxy, alkenyl, alkynyl and cycloalkyl can carry a
further substituent selected from the group consisting of aryl, aralkyl, Ci- -alkyl and (l'-R 6)-C3-6-
cycloalkyl, wherein R6 is hydrogen, methyl or ethyl, and wherein each such further substituent is
optionally substituted with one or more halogen atoms,
R8 and R9 are independently selected from the group consisting of hydrogen, halogen, and
Ci- -alkyl optionally substituted with one or more halogen atoms,
R10 is selected from the group consisting of hydrogen, aryl, aralkyl, Ci-6-alkyl and
(Ci-6-alkoxy)carbonyl, wherein the aryl moiety in any aryl or aralkyl in turn is optionally
substituted with one or more substituents selected from Ci-6-alkyl, Ci- -alkoxy or C3-8-cycloalkyl,
and wherein each alkyl, alkoxy or cycloalkyl substituent optionally being substituted with one or
more halogen atoms,
said process comprising the reaction of
a compound of formula
and/or a suitable salt thereof,
wherein R', R^, R8, R and R 0 are as defined above
with a cyclisation agent selected from phosgene, diphosgene, triphosgene and mixtures thereof,
characterized in that the reaction is carried out in the presence of an aqueous base and a waterimmiscible
organic solvent, wherein at least 80%-w/w of said organic solvent consists of at least
one compound selected from the group consisting of C2- -alkyl C2-5-carboxylates and mixtures of
at least one C2 - 5-alkyl C2-5-carboxylate with at least one Cs.g-alkane.
In a preferred embodiment the present method is applicable to optically active compounds of
formula II, wherein R1 and R2 are different. After the cyclisation the substituents R and R2
attached to the carbinol carbon atom of formula I have the same configuration then in the
respective compound of formula II.
Herein the term "alkyl" represents a linear or branched alkyl group. By using the form
"Ci .n-alkyl" is meant the main chain of the alkyl group having 1 to n carbon atoms. Ci-g-alkyl
represents for example methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, /ert-butyl,
pentyl, hexyl or octyl. Following the definitions above, R can be a substituted alkyl, especially a
cycloalkyl substituted alkyl can be 2-cyclopropyl-ethyl, 3-cyclopropyl-propyl or
2-cyclobutyl-ethyl.
Herein the term "alkenyl" represents a linear or branched group carrying at least one carboncarbon
double bound. By using the form "C2-n-alkenyl" is meant the main chain of the alkenyl
group having 3 to n carbon atoms. C3-8-alkenyl represents for example 2-propenyl, 2-propenyl
(allyl), 1-butenyl, 1-hexenyl or 3-octenyl. Following the definitions above, R2 can be a
substituted alkenyl, especially a cycloalkyl substituted alkenyl can be 2-cyclopropyl-ethenyl,
3-cyclopropyl-prop-l-enyl, 3-cyclopropyl-prop-2-enyl or 2-cyclobutyl-ethenyl.
Herein the term "alkynyl" represents a linear or branched group carrying at least one carboncarbon
triple bound. By using the form "C3 -n-alkynyl" is meant the main chain of the alkynyl
group having 3 to n carbon atoms. C3-8-alkynyl represents for example 1-propynyl, 2-propynyl,
1-hexynyl or 3-octenyl. Following the definitions above, R2 can be a substituted alkynyl,
especially a cycloalkyl substituted alkynyl can be 2-cyclopropyl-ethynyl, 3-cyclopropylpropynyl,
3-cyclopropyl-prop-2-ynyl or 2-cyclobutyl-ethynyl.
Herein the term "alkoxy" represents a linear or branched alkoxy group. By using the form
"Ci -n-alkoxy" the alkyl group is meant having 1 to n carbon atoms. Ci- -alkoxy represents for
example methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, ec-butoxy, tert-butoxy,
pentyloxy and hexyloxy.
Herein the term "C3-n-cycloalkyl" represents a cycloaliphatic group having 3 to n ring carbon
atoms. C3-8-cycloalkyl is selected from the group consisting of cyclopropyl, cyclobutyl,
cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
Herein the term "aryl" represents an aromatic or heteroaromatic group, selected from the group
consisting of phenyl, naphth-l-yl, naphth-2-yl, furan-2-yl, furan-3-yl, thiophen-2-yl, thiophen-
3-yl, benzo[b]furan-2-yl and benzo[b]thiophen-2-yl.
Herein the term "aralkyl" represents a group consisting of an alkyl and an aryl moiety, wherein
the alkyl moiety of the aralkyl residue is a Ci- alkyl group and the aryl moiety is selected from
the group consisting of phenyl, 1-naphthyl, 2-naphthyl, furan-2-yl, furan-3-yl, thiophen-2-yl,
thiophen-3-yl, benzo[b]furan-2-yl and benzo[b]thiophen-2-yl.
Herein the term "C2 - 5-alkyl C2-5-carboxylate" represents an carboxylic acid ester consisting of
Ci-4 -alkyl an acyl and an alkoxy moiety, wherein the acyl moiety is selected from acetyl,
propionyl, butyryl, isobutyryl, pentanoyl, wo-pentanoyl, ec-pentanoyl and pivaloyl, and
Ci-8 alkyl group and
Herein the term "C5-8-alkane" represents a linear or branched aliphatic or a cycloaliphatic
hydrocarbon having 5 to 8 carbon atoms. In industrial chemistry medium chained aliphatic
hydrocarbons such as hexanes, heptanes and octanes often are used as mixtures of the respective
linear hydrocarbons together with its branched, i.e. isomeric, forms. Though, n-hexane, nheptane
and «-octane can be used also in pure form.
In contrast to prior attempts it is surprisingly not required to control the pH of the reaction
mixture in a certain range, although the formation of by-products is limited while keeping the pH
of the aqueous phase at a pH between about pH 6 to 11. Also at a too much acidic pH the
compounds of formula I or II might be extracted from the water-immiscible solvent into the
aqueous phase. Adjustment of the pH can be carried out for example by pre-charging a suitable
base in the reaction vessel and/or by controlled addition of a suitable base, preferably a water
miscible and/or soluble base, more preferably an inorganic or organic base selected from the
group consisting of alkali or alkaline earth metal carbonates, hydrogencarbonates and
hydroxides, piperidine, Ci-4-alkylpiperidines, pyridine, Ci-4 -alkylpyridines, morpholine and tri-
Ci-4 -alkylamines. Weak bases such as alkali or alkaline earth metal carbonates,
hydrogencarbonates are preferred.
When as compound of formula II, a chiral o-aminobenzyl alcohol is used as a starting compound
in the process, i.e. wherein R1 to R5 is as defined above with the proviso that R1 and R2 are not
identical, the confirmation of the starting compound is maintained in the compound of formula I.
In a preferred embodiment the reaction is carried out with compounds where R1 and R2 are not
identical.
In a further preferred embodiment in compound of formula II the substituent Rl is
Ci-4-perfluoroalkyl, R is 2-cyclopropyl-ethynyl or 2-(l '-methyl-cyclopropyl)-ethynyl, R is a
halogen atom in ara-position to the amino group, preferably chlorine, R9 is hydrogen and R10 is
hydrogen.
In another preferred embodiment in compound of formula II the substituent R1 is trifluoro
methyl, R is 2-cyclopropyl-ethynyl, R is chlorine in p ara-position to the amino group, R is
hydrogen and R10 is hydrogen.
The reaction preferably is carried out with the free base of formula II as starting compound,
though also a salt of said base with an inorganic or organic acid can be used. Suitable salts are
for example hydrochlorides, sulfonates, methanesulfonates, oxalates or tartrates. Since the free
base of formula II is an amine, usually such salts contain an excess amount of acid. Thus, useful
are stoichiometric and non-stoichiometric mixtures and/or salts of the compound of formula II
and at least one acid. A preferred salt is a methanesulfonate which comprises about 1:1 to 1.5:1
molar equivalents of methanesulfonic acid to the free amino base of formula II. Where
appropriate, an additional amount of the base to neutralize the effect of hydrolysis of an acidic
salt has to be taken into consideration, to avoid side reactions since the cyclisation of the present
process preferably is carried out at a pH of the aqueous phase between about pH 6 to 11. In case
of a strongly acidic salt, such as a methanesulfonate, an additional step to release the free base
might be useful. In a preferred embodiment liberating the free base from an acidic salt can be
performed in a mixture of a water-immiscible organic solvent and a weak aqueous base,
preferably a water miscible and/or soluble base, more preferably an inorganic or organic base
selected from the group consisting of alkali or alkaline earth metal carbonates,
hydrogencarbonates and hydroxides, piperidine, C -alkylpiperidines, pyridine, Ci-4-alkylpyridines,
morpholine and tri-Ci -4-alkylamines.
If a salt of the compound of formula II is liberated in an additional step before cyclisation, in a
preferred embodiment, the liberation takes place in the same solvent then the cyclisation to allow
easy handling. Since the solvent in the present invention is deemed to be water-immiscible, the
base liberation can be carried our easily by extracting the organic solvent with an aqueous base.
As outlined above, in a preferred embodiment the organic solvent of the extraction mainly
consists of at least one compound selected from C2-5-alkyl C 2-5-carboxylates and mixtures of at
least one C2-5-alkyl C2-5-carboxylate with at least one C5-8-alkane. Most preferred solvents are
selected from acetates, hexanes, heptanes and mixtures thereof.
In the present process phosgene or its two equivalents diphosgene and triphosgene can be used
equivalently as cyclisation agent, either in pure form or as a mixture. By using phosgene,
diphosgene and triphosgene as cyclisation agents in the above described process one should be
aware that 1 molar equivalent of diphosgene replaces 2 molar equivalents of phosgene, while 1
molar equivalent of triphosgene replaces 3 molar equivalents of phosgene. The reactivity of all
three compounds is essentially identical.
Phosgene is a gas, diphosgene is a liquid and triphosgene is a solid at standard conditions (20 °C,
1 bar), respectively. Thus, it depends mainly on the desired reaction conditions and local
availability which cyclisation agent is used.
In a preferred embodiment in the process as described above the cyclisation agent is provided in
gaseous form.
In another preferred embodiment in the process as described above the cyclisation agent is
provided in liquid form, either in pure form, as a solution or as a suspension. Phosgene,
diphosgene and triphosgene can be dissolved in an aprotic solvent to be provided in liquid form.
In yet another preferred embodiment in the process as described above the cyclisation agent is
provided in solid form.
In order to improve workup procedure it might be useful to supply the cyclisation agent in slight
excess. In the process as described above, the molar ratio of the cyclisation agent, calculated in
molar equivalents of phosgene, to the compound of formula II should be in a range from 1:4,
preferably in the range of :1 to 2.5: 1, more preferably in the range of 1.1:1 to 1.5:1. Generally,
the most preferred molar ratio is about 1.2: 1. It has to be noted that even a large excess of the
molar ratio of phosgene equivalents to the compound of formula II 10:1 has almost no negative
effect in view of the product formation.
A requirement for the present invention is that the base is a water-miscible and/or -soluble base
to allow extraction of the base into the aqueous phase after completion of the cyclisation.
The base used in the reaction can be an inorganic or organic base.
Examples for inorganic bases are alkali or alkaline earth metal carbonates, hydrogencarbonates
and hydroxides.
Examples of suitable organic bases are piperidine, Ci-4 -alkylpiperidines, pyridine, C -alkylpyridines,
morpholine or tri-Ci -4-alkylamines, wherein any of the alkyl moieties are
independently selected from the group consisting of methyl, ethyl, propyl, isopropyl, butyl,
isobutyl, sec-butyl and tert-butyl. Using weak bases like alkali or alkaline earth metal
carbonates, hydrogencarbonates or a combination of different bases with different p¾
establishes a buffered system. With strong bases like alkali or alkaline earth metal hydroxides a
parallel dosage of phosgene and the base might be of advantage.
The process as described above, wherein the weight ratio of water to the organic solvent is in the
range from 1: 1 to 5:1, preferably in the range from 2:1 to 3.5: 1.
In a preferred embodiment at least 90%-w/w of said organic solvent consists of at least one
compound selected from the group consisting of C2-5-alkyl C2-5-carboxylates and mixtures of at
least one C2-5-alkyl C2-5-carboxylate with at least one C5-8-alkane.
In a further preferred embodiment at least 95%-w/w, even more preferred at least 98%-w/w, of
said organic solvent consists of at least one compound selected from the group consisting of
C2-5-alkyl C2-5-carboxylates and mixtures of at least one C2-5-alkyl C2-5-carboxylate with at least
one C5.8-alkane. In another preferred embodiment the water-immiscible organic solvent,
consisting of at least one compound selected from the group consisting of C2-5-alkyl
C2-5-carboxylates and mixtures of at least one C2-5-alkyl C2-5-carboxylate with at least one
C5-8-alkane.
Compounds forming the maximum 10%-w/w, in a preferred embodiment maximum 5%-w/w
and in an even ore preferred embodiment maximum 2%-w/w part, of the solvent different from
the group consisting of C2-5-alkyl C2-5-carboxylates and mixtures of at least one C2-5-alkyl
C2-5-carboxylate with at least one C5-8-alkane, are defined to be additional organic co-solvent.
The term "additional organic co-solvent" comprises also mixtures of more than one organic
compound.
The additional organic co-solvent is also required to be immiscible with water and shall not act
as solubilizer or emulsifier between the aqueous and the organic phase in the reaction mixture.
The additional co-solvent must be miscible with the at least one compound selected from the
group consisting of C2-5-alkyl C2-5-carboxylates and mixtures of at least one C2-5-alkyl
C2-5-carboxylate with at least one C5-8-alkane in the presence of water. The additional co-solvent,
at least after being solved in the water-immiscible solvent is required to have a lower density
than water to avoid separation of the solvents into three phases.
The additional organic solvent may comprise compounds selected from the group consisting of
aromatic compounds such as benzene, toluene, substituted naphthalenes, or fully or partially
hydrogenated compounds such as decalin or tetralin.
Preferably, the C2-5-alkyl C2-5-carboxylate is selected from the group consisting of C2-5-alkyl
acetates, C2-5-alkyl propionates, and C2-5-alkyl butyrates.
In a further preferred embodiment the C2-5-alkyl C2-5-carboxylate is selected from the group
consisting of C2-5-alkyl acetates and C2-5-alkyl propionates.
Expediently, the C5-8-alkane is selected from the group consisting of pentanes, cyclopentane,
hexanes, cyclohexane, heptanes, cycloheptane and octanes.
Even more expediently, the C 5-8-alkane is selected from the group consisting of hexanes,
cyclohexane, heptanes and cycloheptane, preferably from heptanes.
Preferably, the cyclization is carried out at a temperature from -30 to +40 °C, even more
preferably from 0 to +20 °C.
The workup procedures of the compound of formula I for removal of excess phosgene,
diphosgene or triphosgene and organic solvents to facilitate crystallization are preferably carried
out as known in the art.
According to the invention the product can be obtained with normal liquid-liquid extraction. The
product is dissolved as the free base in said organic solvent comprising at least one compound
selected from C 2-5-alkyl C2-5-carboxylates and mixtures of at least one C2 - 5-alkyl C2-5-carboxylate
with at least one C5-8-alkane.
After extraction the product can be directly crystallized in the organic solvent. Thus cyclisation,
optional liquid-liquid extraction and crystallization can be carried out without any solvent
change regarding the organic solvent. Advantageously the crystallization is carried out by
seeding the organic solvent comprising the product with seed crystals of the product.
In another embodiment the compound of formula
and/or a suitable salt thereof,
wherein R is selected from the group consisting of Ci-6-alkyl and (C - -alkoxy)carbonyl, any
alkyl or alkoxy optionally being substituted with one or more halogen atoms, R2 is C 3- -alkynyl,
wherein said alkynyl can carry a further substituent selected from the group consisting of aryl,
aralkyl, C . -alkyl and (l '-R )-C3 - -cycloalkyl, wherein R6 is hydrogen, methyl or ethyl, and
wherein each such further substituent is optionally substituted with one or more halogen atoms,
R8, R9 and R10 are as defined above,
is obtained by a process comprising the steps of
(i) reacting a protic chiral auxiliary with a diorganylzinc(II) compound, in the presence of an
aprotic solvent, at a temperature in the range of 0 to 40 °C, and
(ii) keeping the mixture of step (i), preferably under stirring, in a first maturation period until the
reaction is completed, but of at least 20 min, preferably between about 20 to 120 min, and
(iii) reacting to the mixture obtained after step (ii) with a compound of formula
H R2 HI,
wherein R2 is C3 -8-alkynyl,
(iv) keeping the mixture of step (iii), preferably under stirring, in a second maturation period
until the reaction is completed, but of at least 10 min, preferably between about 10 to 120 min,
and
(v) reacting to the mixture obtained after step (iv) with a compound of formula
wherein R is Ci- -alkyl and (Ci -6-alkoxy)carbonyl, any alkyl or alkoxy optionally being
substituted with one or more halogen atoms, R2 is C3-8-alkynyl, and wherei n R8, R9 and R10 are
as defined above, and an organolithium base and/or another alkali metal organyl at a temperature
in the range of 0 to 40 °C, and
(vi) keeping the mixture obtained in step (v) to 10 to 50 °C until the reaction is completed, to
obtain the compound of formula II.
The major advantages of the present process are the reduction of the zinc(II) catalyst in view of
the compound of formula IV, the need of only one protic compound to first react with the
zinc(II) catalyst, especially the possibility to avoid addition of fluorinated alcohols.
In contrast to known processes which requires the addition of two different proton sources,
wherein an additional proton source can be methanol, ethanol, propanol, isopropyl alcohol,
butanol, isobutanol, sec-butanol, rt-butanol, pentanol, (CH3) CCH2OH, (CH3)3CCH(CH3)OH,
Cl3CCH2OH, CF3CH2OH, CH2=CHCH2OH, (CH3)2NCH2CH2OH or even another chiral
compound. The present process can be carried out with only one proton source, which at the
same time acts as a chiral auxiliary. A preferred proton source in that sense is an ephedrine
derivative, more preferably a phenylnorephedrine derivative (PNE derivative).
The present process relies on a specific order of addition of the compounds of the
diorganylzinc(II) compound, the compounds of formulae III and IV comprising the two
maturation periods of steps (ii) and (iv), respectively. The term "until the reaction is completed"
in steps (ii), (iv) and (vi) means that at least 90% conversion, preferably at least 95%, more
preferably 98%, is reached in the respective step. The course of conversion can be followed for
example by calorimetric measurements, "React IR" or FT-IR. Also possible are off-line methods
such as gas chromatography or HPLC. It is possible to establish a correlation between
conversion and the output of analytical methods easily with computer aided systems. We suspect
that maybe in the first maturation period a first catalytic species if formed, while in the second
maturation step a second catalytic species is formed. The first catalytic species might comprise a
compound of formula (alkyl)Zn(chiral auxiliary) which might be solved in the mixture or
aggregated. The second catalytic species might comprise a compound of formula
(CºC-R2)Zn(chiral auxiliary), wherein R2 is as defined above. By using diethylzinc ethane
evolution of approx. 1 equivalent in respect to diethylzinc could be observed in steps (ii) and
(iv), respectively. Ethane formation could be detected during the diethylzinc addition. The ethane
release was observed with a delay with respect to the diethylzinc addition. It is assumed that
ethane was first dissolved in the reaction solution and then released to the gas phase. -NMR
analysis shows that some ethane remained dissolved in the reaction mixture. The structures of
the catalytic species can be only proposed because of the difficulties to separate the catalytic
species from the respective precursors. Especially, since catalytic species would be highly
sensitive to air and humidity.
In step (v) the addition of the compound of formula IV and the organolithium base and/or the
other alkali metal organyl, are fed simultaneously, either separately or as a mixture.
Advantageously, dosage of the organolithium base and/or the other alkali metal organyl starts
ahead of the dosage of the compound of formula IV, preferably up to 20 min ahead, more
preferably up to about 10 min ahead.
The process is designed to obtain the compound of formula I with an enantiomeric purity (ep) of
at least 90%, preferably with an ep of at least 95%, more preferred of at least 96%, and even
more preferred of at least 97%.
The protic chiral auxiliary induces the formation of the desired enantiomer during reaction of the
compounds of formulae III and IV. The expression "protic chiral auxiliary" means that the chiral
auxiliary comprises at least one proton which can be easily removed, most preferred in a
hydroxyl group.
In a preferred embodiment the chiral auxiliary is selected from protic N,N-disubstituted
ephedrine derivatives.
Suitable protic N,N-disubstituted ephedrine derivatives are for example diastereoisomers of
2-(di-Ci -4-alkylamino)-l-phenyl-propan-l-ols, such as 2-(dimethylamino)- 1-phenyl-propan-l-ol,
2-(diethylamino)- 1-phenyl-propan- 1-ol, 2-(diisopropylamino)- 1-phenyl-propan- 1-ol, and
2-(dibutylamino)- 1-phenyl-propan-l-ol; 2-(N,N-C4 - -alkylene)-l -phenyl-propan- 1-ols, such as
1-phenyl-2-(piperidinyl)propan- 1-ol and 1-phenyl-2-(pyrrolidinyl)propan- 1-ol, and 2-( 1-
heteroaryl)-l -phenyl-propan- 1-ols, such as l-phenyl-2-(l-pyridinyl)propan-l-ol, 1-phenyl-
2-(l-piridinyl)propan-l-ol and . More specific examples are (l/?,25)-2-(dimethylamino)-
1-phenyl-propan- l-ol (CAS [552-79-4]), (lS,2#)-2-(dimethylamino)- 1-phenyl-propan-l-ol (CAS
[42151-56-4]), (li?,2/?)-2-(dimethylamino)- 1-phenyl-propan-l-ol (CAS [14222-20-9]), (15,25)-
2-(dimethylamino)- 1-phenyl-propan-l-ol (CAS [51018-28-1]), (U?,2S)-l-phenyl-
2-(pyrrolidinyl)propan-l-ol (CAS [127641-25-2]), ( lS,2/?)-l-phenyl-2-(pyrrolidinyl)propan-l-ol
(CAS [123620-80-4] = (1S,2£)-PNE), (l^,2/?)-l-phenyl-2-(pyrrolidinyl)propan-l-ol and
(1S,2S)- 1-phenyl-2-(pyrrolidinyl)propan- 1-ol.
In a preferred embodiment the protic chiral auxiliary is (l/?,25)-phenylnorephedrine ((li?,2S)-
PNE or (15,2i?)-l-phenyl-2-(pyrrolidinyl)propan-l-ol) to obtain ((5)-2-(2-amino-5-
chlorophenyl)-4-cyclopropyl-l,l,l-trifluorobut-3-yn-2-ol (DMP-266) or one of its salts, from 1-
(2-amino-5-chlorophenyl)-2,2,2-trifluoroethanone and cyclopropylacetylene.
The amount of the zinc(II) catalyst needed in the reaction can be reduced remarkably compared
to processes known in the art. It must be noted that the amount of the zinc(II) catalyst can be
surprisingly much lower than the amount of the chiral auxiliary.
In a preferred embodiment the molar ratio of the protic chiral auxiliary to the diorganylzinc(II)
compound is in the range of 1.5:1 to 1:1, preferably in the range of 1.3:1 to 1.2:1, most preferred
at about 1.24:1.
The chiral auxiliary mediates the catalytic process. Although one would expect that zinc(II)
catalyst and the protic chiral auxiliary form a zinc(II) complex with a certain stoichiometry it is
not necessary to add the chiral auxiliary and the zinc(II) catalyst in equimolar amounts.
Preferably the amount of the chiral auxiliary is slightly higher than the amount of the
diorganylzinc(II) catalyst.
Suitable diorganylzinc(II) compounds are for example selected from di(Ci -8-alkyl) and
di(C - -cycloalkyl), wherein the alkyl moieties are selected from the group consisting of methyl,
ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl and tert-butyl, pentyl, hexyl, heptyl, and octyl,
and wherein the cycloalkyl moieties are selected from the group consisting of cyclopropyl,
cyclobutyl, cyclopentyl and cyclohexyl.
In another embodiment the diorganylzinc(II) compound is diphenylzinc or Zn(OTf) 2, wherein
OTf denotes a "triflate" (trifiuoromethanesulfonate) group.
In a preferred embodiment in step (i) the molar ratio of the protic chiral auxiliary to the
compound of formula III is in the range of 1:1 to 1: 0, preferably in the range of 1:2 to 1:6, more
preferably of 1:3 to :6.
Addition of the compound of formula III can be carried out at a temperature from 0 to +40 °C,
preferably from +10 to about +30 °C.
In a preferred embodiment the compound of formula II is selected from the group consisting of
terminal C 3-8-alkylalkynes, cyclopropylacetylene, (l'-methyl)-cyclopropylacetylene and
phenylacetylene.
It is recommended, that in step (iii) the compound of formula II is used in a molar ratio to the
compound of formula IV of 1:0.6 to :1.3
In a preferred embodiment the compounds of formula II are selected from the group consisting
of /?-methylbenzaldehyde, /?-fluorobenzaldehyde, /?-cyanobenzaldehyde, /?-methoxybenzaldehyde,
naphthalenealdehyde, cinnamaldehyde, C3.20-alkane aldehydes, cyclohexyl
carbaldehyde, cyclohexyl metyl ketone, methyl 4-metylcyclohexyl ketone, 1,1,1 -trifluoroacetophenone
and 2-(trifluoroaceto)-4-chloro-anilin.
In a further preferred embodiment the organolithium base and/or the other alkali metal organyl is
added in a molar ratio to the compound of formula III in the range of 1:0.8 to 1:1.5, preferably of
1:0.8 to 1:1.2.
A suitable organolithium base in the present process is selected from the group consisting of (Ci.
6-alkyl)lithium, lithium diisopropylamide (LDA), lithium hexamethyldisilazide (LiHMDS),
phenyllithium, and naphthyllithium.
Preferably the organolithium base is an organolithium compound or a lithium organic salt.
In preferred embodiment such organometallic lithium compound is selected from the group
consisting of phenyllithium and (Ci. -alkyl)lithium.
Preferably said (Ci - -alkyl)lithium is selected from the group consisting of methyllithium,
«-butyllithium, sec-butyl lithium, rt-butyllithium, and hexyllithium.
In a further preferred embodiment the lithium organic salt is a lithium
Preferably the other alkali metal organyl is selected from sodium or potassium Ci-6-alkoxides,
sodium or potassium diisopropylamine, and sodium or potassium hexamethyldisilazide.
The organolithium base and/or the other alkali metal organyl can be used either independently or
in mixtures of at least two different species.
During the addition of the organolithium base and/or the other alkali metal organyl the reaction
mixture is preferably kept at a temperature from about +10 to +30 °C.
In the present process the aprotic solvent preferably is selected from the group consisting of
aprotic non-polar solvents, aprotic polar solvents and mixtures thereof.
The solvents of agents added in solution may be selected independently of each other.
Particularly preferred the solvent is selected from the group consisting of tetrahydrofuran,
benzene, chlorobenzene, ø-, m-, p-dichlorobenzene, dichloromethane, toluene, o-, m-, and
/^-xylene, hexanes, heptanes, cyclohexane, pentane, 1,4-dioxane, cyclohexane, diethyl ether, tertbutyl
methyl ether, diisopropyl ether, N-methylpyrrolidine, and mixtures thereof.
Examples:
The chiral alkynylation reaction (Examples 1, 2, and 4) was performed two times with the
respective starting compounds. Once using (l ,2S)-l-phenyl-2-(pyrrolidinyl)propan-l-ol
((1 ,2 -PNE) as 1igand and once using (1R,2S)- 1-phenyl-2-(pyrrolidinyl)propan- 1-ol ((1S,2R)-
PNE) as ligand. This allowed the unambiguous assignment of the two enantiomers of the
products by HPLC. In the experimental details below, only the experiments using (lS,2./?)-PNE
are described in detail because there was no major difference between (li?,2S)-PNE and (\S,2R)-
PNE. For the all examples using cyclopropylacetylene addition to a diethylzinc catalyst, an
ethane release could be observed as well as described in Example 1. The configuration of the
products of example 2 to 4 were tentatively assigned based on the assumption that reaction in
presence of ligand (1 ',2 )-PNE gives preferably the product with (^-configuration in analogy
to Example 1 (SD573 process), where the configuration of both enantiomers are well known. In
the SD573 process (li?,2 S)-PNE gives preferably the product with (S)-configuration. Procedures
for analytical methods A to D are attached after the examples.
In all cyclisation examples, except where not expressively mentioned, the ee was not measured
since in all cyclisation examples with final ee-measurement the product (for example DMP-266)
always corresponded to the ee of the respective starting compound, for example in case of
cyclisation of SD573-MSA or SD573 free base (CAS [209412-27-7], 99.6% ee) to DMP-266.
ee = enantiomeric excess = ((S)-(R))/((S)+(R))
ep =enantiomeric purity = (S)/((S)+(R))
Example 1: (S)-2-(2-Amino-5-chlorophenyl)-4-cyclopropyI-l,l,l-trifluorobut-3-yn-2-ol
mesylate (2:3 mol/mol) (SD573-MSA)
A solution of ( 1 ,2S)-PNE (18.1%-w/w, 171.6 g, 151 mmol) in a THF/toluene mixture
(9:l-w/w) was charged in a vessel and cooled to 17 °C. A solution of diethylzinc in toluene
(29%-w/w, 52.0 g, 122 mmol) was added at 15 to 20 °C and the mixture was aged at said
temperature for 30 min. Ethane (approx. 1 equivalent in respect to diethylzinc) was formed
during the diethylzinc addition and partially released from the reaction mixture. The ethane
release is observed with a delay with respect to the diethylzinc addition, since ethane is first
dissolved in the reaction solution and then released to the gas phase. According to -NMR
analysis some ethane remained dissolved in the reaction mixture. A solution of cyclopropyl
acetylene in toluene (70%-w/w, 57.0 g, 600 mmol) was added at 15 to 20 °C and the resulting
mixture was aged at 20 °C for 1 h. During the addition of cyclopropylacetylene additional ethane
(approx. 1 equivalent in respect to diethylzinc) was formed and released to the gas phase. A
solution of butyllithium (BuLi) in toluene (157.6 g, 2.92 mol/kg, 460 mmol) and a solution of 1-
(2-amino-5-chlorophenyl)-2,2,2-trifluoroethanone (SD570, 40. 1%-w/w, 278.0 g, 500 mmol) in
THF/toluene (l:l-w/w) were added in parallel to the reaction mixture at 20 °C within 180 min.
The addition of BuLi was started 10 min in advance of the SD570 addition. Butane was formed
during BuLi addition. However, most of the butane remained dissolved in the reaction mixture
and only weak gas formation was observed. The course of reaction can be followed online, for
example by calorimetric measurements or by "React IR" also called "in-situ FTIR". After
complete addition of SD570 the reaction mixture was stirred for 30 min at 20 °C, then heated to
30 °C over a period of 60 min and aged for 6 h at 30 °C. The reaction mixture was stirred at 0 °C
overnight, diluted with toluene (218 g) at 20 °C and quenched by addition of aqueous citric acid
( 1 M, 375 g). After stirring for 15 min the phases were separated and the aqueous phase was
discarded. The organic phase was successively washed with water (76 g), aqueous NaHC0 3
solution (5%-w/w, 200 g), and again water (100 g). The organic phase was partially
concentrated, then diluted with toluene (250 g), again partially concentrated and diluted with
toluene (976 g residue). The enantiomeric purity (ep) of (5)-2-(2-amino-5-chlorophenyl)-4-
cyclopropyl-l,l,l-trifluorobut-3-yn-2-ol (SD573) in the crude product was approx. 96 to 97%
according to Method B. Although not belonging to the preparation process, described is also a
process to transfer the product in a more stable form as a methanesulfonic acid salt. The residue
was diluted with isopropyl alcohol (126.6 g). Then methanesulfonic acid (43.3 g) was added over
a period of 30 min at 30 °C. Seeding crystals (between 1 and 10 mg) were added and the mixture
aged for 30 min at 30 °C. A second portion of methanesulfonic acid (26.5 g) was added over a
period of 60 min at 30 °C. The resulting solution was aged for 30 min at 30 °C and later cooled
to 5 °C over a period of 60 min. After further aging at 5 °C for 30 min, the product was filtered
and washed with cold toluene/isopropyl alcohol (10:l-w/w, 262 g) at 5 °C. The wet
methanesulfonic acid salt of SD573 ((S)-2-(2-amino-5-chlorophenyl)-4-cyclopropyl- 1,1,1 -
trifluorobut-3-yn-2-ol mesylate (2:3 mol/mol, SD573-MSA, compound of formula II, wherein R1
is trifluoromethyl, R2 is 2-cyclopropyl-ethynyl, R8 is 5-chloro, R9 is hydrogen and R10 is
hydrogen) was dried in vacuo at 40 °C to obtain 188.3 g (432 mmol, 86.5% yield). SD573-MSA
was obtained with a purity of 99.9% and 99.7% ep, according to Method A.
Example 2: (R)-2-(2-Aminobiphenyl-3-yl)-4-cyclopropyI-l,l »l-trifluorobut-3-yn-2-ol
methanesulfonate (1:1 mol/mol)
(15,2/?)-PNE (20.3 g, 18.0 mmol) in THF/toluene (9:l-w/w, 18.2%-w/w) was charged under a
nitrogen atmosphere to a dry, jacketed 150 mL-reactor with agitator. Diethylzinc in toluene
(29.9%-w/w, 6.48 g, 15.7 mmol) was added by syringe keeping the temperature at 17 to 22 °C
and the mixture was aged for 30 min at 17 °C. Cyclopropylacetylene in toluene (69.6%-w/w,
6.84 g, 72.0 mmol) was added at 17 °C and the resulting mixture was aged for about 60 min at
20 °C. To the reaction mixture BuLi in toluene (3.06 mol/kg, 19.9 g, 60.9 mmol) and (l-(4-
aminobiphenyl-3-yl)-2,2,2-trifluoroethanone (CN46225, 43.0%-w/w, 37.0 g, 60 mmol) in
THF/toluene ( 1: 1-w/w) were added in parallel over a period of 3 h at 20 °C. The addition of
BuLi was started about 10 min in advance of the CN46225 addition. After complete addition of
BuLi and CN46225, the reaction mixture was stirred for 30 min at 20 °C, then heated over a
period of 1 h to 30 °C and aged for 6 h at 30 °C. The reaction mixture was stirred overnight at
0 °C. HPLC indicated 94.3% conversion and 95.6% ep, according to Method B. The reaction
mixture was diluted with toluene (27.6 g) at room temperature and quenched by adding aqueous
citric acid ( 1 M, 45.3 g). The phases were separated and the aqueous phase was discarded. The
organic phase was successively washed with water (9.1 g), aqueous NaHC0 3 (5%-w/w, 24.2 g)
and water (12.0 g). The organic phase was heated under reduced pressure to partly remove THF
while toluene is added to finally reach a THF poor residue (54.5 g) of (i?)-2-(4-aminobiphenyl-
3-yl)-4-cyclopropyl-l,l,l-trifluorobut-3-yn-2-ol (CN46630, compound of formula II, wherein R
is trifluoromethyl, R2 is 2-cyclopropyl-ethynyl, R8 is 5-phenyl, R9 is hydrogen and R 0 is
hydrogen). The residue was diluted with isopropyl alcohol (16.7 g) and toluene (60.0 g). A first
portion of methanesulfonic acid (5.48 g, 57.0 mmol) was added by a syringe pump over a period
of 30 min at 30 °C. Seeding crystals (a small portion between 1 and 10 mg) were added and the
mixture was aged for 30 min at 30 °C. A second portion of methanesulfonic acid (2.88 g,
30.0 mmol) was added by syringe pump over a period of 45 min at 30 °C. The mixture was
stepwise aged and cooled over 1 h 45 min to finally reach 5 °C. The product was filtered, and the
filter cake was washed with toluene/isopropyl alcohol (10:l-w/w, 27.0 g) and dried in vacuo at
40 °C. The dry product (7?)-2-(4-aminobiphenyl-3-yl)-4-cyclopropyl-l,l,l-trifluorobut-3-yn-2-ol
methanesulfonate ( 1: 1 mol/mol, CN46630-MSA) (15.2 g, 35.6 mmol, 59% yield) was obtained
as an off-white solid (99.4% purity and 99.7% ep, according to Method B). The combined
mother liquor and wash liquor was concentrated (46.7 g residue). During storage overnight at
3 °C a white solid crystallized from the residue. The product was filtered, washed with toluene,
and then toluene/isopropyl alcohol (10:l-w/w, 10 g) was added. After stirring the slurry for
60 min at 30 °C the mixture was cooled to 3 °C and filtered. The product was washed with
toluene/isopropyl alcohol (10:l-w/w) and dried in vacuo at 40 °C. CN46630-MSA (second crop,
3.8 g, 8.0 mmol, 13% yield) was obtained as off-white solid (89.7% purity at 99.7% ep,
according to Method B).
Example 3: (R)-4-(Cyclopropylethynyl)-6-phenyl-4-(trifluoromethyl)-l,4-dihydro-2 H-3,lbenzoxazin-
2-one
(/?)-2-(4-Aminobiphenyl-3-yl)-4-cyclopropyl- 1,1,1 -trifluorobut-3-yn-2-ol methanesulfonate
(CN46630-MSA) of example 2 (14.7 g, 34.4 mmol) in ethyl acetate/heptanes ( 1: 1 v/v, 27.9 g)
was charged in a jacketed 150 mL-reactor with agitator and off-gas scrubber with caustic soda.
After addition of aqueous Na2C0 3 (12%-w/w, 32.3 g, 36.4 mmol, formation of gas during
addition!) the mixture was stirred for 15 min at 15 °C. The aqueous phase was separated and
discarded. Aqueous Na2C0 3 (12%-w/w, 4 1 g, 46 mol) and ethyl acetate (20 g) were charged to
the organic phase. Triphosgene (4.41 g, 14.9 mmol) was added in portions over a period of
25 min at 10 °C. The reaction mixture was stirred for 2 h at 8 °C. The mixture was diluted with
ethyl acetate (45 g) and the phases were separated. The aqueous phase was discarded. The
organic phase was washed with water (12 mL), dried over MgS0 4, filtered and concentrated and
dried at 50 °C under reduced pressure to obtain (/?)-4-(cyclopropylethynyl)-6-phenyl-
4-(trifluoromethyl)-l,4-dihydro-2 H-3,l-benzoxazin-2-one (CN46685, 12.1 g, 33.9 mmol, 98%)
as a yellowish solid (99.5% purity, according to Method C).
Example 4: (R)-2-(2-Amino-5-fluorophenyl)-4-cyclopropyl-l,l l-trifluorobut-3-yn-2-ol
methanesulfonate (2:3 mol/mol)
(lS,2/?)-PNE (18.2%-w/w, 20.3 g, 18.0 mmol) in THF/toluene (9:l-w/w) was charged under
nitrogen to a dry, jacketed 150 mL-reactor with agitator. Diethylzinc in toluene (29.9%-w/w,
6.20 g, 15.0 mmol) was added by syringe while keeping the temperature at 17 to 22 °C. Then the
mixture was aged for 30 min at 17 °C. Cyclopropylacetylene in toluene (69.6%-w/w, 6.82 g,
71.8 mmol) was added at 17 °C and the reaction mixture was aged for 60 min at 20 °C. To the
reaction mixture BuLi in toluene (19.3 g, 3.06 mol/kg, 59.1 mmol) and l-(2-amino-
5-fluorophenyl)-2,2,2-trifluoroethanone (CAS [214288-07-0], CN46221, 36.9%-w/w, 33.7 g,
60.0 mmol) in THF/toluene (l:l-w/w) were added in parallel over a period of 3 h at 20 °C. The
addition of BuLi was kept 10 min in advance of the CN46221 addition. After completed addition
the reaction mixture was stirred at 20 °C for 30 min, heated over a period of 60 min to 30 °C and
aged for 6 h at 30 °C. The reaction mixture was stirred overnight at 0 °C. HPLC indicated 82.4%
conversion and 96.0% ep of (i?)-2-(2-amino-5-fluorophenyl)-4-cyclopropyl- 1,1,1 -trifluorobut-
3-yn-2-ol (CN46619) according to Method B. The reaction mixture was diluted with toluene
(27.6 g) and quenched by adding aqueous citric acid ( 1 M, 45.3 g). The phases were separated
and the aqueous phase was discarded. The organic phase was successively washed with water
(9.1 g), aqueous NaHC0 3 (5%-w/w, 24.2 g) and water (12.0 g). The organic phase was
alternating concentrated and diluted with toluene to remove THF. The obtained residue (5 1.0 g)
was diluted with isopropyl alcohol (16.7 g) and toluene (60.0 g). Methanesulfonic acid (8.36 g,
87.0 mmol) was added by a syringe pump over a period of 75 min at 30 °C. The mixture was
aged and cooled stepwise over 2 h 10 min to reach 5 °C before the mixture was filtered. The
filter cake was washed with toluene/isopropyl alcohol (10:l-w/w, 27.0 g) and dried under
reduced pressure at 40 °C. The dry product (/?)-2-(2-amino-5-fiuorophenyl)-4-cyclopropyll,
l,l-trifluorobut-3-yn-2-ol methanesulfonate (2:3 mol/mol, CN46619-MSA, compound of
formula II, wherein R1 is trifiuoromethyl, R2 is 2-cyclopropyl-ethynyl, R8 is 5-fluoro, R9 is
hydrogen and R10 is hydrogen) (19.46 g, 46.6 mmol, 78% yield) was obtained as a yellowish
solid (99.8%-w/w by -NMR, and 99.8% ep, according to Method B).
Example 5: (R)-4-(Cyclopropylethynyl)-6-fluoro-4-(trifluoromethyl)-l,4-dihydro-
2i/-3,l-benzoxazin-2-one
(7?)-2-(2-Amino-5-fluorophenyl)-4-cyclopropyl- 1,1,1 -trifluorobut-3-yn-2-ol methanesulfonate
(CN46619-MSA) of example 4 (14.0 g, 33.5 mmol) in ethyl acetate/heptanes (40 g, 6/4 v/v) was
charged to a jacketed 150 mL-reactor with agitator and off-gas scrubber with caustic soda. After
addition of aqueous Na2C0 3 (12%-w/w, 26.9 g, 30.3 mmol) the mixture was stirred for 5 min at
15 °C. The aqueous phase was separated and discarded. Aqueous Na C0 3 (12%-w/w, 34.1 g,
38.4 mmol) was charged to the organic phase, then triphosgene (3.73 g, 12.6 mmol) was added
in portions over a period of 25 min at 10 °C. The reaction mixture was stirred for 2 h at 8 °C.
The mixture was charged with heptanes (15.9 g), the phases were separated and the aqueous
phase discarded. The organic phase was washed with water (12 mL), dried over MgS0 4, filtered
and concentrated to dryness. After drying under vacuum at 50 °C, the product
(i?)-4-(cyclopropylethynyl)-6-fluoro-4-(trifluoromethyl)- 1,4-dihydro-2 H-3, 1-benzoxazin-2-one
(CN46686, compound of formula I, wherein R1 is trifluoromethyl, R2 is 2-cyclopropyl-ethynyl,
R8 is 6-fluorophenyl, R9 is hydrogen and R10 is hydrogen 9.78 g, 32.7 mmol, 97%) was obtained
as a yellowish solid (99.4% purity, according to Method C).
Example 6: Cyclisation of SD573 with diphosgene
Aqueous Na2C0 ( 12%-w/w, 183 g, 0.206 mol) was charged to SD573-MSA ((5)-2-(2-amino-
5-chlorophenyl)-4-cyclopropyl-l,l,l-trifluorobut-3-yn-2-ol mesylate (2:3 mol/mol) = methanesulfonate
of the S-enantiomer of the compound of formula II, wherein R1 is trifluoromethyl, R2 is
2-cyclopropyl-ethynyl, R8 is 5-chloro, R9 is hydrogen and R 0 is hydrogen; 100 g, 0.23 mol,
corresponding to 66.8 g of SD573 free base, 99.6% ee, prepared accordingly to Example 1) in
ethyl acetate/heptanes (203 g, 1.5:1 v/v). The mixture was stirred for 5 min at 15 °C. Hydrolysis
of the mesylate ended at about pH 9.0 of the aqueous phase. Then a phase separation was
performed and the aqueous phase was removed. Aqueous Na2C0 3 (12%-w/w, 232 g, 0.262 mol)
was charged to the organic phase. To the biphasic mixture, liquid diphosgene (24 g, 120 mmol)
was added in 90 min at 12 °C. After a conversion of more than 99.7% was reached, according to
Method C, heptanes (204 g) were charged. The reaction mixture was then heated to 20 °C, the
aqueous phase was separated and discarded, while the organic phase was washed with water
(about 80 g). The organic layer was heated under reduced pressure, ethyl acetate distilled off and
heptanes were charged to the reaction mixture to achieve a residual ethyl acetate content of
5.5%-w/w and a ratio of heptanes to organic matter of 10 L/kg in view of originally added
SD573-MSA. Then the mixture was heated to dissolve all organic matter. The solution was
seeded with 0.8 g of DMP-266 (DMP-266 = S-enantiomer of the compound of formula I,
wherein R1 is trifluoromethyl, R2 is 2-cyclopropyl-ethynyl, R8 is 6-chloro, R9 is hydrogen and
R 0 is hydrogen) at 55 °C and stirred for about 15 min at 55 °C. The mixture was then cooled to
50 °C and hold for 120 min. Then the mixture was further cooled within 2 h from 50 °C to 25 °C
and within another 2 h ramp to about -10 °C. Finally, the mixture was stirred for about 1 h
at -10 °C maximum and then filtered. The filter cake (wet product) was washed with pre-cooled
heptanes (2x50 mL) at 0 °C maximum. The solid was dried in vacuo to yield 94.2% (68.4 g,
216 mmol) of DMP-266 at a purity of 99.9%- w/w according to Method D. The sample
comprises 99.8%-w/w S-enantiomer, i.e. an enantiomeric excess (ee) of 99.6%.
Example 7: Cyclisation of SD573 with diphosgene
Aqueous Na2C0 3 (12%-w/w 91.5 g, 0.103 mol) was charged to SD573-MSA (50 g, 0.1 15 mol,
corresponding to 33.4 g of SD573 free base, 99.6% ee, prepared accordingly to Example 1) in
ethyl acetate/heptanes (101.5 g, 1.5/1 v/v). The mixture was stirred for 5 min at 15 °C.
Hydrolysis of the mesylate ended at pH 6.4 in the aqueous phase. A phase separation was
performed and the aqueous phase was removed. The remaining organic phase was cooled to
12 °C and aqueous Na2C0 3 (12%-w/w, 106 g, 0.12 mol) was charged. To the biphasic mixture,
liquid diphosgene ( 11.4 g, 57 mmol) was added in 90 min at 12 °C. After a total conversion was
reached according to Method C, heptanes (68.8 g) was charged. The reaction mixture was then
heated to 20 °C, stirred 30 min and the aqueous phase was removed. The organic phase was
heated under reduced pressure, ethyl acetate was distilled off and heptanes charged to the
reaction mixture to achieve a residual ethyl acetate content of 4.4 w% and a ratio of heptanes to
organic matter of 6.5 L/kg in view of originally added SD573-MSA. Then the obtained mixture
was heated to dissolve all organic matter. The solution was seeded with DMP-266 (0.4 g) at
55 °C and stirred for about 15 min at 55 °C. The mixture was then cooled to 50 °C and hold for
120 min. The mixture was further cooled in 2 h from 50°C to 25°C and within another 2 h
to -10 °C maximum. The mixture finally was stirred for about 1 h at -13 °C and then filtered.
The filter cake (wet product) was washed with pre-cooled heptanes (2x50 mL) at 0 °C
maximum. The solid was dried in vacuo to yield 92.1% (33.45 g, 105 mmol) of DMP-266 of a
purity of 99.9%-w/w according to Method D. The sample comprises 99.8%-w/w S enantiomer,
i.e. 99.6% ee.
Example 8: Cyclisation of SD573 with triphosgene
SD573-MSA (50 g, 0.1 14 mol, corresponding to 33.4 g of SD573 free base, 99.6% ee, prepared
accordingly to Example 1) was dissolved in an ethyl acetate/heptanes mixture (164 g, 1:1 v/v)
and charged with aqueous Na2C0 3 (12%-w/w, 91.5 g, 0.104 mol). After hydrolysis of the
mesylate a pH of about 7.0 was measured in the aqueous phase. The mixture was stirred for at
least 5 min at 15 °C. Then a phase separation was performed and the aqueous phase was
removed. The mixture was cooled below 12 °C and aqueous Na2C0 3 (12%-w/w, 16 g,
0.131 mol) was charged. To the biphasic mixture, triphosgene (12.5 g, 42 mmol) was added at
0 °C maximum in five portions within 90 min. The mixture was stirred further 15 min below
15 °C. After a total conversion was reached according to Method C, heptanes (54 g) was
charged. The reaction mixture was then heated to 20 °C and the aqueous phase was removed.
The organic phase was washed with water (40 g) and then heated under reduced pressure, ethyl
acetate distilled off and heptanes charged to the reaction mixture to achieve a residual ethyl
acetate content of 4.6%-w/w and a ratio of heptanes to organic matter of 6.5 L/kg in view of
originally added SD573-MSA. The solution was seeded with DMP 266 (0.4 g) at 57 °C and
stepwise cooled under stirring at -10 °C within 2 h 15 min. The mixture was stirred at -10 °C
maximum overnight and then filtered. The filter cake was washed with pre-cooled heptanes
(2x25 mL) at 0 °C maximum. The solid was dried in vacuo to yield 95% of DMP-266 (34.22 g,
108 mmol) at a purity of 100%-w/w, according to Method D. The sample comprises 99.8%-w/w
S-enantiomer, i.e. 99.6% ee.
Example 9 : Cyclisation of SD573 with triphosgene
SD573-MSA (100 g, 0.23 mol, corresponding to 66.8 g of SD573 free base, 99.6% ee, prepared
accordingly to Example 1) was dissolved in ethyl acetate/heptanes (203 g, 1.5:1 v/v) and charged
with aqueous Na2C0 3 (12%-w/w, 183 g, 0.207 mol) at about 15 °C. A pH of 7 to 9 was reached
in the aqueous phase. The mixture was stirred for 5 min at 15 °C. Then the phase separation was
performed and the aqueous phase was removed. The mixture was cooled below 12 °C and
aqueous Na2C0 3 (12%-w/w, 232 g, 0.263 mol) was charged. To the biphasic mixture,
triphosgene (24.08 g, 8 1 mmol) was added in 10 portions within 120 min at less than 12 °C. The
mixture was stirred further 10 min at about 12°C. After a total conversion was reached according
to Method C, heptanes (204 g) were charged. The reaction mixture was then heated to 20 °C and
the aqueous phase was removed. The organic phase was washed with water (80 g) and then
heated under reduced pressure to partially remove ethyl acetate, while heptanes were charged to
the reaction mixture to achieve a residual ethyl acetate content of 5.8%-w/w and a ratio of
heptanes to organic matter of 7.0 L/kg in view of originally added SD573-MSA. The solution
was seeded with DMP-266 (0.8 g) at 55 °C and stirred for 15 min. Then the mixture was cooled
to 50 °C within 20 min, hold for 2 h, cooled to 25 °C within 2 h, cooled to about -10 °C within
2 h. After cooling to about -10 °C and stirring overnight the mixture was filtered. The isolated
product was washed with pre-cooled heptanes (2x50 mL) at -10 °C maximum. The solid was
dried in vacuo to yield 85.4% DMP-266 (62 g, 19.6 mmol) at a purity of 100%-w/w, according
to Method D. The sample comprises 99.8%-w/w S-enantiomer, i.e. 99.6% ee.
Example 10: Cyclisation of SD573 with triphosgene
Aqueous Na2C0 3 (14%-w/w, 135 g, 0.178 mol) was charged to SD573 free base (33.4 g,
0.1 15 mol) in ethyl acetate/heptanes (70.4 g of 45:55 v/v) at 1 °C. The mixture was cooled to
8 °C and triphosgene in heptanes (26.8%-w/w, 112 g, 101 mmol) was added within 60 min,
while the temperature was kept at 5 °C to 1 °C. After 60 min a total conversion was reached,
according to Method C. The reaction mixture was heated to 25 °C. Then a phase separation was
performed and the aqueous phase was removed. The organic phase was heated under reduced
pressure, ethyl acetate partly was distilled off and heptanes were charged to the reaction mixture
to achieve a residual ethyl acetate content of about 2.5%-w/w and a ratio of heptanes to organic
matter of about 15 L/kg in view of originally added SD573 free base. Then the mixture was
heated to dissolve all organic matter and afterwards seeded with DMP-266 (overall 1.4 g) at
55 °C. No product crystallized and therefore the organic phase was heated under reduced
pressure to partially remove ethyl acetate, while heptanes were charged to the reaction mixture to
achieve a residual ethyl acetate content of less then 3% (w/w) and a ratio of heptanes to organic
matter of about 1 L/kg in view of originally added SD573 free base. Then the mixture was
heated to dissolve all organic matter and afterwards seeded with DMP-266 (1.5 g) at 5 1 °C and
stirred for about 140 h at 51 °C. The slurry was stepwise cooled under stirring within 4 h to
reach -15 °C. The slurry was stirred for 16 h at -15 °C and then filtered. The isolated product was
washed with pre-cooled heptanes (2x55 mL) at -10 °C maximum. The solid was dried in vacuo
to yield 92.9% (33.7 g, 107 mmol) of DMP-266, at a purity of 99.6%-w/w, according to Method
D. The sample comprises 99.8%-w/w S-enantiomer, i.e. 99.6% ee.
Example 11: Cyclisation of SD573 with triphosgene
Aqueous Na2C0 3 (12%-w/w, 91.5 g, 0.103 mol) was charged to SD573-MSA (50 g, 0.1 15 mol,
corresponding to 33.4 g of SD573 free base, prepared accordingly to Example 1) in ethyl
acetate/heptanes (90.8 g, 55/45 v/v). The mixture was stirred for 5 min at 15 °C resulting in a pH
of 6.8 of the aqueous phase. Then a phase separation was performed and the aqueous phase was
removed. The organic phase was heated under reduced pressure and the solvent was partially
removed (32.3 g, 4 1 mL) to obtain a ratio of SD573 free base to solvent of about 1:1.75 (w/w).
The distillate contained about 53.2 w% of ethyl acetate. The mixture comprising the SD573 free
base was cooled to 12 °C and aqueous Na2C0 3 (12%-w/w, 96 g, 0.109 mol) was charged. To the
biphasic mixture, triphosgene in ethyl acetate (31%-w/w, 32.7 g, 34 mmol) was added in 66 min
at 7 to 12 °C. The mixture was stirred 15 min at 12 °C maximum. After a conversion of 90.2%
was reached, according to Method C, additional heptanes (86 g) were charged and the reaction
mixture was heated to 20 °C. Then a phase separation was performed and the aqueous phase was
removed. The organic phase was heated under reduced pressure to partially remove ethyl acetate
while heptanes were charged to the organic phase to achieve a residual ethyl acetate content of
6.8%-w/w (target 3 to 7%-w/w) and a ratio of heptanes to organic matter of 6.8 L/kg in view of
originally added SD573-MSA. The solution was seeded with DMP-266 (0.4 g) at 47 °C and
stirred for 150 min at 47 to 55 °C. Then the mixture was slowly cooled to -10 °C and filtered.
The filter cake was washed with pre-cooled heptanes (2x25 mL) at -10 °C maximum. The solid
was dried in vacuo to yield 81.1% (29.46 g, 0.093 mmol) of DMP-266 of a purity of 97.2%-w/w
according to Method D.
Example 12: Cyclisation of SD573 with triphosgene
Aqueous Na2C0 3 (12%-w/w, 275.1 g, 0.31 1 mol) was charged to SD573-MSA (150 g,
0.345 mol, corresponding to 100.2 g of SD573 free base, prepared accordingly to Example 1) in
ethyl acetate/heptanes (272.1 g, 55/45 v/v). After stirring the mixture for 5 min at 15 °C a pH of
7.7 was measured. Then a phase separation was performed and the aqueous phase was discarded.
The organic phase (ethyl acetate/heptanes ratio of 61.5/38.5 w/w) was split into 3 parts each
comprising about 33 g of SD573 free base. With an aim to test the stability of SD573 free base in
ethyl acetate/heptanes mixtures, the 1st part was stored for 4 days at 4 °C before performing
Example 12.1, the 2nd part was stored for 7 days at 4 °C before performing Example 12.2, and
the 3rd part was stored for 10 days at 4 °C before performing Example 12.3.
Example 12.1:
The 1st part of the organic phase of Example 12 (123.5 g) was heated under reduced pressure to
partially remove the solvent until the distillate contained 60 w% of ethyl acetate (about 33 g).
The remaining mixture was cooled to 12 °C and aqueous Na2C0 3 (12%-w/w, 117 g, 0.132 mol)
was charged. To the biphasic mixture, triphosgene in ethyl acetate (36%-w/w, 35 g, 42 mmol)
was added in 60 min at less than 2 °C. The mixture was stirred 15 min at less than 12 °C. After
a total conversion was reached according to Method C, heptanes (86 g) were charged and the
reaction mixture was heated to 20 °C. Then a phase separation was performed and the aqueous
phase was removed. The organic phase was washed with water (40 g). The organic phase was
heated under reduced pressure to party remove ethyl acetate, while heptanes were charged to the
reaction mixture to achieve a residual ethyl acetate content of 5.5%-w/w (target 3 to 7%-w/w). A
ratio of heptanes to organic matter of 6.3 L/kg in view of originally added SD573-MSA was
obtained for crystallisation. The solution was seeded with DMP-266 (0.4 g) at 57 °C and stirred
for 15 min at the seeding temperature. The mixture was stepwise cooled under stirring to -15 °C
within 6 h 20 min, stirred overnight at -10 °C and finally filtered. The filter cake was washed
with pre-cooled heptanes (2x25 mL) at -10 °C maximum. The solid was dried in vacuo to
yield 89.4% (32.17 g, 102 mmol) of DMP-266 at a purity of 100%-w/w according to Method D.
Example 12.2:
The 2nd part of the organic phase of Example 1 (122.0 g) was heated under reduced pressure to
partially remove the solvent until the distillate contained 53 w% of ethyl acetate (about 3 1 g).
The mixture was cooled to 12 °C and aqueous Na2C0 3 (12 %-w/w, 117 g, 0.132 mol) was
charged. To the biphasic mixture triphosgene in ethyl acetate (36 %-w/w, 35 g, 42 mmol) was
added in 60 min at 12 °C maximum. The mixture was stirred for 15 min at 12 °C maximum. A
total conversion was obtained according to Method C. Heptanes (86 g) were charged and the
reaction mixture was heated to 20 °C. Then a phase separation was performed and the aqueous
phase was removed. The organic phase was washed with water (40 g) and then heated under
reduced pressure to partially remove ethyl acetate, while heptanes were charged to the reaction
mixture to achieve a residual ethyl acetate content of 5.7%-w/w (target 3 to 7%-w/w). A ratio of
heptanes to organic matter of 6.4 L kg in view of originally added SD573 -MSA was obtained for
crystallisation. The mixture was seeded with DMP-266 (0.4 g) at 57 °C and stepwise cooled
under stirring within 6 h to reach -15 °C. Then the mixture was stirred at -10 °C overnight and
filtered. The filter cake was washed with pre-cooled heptanes (2x50 mL) at -10 °C maximum.
The solid was dried in vacuo to yield 89.5% (32.21 g, 102 mmol) of DMP-266 at a purity of
100%-w/w according to Method D.
Example 12.3:
The 3rd part of the organic phase of Example 12 (122.5 g) was heated under reduced pressure to
partially remove the solvent until the distillate contained 53.6 w% of ethyl acetate (about 32.3 g).
The mixture was cooled to 9 °C before aqueous Na2C0 3 (12 %-w/w, 17 g, 0.132 mol) was
charged. To the biphasic mixture triphosgene in ethyl acetate (36 %-w/w, 35 g, 42 mmol) was
added in 60 min at 12 °C maximum and the mixture stirred for 1 h at 12 °C maximum. A total
conversion was obtained according to Method C. Heptanes (86 g) were charged and the reaction
mixture was heated to 20 °C. A phase separation was performed and the aqueous phase was
removed. The organic phase was washed with water (40 g) and then heated under reduced
pressure to partially remove ethyl acetate, while heptanes were charged to the reaction mixture to
achieve a residual ethyl acetate content of 5.8%-w/w. A ratio of heptanes to organic matter of
6.2 L/kg in view of originally added SD573 -MSA was obtained for crystallisation. The mixture
was seeded with DMP-266 (0.4 g) at 57 °C and stepwise cooled under stirring to -15 °C within
6 h. The mixture was stirred at -10 °C overnight and then filtered. The filter cake was washed
with pre-cooled heptanes (2x25 mL) at -10 °C maximum. The solid was dried in vacuo to
yield 90% of DMP-266 (32.4 g, 103 mmol) at a purity of 100%-w/w according to Method D.
Example 13: Cyclisation of SD573 with triphosgene
Aqueous Na2C0 3 (14%-w/w, 160 g, 0.21 1 mol) was charged to SD573-MSA (100 g, 0.229 mol,
corresponding to 66.8 g of SD573 free base, prepared accordingly to Example 1) in ethyl
acetate/heptanes (158.8 g 1/1 v/v). The mixture was stirred at approx. 15 °C resulting in a pH of
6.8 of the aqueous phase. Then a phase separation was performed and the aqueous phase was
removed. The organic phase was cooled to 12 C and aqueous Na2C0 3 (14%-w/w, 214 g,
0.283 mol) was charged. To the biphasic mixture triphosgene in ethyl acetate (35.7%-w/w,
67.2 g, 8 1 mmol) was added in 60 min at 12 °C maximum. The mixture was stirred for 30 min at
12°C maximum. Heptanes (96 g) were charged and a total conversion was obtained according to
Method C. The reaction mixture was heated to 20 °C. Then a phase separation was performed
and the aqueous phase was removed. Aqueous Na2C0 3 (14%-w/w, 92 g, 0.121 mol) was added
to the organic phase and stirred for 25 min at 20 °C. Then a phase separation was performed and
the aqueous phase was removed. The organic phase (360 g) was split into two parts.
Example 13.1:
The 1st part of the organic phase of Example 8 ( 180 g) was washed with water (80 g), phase
separation was performed and the aqueous phase was removed. Then the organic phase was
heated under reduced pressure, ethyl acetate partially distilled off and heptanes charged to the
reaction mixture to achieve a residual ethyl acetate content of 3%-w/w (target 3 to 7%-w/w)
was obtained. Finally total 10 L/kg SD573 -MSA heptanes was achieved for the crystallisation.
The solution was seeded with DMP-266 (0.2 g) at 55 °C and stepwise cooled under stirring
to -15 °C within 7 h. The mixture was stirred at - 15 °C overnight and then filtered. The filter
cake was washed with pre-cooled heptanes (2x50 mL) at -10 °C maximum. The solid was dried
in vacuo to yield 93% (33.47 g, 105 mmol) of DMP-266, the purity is 98.8%-w/w, according
to Method D.
Example 13.2:
The 2nd part of the organic phase of Example 8 (180 g) was heated under reduced pressure to
partially remove ethyl acetate, while heptanes were charged to the reaction mixture, to achieve a
residual ethyl acetate content of 3.4%-w/w (target 3 to 7%-w/w). A ratio of heptanes to organic
matter of 10 L/kg in view of originally added SD573-MSA was obtained for crystallisation. The
mixture was seeded with 0.2 g of DMP-266 at 55 °C and stepwise cooled under stirring within
6 h 40 min to reach -15 °C. The mixture was stirred at -10 °C overnight and then filtered. The
filter cake was washed with pre-cooled heptanes (2x50 mL) at -10 °C maximum. The solid was
dried in vacuo to yield 96% (34.87 g, 110 mmol) of DMP-266 at a purity of 97.7%-w/w
according to Method D.
Example 14: Cyclisation of SD573 with triphosgene
Aqueous Na2C0 3 (14%-w/w ,80 g, 0.106 mol) was charged to SD573-MSA (50 g, 0.1 15 mol,
corresponding to 33.4 g of SD573 free base, prepared accordingly to Example 1) in of ethyl
acetate/heptanes (79.4 g, 1/1 v/v) and charged. After stirring for 15 min a pH of 6.4 was
measured in the aqueous phase. The mixture was stirred for 5 min at 15 °C. Then a phase
separation was performed and the aqueous phase was removed. The mixture was cooled to 12 °C
and aqueous Na C0 3 (14%-w/w, 107 g, 0.141 mol) was charged. Triphosgene in ethyl acetate
(35.7%-w/w, 33.6 g, 40.5 mmol) was added to the biphasic mixture for 60 min at 12 °C
maximum. The mixture was stirred 30 min at 12°C maximum. Heptanes (48 g) were charged and
a total conversion was obtained according Method C. The reaction mixture was heated to 20 °C.
Then a phase separation was performed and the aqueous phase was removed. The organic phase
was washed with water (80 g) and then heated under reduced pressure, to partially remove ethyl
acetate, while heptanes were charged to the reaction mixture, to achieve a residual ethyl acetate
content of 3.2%-w/w. A ratio of heptanes to organic matter of 9.6 L/kg in view of originally
added SD573-MSA was obtained for crystallisation. The mixture was seeded with 0.2 g of
DMP-266 at 55 °C, and stepwise cooled under stirring within 7 h to reach -15 °C. The mixture
was stirred at - 1 °C overnight and then filtered. The filter cake was washed with pre-cooled
heptanes (50 mL) at -10 °C maximum. The solid was dried in vacuo to yield 97% (34.49 g,
1 0 mmol) of DMP-266 at a purity of 96.5%-w/w according to Method D.
Example 15: Cyclisation of SD573 with triphosgene
Aqueous Na2C0 3 (14%-w/w, 80 g, 0.106 mol) was charged to SD573-MSA (50 g, 0.1 14 mol,
corresponding to 33.4 g of SD573 free base, prepared accordingly to Example 1) in ethyl
acetate/heptanes (79.4 g, 1/1 v/v). After stirring for 15 min a pH of 6.1 was measured in the
aqueous phase. The mixture was stirred for 5 min at 15 °C. Then the phase separation was
performed and the aqueous phase was removed. The mixture was cooled to 1 °C and aqueous
Na2C0 3 (14% w/w, 135 g, 0.178 mol) was charged. To the biphasic mixture triphosgene in ethyl
acetate (35.7%-w/w, 33.6 g, 40.5 mmol) was added in 60 min at 12 °C maximum. The mixture
was stirred 30 min at 12°C maximum. Heptanes (48 g) were charged and a total conversion was
obtained according to Method C. The reaction mixture was heated to 20 °C. Then a phase
separation was performed and the aqueous phase was removed. The organic phase was washed
with water (80 g) and then heated under reduced pressure to partially remove ethyl acetate, while
heptanes were charged to the reaction mixture, to achieve a residual ethyl acetate content of
2.8%-w/w. A ratio of heptanes to organic matter of 9.5 L/kg in view of originally added SD573-
MSA was obtained for crystallisation. The solution was seeded with DMP-266 (0.2 g) at 55 °C
and stepwise cooled under stirring within 4 h 35 min to reach to -15 °C. The mixture was stirred
overnight at -15 °C and then filtered. The filter cake was washed with pre-cooled heptanes
(2x50 raL) at -10 °C maximum. The solid was dried in vacuo to yield 97.6% of DMP-266
(35.12 g, 111 mmol) at a purity of 95.1 %-w/w according to Method D.
Example 16: Cyclisation of SD573 with phosgene
Aqueous Na2C0 3 (12%-w/w, 183 g, 0.207 mol) was charged to SD573 -MSA (100 g, 0.228 mol,
corresponding to 66.8 g of SD573 free base, prepared accordingly to Example 1) in ethyl
acetate/heptanes (203 g, 1.5:1 v/v). After stirring for 15 min a pH of 7.2 was measured in the
aqueous phase. The mixture was stirred for 5 min at 15 °C. Then the phase separation was
performed and the aqueous phase was removed. The mixture was cooled to 12 °C and aqueous
Na2C0 3 (12 %-w/w, 232 g, 0.263 mol) was charged. Phosgene (24.8 g, 251 mmol) was added to
the biphasic mixture in 90 min at 12 °C maximum. Heptanes (136 g) were charged to the mixture
and a total conversion was obtained according to Method C. The reaction mixture was heated to
20 °C. Then a phase separation was performed and the aqueous phase was removed. The organic
phase was washed with water (80 g) and then heated under reduced pressure to partially remove
ethyl acetate, while heptanes were charged to the reaction mixture, to achieve a residual ethyl
acetate content of less then 7%-w/w. A ratio of heptanes to organic matter of 9.7 L/kg in view of
originally added SD573 -MSA was obtained for crystallisation. The solution was seeded with
DMP-266 (0.8 g) at 55 °C, stepwise cooled under stirring within 6 h 15 min to reach -15 °C and
then filtered. The filter cake was washed with pre-cooled heptanes (2x50 mL) at 0 °C maximum.
The solid was dried in vacuo to yield 95.7% of DMP-266 (68.91 g, 218 mmol) at a purity of
100%-w/w according to Method D.
Example 17: Cyclisation of SD573 with phosgene
SD573 -MSA (50 g, 0.1 4 mol, corresponding to 33.4 g of SD573 free base, prepared
accordingly to Example 1) was dissolved in ethyl acetate/heptanes (102 g, 55:45 v/v) and
charged with aqueous Na2C0 3 (12 %-w/w, 9 1 g, 0.103 mol). After stirring for 15 min a pH of
about 7 was measured in the aqueous phase. The mixture was stirred for 5 min at 15 °C. Then the
phase separation was performed and the aqueous phase was separated and discarded. The
organic phase was cooled to 12 °C and charged with aqueous Na2C0 3 (12%-w/w, 157 g,
0.178 mol). To the biphasic mixture phosgene (16.9 g, 171 mmol) was added in 130 min at
12 °C maximum. Heptanes (43 g) were charged and a total conversion was obtained according to
Method C. The reaction mixture was heated to 20 °C. Then a phase separation was performed
and the aqueous phase was removed. The organic phase was washed with water (80 g) and then
heated under reduced pressure to partially remove ethyl acetate, while heptanes were charged to
the reaction mixture, to achieve a residual ethyl acetate content of 3.5%-w/w. A ratio of heptanes
to organic matter of ca. 10 I kg in view of originally added SD573 -MSA was obtained for
crystallisation. The solution was seeded with DMP-266 (0.4 g) at 62 °C and stepwise cooled
under stirring to -5 °C overnight and then filtered. The filter cake was washed with pre-cooled
heptanes (2x50 mL) at 0 °C maximum. The solid was dried in vacuo to yield 93% of DMP-266
(33.86 g, 107 mmol) at a purity of 98.5%-w/w according to Method D.
Example 18: (SJ- -i -Amino- -meth lphen -cycloprop l-l l l - ri fl uorobut- - - -ol
A solution of ( ,2 -PNE (17.6%-w/w, 21.0 g, 18.0 mmol) in a THF/toluene mixture (9:l-w/w)
was charged in a vessel at room temperature. A solution of diethylzinc in toluene (29.9%-w/w,
6.10 g, 14.8 mmol) was added at 17 to 25 °C and the mixture was aged at said temperature range
for 30 min. A solution of cyclopropylacetylene in toluene (69.6%-w/w, 8.55 g, 90.0 mmol) was
added at 18 °C and the resulting mixture was aged at 20 °C for 60 min. A solution of BuLi in
toluene (3.09 mol/kg, 17.6 g, 54.4 mmol) and a solution of l-(2-amino-5-methylphenyl)-2,2,2-
trifluoroethanone (CN46217, 36.5%-w/w, 33.4 g, 60.0 mmol) in toluene/THF ( 1:l-w/w) were
added in parallel to the reaction mixture at 20 °C within 3 h. The addition of BuLi was started
10 min in advance of the CN462 17 addition. After completed addition of CN46217 the reaction
mixture was stirred for 30 min at 20 °C, then heated to 30 °C over a period of 60 min and aged
for 6 h at 30 °C. The reaction mixture was stirred at 0 °C overnight. HPLC (Method B) indicated
72.3% conversion and 96.7% enantiomeric purity. The reaction mixture was diluted with toluene
(25.8 g) and quenched by addition of aqueous citric acid ( 1 M, 73.9 g). After stirring for 15 min
the phases were separated and the aqueous phase was discarded. The organic phase was
successively washed with water (9.1 g), aqueous NaHC0 3 solution (5%-w/w, 24.0 g), and water
(12.0 g). The organic phase was partially concentrated (60 g residual solution), diluted with
toluene (30 g), and partially concentrated again (52 g residue). The residue was diluted with
toluene (65 g), cooled to 5 °C and aged over night. The crystals were filtered, washed with cold
(approx. 5 °C) toluene (10 g) and dried under vacuum at 40 °C. The wet product (10.8 g)
obtained as off-white solid with a purity of 99.2 and 100% ep according to method B. The crude
product was purified by slurring it in a mixture of toluene (10 mL) and heptane (40 mL) at room
temperature for 1 h, filtered and dried at 40 °C in vacuo. The product (compound of formula II,
wherein R1 is trifluoromethyl, R2 is 2-cyclopropyl-ethynyl, R8 is 5-methyl, R9 is hydrogen and
R10 is hydrogen) was obtained as white solid ( 10.6 g, 38 mmol, 64% yield) with a purity of
99.4% and 100% ep according to method B. The assay was 97.0%-w/w according to -NMR.
Example 19: (S )-4-(Cyclopropylethynyl)-6-methyl-4-(trifluoromethyl)-l,4-dihydro-2 H -
3,l-benzoxazin-2-one
(2S)-2-(2-Amino-5-methylphenyl)-4-cyclopropyl- 1,1,1 -trifluorobut-3-yn-2-ol (CN46624)
obtained according example 18 (97.0%-w/w, 10.0 g, 36.0 mmol) in ethyl acetate/heptanes
(2:l-w/w, 30 g) was charged to a jacketed 150 mL-reactor with agitator and off-gas scrubber
with caustic soda. The reaction mixture was cooled to 7 °C and aqueous Na2C0 3 solution
(12%-w/w, 33.5 g) was added. Triphosgene (3.67 g, 12.4 mmol) was added in portions over a
period of 25 min at 7 to 5 °C. The reaction mixture was stirred for 15 min at 8 °C and sampled
for conversion control (99.8% conversion according to method C). The precipitated solid was
dissolved by adding ethyl acetate (25 g) and the phases were separated. The organic phase was
washed with water (10 g), dried over MgS0 4, filtered and concentrated under vacuum to dryness.
The crude product ( 1 1.6 g) was obtained as a white solid (purity 96.9% according to HPLC
method C). Hexane (20 mL) was added ct and the mixture was stirred for 1 h at room
temperature. The product was filtered, washed with cold hexane (10 mL) and dried at 35 °C
under vacuum. The product (compound of formula I, wherein R1 is trifluoromethyl, R2 is
2-cyclopropyl-ethynyl, R8 is 6-methyl, R9 is hydrogen and R10 is hydrogen) was obtained as
white solid (9.76 g, 32.9 mmol, 91% yield) with a purity of 98.8% according to method C and an
assay of 99.6%w-/w according to -NMR.
Example 20: 2-(2-Amino-5-chlorophenyl)-l,l,l-trifluorooct-3-yn-2-ol methanesulfonate
(2:3 mol/mol)
In Example 20 two different chiral auxiliaries have been used to obtain the (R)- and (5)-
enantiomers of 2-(2-Amino-5-chlorophenyl)- 1,1,1 -trifluorooct-3-yn-2-ol.
Example 20.1: (R)-2-(2-Amino-5-chlorophenyl)-l ,l l - ifl uorooct-3-yn-2-ol
methanesulfonate (2:3 mol/mol)
A solution of ( l ,2 )-PNE (18.7%-w/w, 19.7 g, 18.0 mmol) in THF/toluene (9:l-w/w) was
charged to a vessel at room temperature. A solution of diethylzinc in toluene (29.9%-w/w,
6.10 g, 14.8 mmol) was added at 17 to 25 °C and the mixture was aged at said temperature for
30 min, 1-hexyne (97%-w/w, 6.10 g, 72.0 mmol) was added at 18 °C and the resulting solution
was aged at 20 °C for 60 min. A solution of BuLi in toluene (3.09 mol/kg, 17.8 g, 55.0 mmol)
and a solution of 1-(2-amino-5-chlorophenyl)-2,2,2-trifluoroethanone (CN233 15) in
toluene/THF (1:1 w/w) (39.6%-w/w, 33.8 g, 60.0 mmol) were added in parallel to the reaction
mixture at 20 °C within 3 h. The addition of BuLi was started 10 min in advance of the CN23315
addition. After completed addition of CN233 15 the reaction mixture was stirred for 30 min at
20 °C, then heated to 30 °C over a period of 60 min and aged for 6 h at 30 °C. The reaction
mixture was stirred at 0 °C overnight. HPLC (Method B) indicated 89.6% conversion. The
reaction mixture was diluted with toluene (25.8 g) and quenched by addition of aqueous citric
acid solution ( 1 M, 44.1 g). After stirring for 15 min the phases were separated and the organic
phase successively washed with water (9.1 g), aqueous NaHC0 3 solution (5%-w/w, 24.0 g) and
water (12.0 g). The organic phase was partially concentrated (51 g residual solution), diluted
with toluene (30 g), and partially concentrated again (58 g residue). The residue was diluted with
toluene (59 g) and isopropyl alcohol (1.50 g). Methanesulfonic acid (10.48 g, 114 mmol) was
added at 30 °C over a period of 30 min and the mixture was stirred for 30 min. A second portion
methanesulfonic acid (2.89 g, 30 mmol) was added at 30 °C over a period of 30 min. The
mixture was stirred at 30 °C for 30 min, cooled to 5 °C over a period of 60 min, and aged at 5 °C
for 30 min. The crystals were filtered, washed with cold toluene (10 g) and dried under vacuum
at 40 °C. The crude product (19.3 g) was obtained as yellowish solid with a purity of 93.3% and
99.6% ep according to method B. The product was further purified by slurring it in a mixture of
toluene (100 mL) and isopropyl alcohol (2 mL) at room temperature for 3 h. The product (MSA
salt of ( ?)-CN47583, compound of formula II, wherein R1 is trifluoromethyl, R2 is hex-l-ynyl,
R8 is 5-chloro, R9 is hydrogen and R10 is hydrogen) was filtered, washed with toluene (10 mL)
and dried at 40 °C under vacuum. The product was obtained as white solid (17.1 g, 35.3 mmol,
59% yield) with a purity of 93.3% and 99.9% ep according to method B, and an assay of
92.8%w-/w according to 1H-NMR.
Example 20.2: (S)-2-(2-Amino-5-chlorophenyl)-l,l,l-trifluorooct-3-yn-2-ol
methanesulfonate (2:3 mol/mol)
Example 20.1 was repeated with ( 1L,2 -RNE as chiral ligand to obtain the (S)-enantiomer of
CN47583.
A solution of ( l ,2S PNE (17.6%-w/w, 42.0 g, 36.0 mmol) in THF/toluene (9:1 -w/w) was
charged a vessel at room temperature. A solution of diethylzinc in toluene (29.9%-w/w, 12.0 g,
29.05 mmol) was added at 17 to 25 °C and the mixture was aged at said temperature for 30 min,
1-hexyne (97%-w/w, 13.21 g, 156.0 mmol) was added at 18 °C and the resulting solution was
aged at 20 °C for 60 min. A solution of BuLi in toluene (3.09 mol/kg, 35.53 g, 109.8 mmol) and
a solution of 1-(2-amino-5-chlorophenyl)-2,2,2-trifluoroethanone (CN233 15) in toluene/THF
(1:1 w/w) (39.6%-w/w, 67.75 g, 120.0 mmol) were added in parallel to the reaction mixture at
20 °C within 3 h. The addition of BuLi was started 10 min in advance of the CN23315 addition.
After completed addition of CN23315 the reaction mixture was stirred for 30 min at 20 °C, then
heated to 30 °C over a period of 60 min and aged for 6 h at 30 °C. The reaction mixture was
stirred at 0 °C overnight. HPLC (Method B) indicated 81.9% conversion. The reaction mixture
was diluted with toluene (51.6 g) and quenched by addition of aqueous citric acid solution ( 1 M,
88.2 g). After stirring for 15 min the phases were separated and the organic phase successively
washed with water (18.1 g), aqueous NaHC0 3 solution (5%-w/w, 48.0 g) and water (24.0 g). The
organic phase was partially concentrated ( 110 g residual solution), diluted with toluene (60 g),
and partially concentrated again ( 114 g residue). The residue was diluted with toluene (120 g).
Isopropyl alcohol (3.2 g) was added. Methanesulfonic acid (10.96 g, 114 mmol) was added at
30 °C over a period of 30 min and the mixture was stirred for 30 min. A second portion
methanesulfonic acid (5.78 g, 60 mmol) was added at 30 °C over a period of 30 min. The
mixture was stirred at 30 °C for 30 min, cooled to 5 °C over a period of 60 min, and aged at 5 °C
for 30 min. The crystals were filtered, washed with cold toluene/isopropyl alcohol (98: 1,
1x25 mL, 2x120 mL) and dried under vacuum at 40 °C. The product (MSA salt of compound of
formula II, wherein R is trifluoromethyl, R2 is hex-l-ynyl, R8 is 5-chloro, R9 is hydrogen and
R10 is hydrogen, 28.57 g) was obtained as slightly beige solid (96.5%w-/w assay according to
-NMR).
Example 21: (R)-6-Chloro-4-(hex-l-ynyl)-4-(trifluoromethyl)-l,4-dihydro-2/ - -
3,l-benzoxazin-2-one
(i?)-2-(2-Amino-5-chlorophenyl)- 1,1,1 -trifluorooct-3-yn-2-ol methanesulfonate ((i?)-CN47583)
obtained according to example 20.1 (92.8%-w/w as methanesulfonate 2:3 mol/mol, 15.0 g,
30.9 mmol) in ethyl acetate/heptanes (2:1 -w/w, 30 g) was charged to a jacketed 150 mL-reactor
with agitator and off-gas scrubber with caustic soda. The reaction mixture was cooled to 15 °C
and aqueous Na2C0 3 solution (12%-w/w, 27 g, formation of gas during addition!) was added,
and then the mixture was stirred for 5 min at 15 °C. The aqueous phase was separated and
removed. Aqueous Na2C0 3 solution (12%-w/w, 33 g) was added to the organic phase.
Triphosgene (3.62 g, 12.2 mmol) was added in portions over a period of 25 min at 7 to 15 °C.
The reaction mixture was stirred for 15 min at 8 °C and sampled for conversion control
(conversion more than 99% according to method C). The phases were separated. The organic
phase was dried over MgS0 , filtered and concentrated under vacuum to dryness. The crude
product ( 11.4 g) was obtained as yellow oil (purity more than 99.0% according to method C). A
sample was cooled to 5 °C and it slowly solidified. The crude product was slurried in hexane (10
mL) for 2 h at room temperature. The product was filtered, washed with cold (approx. 5°C)
hexane (5 mL) and dried at 30 °C under vacuum. The product ((/?)-compound of formula I,
wherein R1 is trifluoromethyl, R2 is hex-l-ynyl, R8 is 6-chloro, R9 is hydrogen and R10 is
hydrogen) was obtained as white solid (7.73 g, 22.7 mmol, 73% yield) with a purity of more than
99.0% according to method C and an assay of 97.1%-w/w according to 1H-NMR. Concentration
of the mother liquor to dryness under vacuum afforded additional product as yellow solid
(2.54 g, 7.2 mmol, 23% yield) with a purity of 98% according to method C and an assay of
93.6%-w/w according to 1H-NMR.
Example 22: (S )-6-Chloro-4-(hex-l-ynyl)-4-(trifluoromethyl)-l,4-dihydro-2 H -3,lbenzoxazin-
2-one
(S)-2-(2-Amino-5-chlorophenyl)- 1,1,1 -trifluorooct-3-yn-2-ol methanesulfonate ((S)-CN47583)
obtained according to example 20.2 (96.5%-w/w as methanesulfonate 2:3 mol/mol, 15.0 g,
32.2 mmol) in ethyl acetate/heptanes (2:l-w/w, 30 g) was charged to a jacketed 150 mL-reactor
with agitator and off-gas scrubber with caustic soda. The reaction mixture was cooled to 15 °C
and aqueous Na2C0 3 solution (12%-w/w, 27 g, formation of gas during addition!) was added,
and then the mixture was stirred for 5 min at 15 °C. The aqueous phase was removed. And
aqueous Na2C0 3 solution (12%-w/w, 33 g) was added to the organic phase. A solution of
triphosgene (0.73 g, 2.5 mmol) in diphosgene (2.90 g, 14.7 mmol) was added to the reaction
mixture over a period of 30 min at 7 to 11 °C. The reaction mixture was stirred at 8 °C for
20 min. The reaction mixture was sampled for conversion control until a conversion of more
than 99% was reached (according to method C). The phases were allowed to separate. The
aqueous phase was removed. The organic phase was dried over MgS0 4, filtered and
concentrated to dryness. The crude product ( 10.5 g, 31.1 mmol, 97% yield) was obtained as
yellow solid (purity >99.0%, HPLC method C, 98.6%-w/w assay by 1H-NMR). The crude
product was slurried in hexane (10 mL) for 3 h at room temperature. The product was filtered,
washed with cold (approx. 5 °C) hexane (5 mL) and dried at 30 °C under vacuum. The product
((5)-compound of formula I, wherein R1 is trifluoromethyl, R2 is hex-l-ynyl, R8 is 6-chloro, R9
is hydrogen and R 0 is hydrogen) was obtained as white solid (8.25 g, 24.6 mmol, 77% yield)
with a purity of more than 99.0% (according to method C) and assay 99.1%-w/w according to
-NMR. Concentration of the mother liquor to dryness under vacuum afforded additional
product as yellow solid (1.58 g) with a purity of 97% (according to method C).
Example 23: Cyclisation of SD573 (free base) with diphosgene in triphosgene
Triphosgene (5.12 g, 17 mmol) was added to diphosgene (20.16 g, 101 mmol) at 8 °C and the
mixture was aged under rigorous stirring for 30 min (until all triphosgene was dissolved).
In another vessel, aqueous Na2C0 3 (12%-w/w, 235 g, 266 mmol) was charged at 8 °C to SD573
free base (compound of formula II, wherein R is trifluoromethyl, R is 2-cyclopropyl-ethynyl,
R8 is 5-chloro, R9 is hydrogen and R10 is hydrogen, 67.0 g, 0.231 mol) in heptane (68.3 g) and
ethyl acetate (136.1 g). Then the solution of triphosgene in diphosgene was added at 8 to 11 °C
within 90 min. The mixture was aged further 45 min at 8 °C. The mixture was warmed to 15 °C
within ca. 30 min and aged further 30 min at 15 °C, total conversion was reached according to
Method C. Heptane (137 g) was added at 15 °C and the mixture was aged for further 60 min at
15 °C. The mixture was warmed to 19 °C and water (80 g) was added. The phases were
separated and the aqueous phase was removed. The organic phase was distilled and heptane
continuously added until 5.4-w/w% of ethyl acetate remained (concentration of the heptane
solution was approx. 9.5 mL/g of SD573). The mixture was seeded at 58 °C with DMP-266
(0.8 g) and the suspension was stirred further 120 min at 58 °C, cooled to 25 °C within 120 min,
cooled to -13 °C within 120 min, stirred further ca. 30 min at -13 °C and filtered. The wet cake
was washed at -8 °C two times with heptane (pre-cooled at -8°C, 50 mL). The cake was dried for
8 h at 80 °C under vacuum. 90.2% yield (65.99 g, 209 mmol) of product (DMP-266, compound
of formula I, wherein R1 is trifluoromethyl, R2 is 2-cyclopropyl-ethynyl, R8 is 6-chloro, R9 is
hydrogen and R10 is hydrogen) were obtained with a purity of 100%-w/w according to Method
D. Crystal form I was obtained according to X-ray analysis.
Comparative Example 1: Cyclisation of SD573 with triphosgene, homogeneous
Aqueous Na2C0 3 (10.6 g, 0.126 mol) was charged at 25 °C to SD573 free base (25.13 g,
0.087 mol) in acetonitrile (25 mL) in a 500 mL-reactor. The mixture was cooled to -12 °C and a
solution of triphosgene in acetonitrile (19.7%-w/w, 63.63 g, 42 mmol) was added within 40 min
at -10 to -5 °C. After 90 min a total conversion was reached according to Method C. The reaction
mixture was heated to 25 °C, neutralized at 20 °C to 25 °C with Na2C0 3, washed with water and
then filtered. The mixture was cooled to -10 °C and water (7.5 g) was added dropwise. The
slurry was filtered and the product was isolated. The wet cake was dried in vacuo to give the
final product with 5% yield (1.89 g, 6 mmol). The purity was 97.3%-w/w according to
Method D.
Comparative Example 2: Cyclisation of SD573 with triphosgene, homogenous
To SD573 free base (25.04 g, 0.086 mol) dissolved in acetone (25 mL) in a 500 mL-reactor,
Na C0 3 (10.6 g, 0.126 mol) and water (50 mL) were charged at 25 °C. The mixture was cooled
to -12 °C and a solution of triphosgene in acetonitrile (24%-w/w, 52 g, 42 mmol) was added
at -10 to -5 °C within 55 min. After 60 min a conversion of 98.1%-w/w was reached, according
to Method C. The reaction mixture was heated to 25 °C. After further 100 min a conversion of
98.8%-w/w was reached, according to Method C. Triphosgene (0.69 g) was added. After 180
min a total conversion was reached, according to Method C. The reaction mixture was
neutralized at 20 °C to 25 °C with Na2C0 and then filtered. The filter was washed with water
(12.5 g). To the filtrate water (100 mL) was added at 25 °C. Because after 15 h no product
precipitated, the mixture was cooled to -10 °C and filtered to obtain crop 1. To the filtrate water
(200 mL) was added at -10 °C and the suspension was filtered again to obtain crops 2.
Precipitation was repeated with further water (100 mL) addition to the filtrate of crop 2 to obtain
crop 3. The combined crops ( 1 to 3) of wet product were dried in vacuo to obtain 84.5% yield
(22.39 g, 7 1 mmol). The purity was 96.9%-w/w according to Method D.
Comparative Example 3: Cyclisation of SDS73 with triphosgene, homogenous
To SD573 free base (25. 1 g, 0.087 mol) dissolved in THF (25 mL) in a 500 mL-reactor,
Na2C0 3 (10.6 g, 0.126 mol) and water (50 mL) was charged at 25 °C. The mixture was cooled
to -12 °C and a solution of triphosgene in THF (22.1%-w/w, 56.5 g, 42 mmol) was added
between -10 °C to -5 °C within 36 min. After 120 min a conversion of 96.2%-w/w was reached,
according to Method C. The reaction mixture was heated to 25 °C. After further 100 min a
conversion of 97.7% (w/w) was reached, according to Method C. Triphosgene (0.68 g) was
added. Further small portions of triphosgene were added until 99.6% (w/w) conversion was
reached. The reaction mixture was neutralized between 20 to 25 °C with Na2C0 3 and then
filtered. To the mixture water (325 g) was added at 25 °C. The mixture was cooled to 0 °C and
filtered (crop 1). To the product remaining in the vessel further water (200 mL) was added at
5 °C; and the mixture was filtered (crop 2). To the product remaining in the vessel further water
(100 mL) was added at 5 °C; and the mixture was filtered (crop 3). The combined crops ( 1 to 3)
of wet product were dried in vacuo to obtain 56.5% yield (15.53 g, 49 mmol). The purity was
98.1%-w/w according to Method D.
Comparative Example 4: Cyclisation of SD573 with triphosgene
Aqueous Na2C0 3 (21.5 g, 0.256 mol, in 100 mL of water) was charged at 25 °C to SD573 free
base (50.1 g, 174 mmol) in acetonitrile (50 mL) in a 1 L reactor. After the Na2C03 addition the
used equipment which contained the SD573 free base was rinsed with 10 mL of water. The
mixture was cooled to -12 °C and a solution of triphosgene in acetonitrile (24.3%-w/w, 103.3 g,
84 mmol) was added within 30 min at -10 to -5 °C. The solution of triphosgene in acetonitrile as
described in WO2010/032259A example 1 was too concentrated, all triphosgene was not
dissolved, therefore after the triphosgene addition the used equipment which contained the
triphosgene was rinsed with 5 mL of acetonitrile. After 60 min at -12 °C the mixture was
warmed to 25 °C and total conversion was reached according to Method C. Water (65 mL) to
reach the same dilution as described in WO2010/032259A was added at 25 °C. Contrary to the
teaching of WO2010/032259A no precipitation occurred at 10 °C, so the mixture was cooled
to -5 °C and then filtered. To remove the product completely, the reactor was rinsed with water
(200 mL), which was used afterwards to wash the wet filter cake. The filter cake was dried in
vacuo to give the final product with 34.2% yield (18.63 g, 6 mmol). The purity was 100%-w/w
according to Method D.
Analytical Methods:
Method A: (HPLC method used for the determination of the enantiomeric purity)
Column: Chiralpak® AD, 250^4.6 mm; Temperature: 40°C; Flow: 1.0 mL/min; Mobile Phase:
hexane/isopropyl alcohol = 75:25 (v/v); UV Detection: 260 nm
Method B: (HPLC method used for conversion, purity and enantiomeric purity):
Column: Chiralpak® AD-H, 250x4 .6 mm; Temperature: 40 °C; Flow: 1.0 mL/min; Mobile
phase: hexane/isopropyl alcohol = 89:1 1 (v/v); UV Detection: 260 nm
Method C: (HPLC method used for the determination of the purity):
Column: Zorbax® RX-C18, 250x4 .6 mm, 5 micrometer; Temperature: 40°C; Flow: 1.5 mL/min;
Mobile phase A: 50%-w/w buffer / 50%-w/w MeCN; Mobile phase B: MeCN; Buffer:
0.1%-w/w H3P0 4 in water, pH adjusted to 3.6; Gradient: 0 min 0%-w/w B to 30 min 90%-w/w
B; UV Detection: 250 nm
Method D: (HPLC method used for the determination of the purity):
Column: Zorbax® SB-CN, 150x4.6 mm; Temperature: 40°C; Flow: 1.5 mL/min; Mobile phase
A: 90%-w/w water/1 0%-w/w MeOH + 0.05%-w/w TFA (v/v); Mobile phase B: 90%
water/1 0%-w/w MeOH + 0.05%-w/w TFA (v/v); Gradient: 16 min 40%-w/w to 50% B, 7 min to
65%-w/w B, 5 min to 70% B, 1 min to 80% of B, 2 min hold 80%-w/w B, 1 min to 40%-w/w B;
UV Detection: 250 nm
Claims
1. A process for the preparation of a compound of formula
and/or a suitable salt thereof,
wherein
R1 is selected from the group consisting of hydrogen, Ci-6-alkyl and (Ci .6-alkoxy)carbonyl,
any alkyl or alkoxy optionally being substituted with one or more halogen atoms, R is
selected from the group consisting of hydrogen, Ci-g-alkyl, (Ci -6-alkoxy)carbonyl,
C3-8-alkenyl, C3-8-alkynyl and C3-6-cycloalkyl, wherein each alkyl, alkoxy, alkenyl, alkynyl
and cycloalkyl can carry a further substituent selected from the group consisting of aryl,
aralkyl, Ci- -alkyl and (l'-R 6)-C3-6-cycloalkyl, wherein R6 is hydrogen, methyl or ethyl,
and wherein each such further substituent is optionally substituted with one or more
halogen atoms,
R8 and R9 are independently selected from the group consisting of hydrogen, halogen and
Ci-6-alkyl optionally substituted with one or more halogen atoms, and
R10 is hydrogen or a group selected from the group consisting of aryl, aralkyl, Ci-6-alkyl
and (Ci- -alkoxy)carbonyl, wherein the aryl moiety in any aryl or aralkyl in turn is
optionally substituted with one or more substituents selected from Ci-6-alkyl, Ci- -alkoxy
or C3 -8-cycloalkyl, and wherein each alkyl, alkoxy or cycloalkyl substituent optionally
being substituted with one or more halogen atoms,
said process comprising the reaction of
a compound of formula
and/or a suitable salt thereof,
wherein R , R2, R8, R9 and R 0 are as defined above,
with a cyclisation agent selected from phosgene, diphosgene, triphosgene and mixtures
thereof,
characterized in that the reaction is carried out in the presence of an aqueous base and a
water-immiscible organic solvent, wherein at least 80% of said organic solvent consists of
at least one compound selected from the group consisting of C2 - 5-alkyl C2-5-carboxylates
and mixtures of at least one C2-5-alkyl C2-5-carboxylate with at least one C5-8-alkane.
The process of claim 1, wherein the cyclisation agent is provided in gaseous form.
The process of claim 1, wherein the cyclisation agent is provided in liquid form.
The process of claim 1, wherein the cyclisation agent is provided in solid form.
The process of any of claims 1 to 4, wherein the molar ratio of the cyclisation agent,
calculated in molar equivalents of phosgene, to the compound of formula II is in a range
from 1:1 to 4:1, preferably from 1:1 to 2.5:1.
The process of any of claims 1 to 5, wherein the weight ratio of water to the organic
solvent(s) is in the range from 1:1 to 5:1.
The process of any of claims 1 to 6, wherein at least 90% of said organic solvent consists
of at least one compound selected from the group consisting of C2-5-alkyl C2-5-carboxylates
and mixtures of at least one C2-5-alkyl C2-5-carboxylate with at least one Cs-s-alkane.
The process of any of claims 1 to 7, wherein the C2-5-alkyl C2 - 5-carboxylate is selected
from the group consisting of C2 - 5-alkyl acetates, C2-5-alkyl propionates, and C2-5-alkyl
butyrates.
The process of any of claims 1 to 8, wherein the C2-5-alkyl C2-5-carboxylate is selected
from the group consisting of C2-5-alkyl acetates and C2-5-alkyl propionates.
The process of any of claims 1 to 9, wherein the C - 8-alkane is selected from the group
consisting of pentanes, cyclopentane, hexanes, cyclohexane, heptanes, cycloheptane and
octanes.
11. The process of any of claims 1 to 10, wherein the C5-8-alkane is selected from the group
consisting of hexanes, cyclohexane, heptanes and cycloheptane, preferably from heptanes.
The process of any of claims 1 to 11, wherein the reaction is carried out at a temperature
from -30 to +40 °C.
13. The process of any of claims 1 to 12, wherein the reaction is carried out at a temperature
from 0 to +20 °C.
| # | Name | Date |
|---|---|---|
| 1 | 3423-DELNP-2013.pdf | 2013-04-26 |
| 2 | 3423-delnp-2013-GPA.pdf | 2013-08-20 |
| 3 | 3423-delnp-2013-Form-5.pdf | 2013-08-20 |
| 4 | 3423-delnp-2013-Form-3.pdf | 2013-08-20 |
| 5 | 3423-delnp-2013-Form-2.pdf | 2013-08-20 |
| 6 | 3423-delnp-2013-Form-1.pdf | 2013-08-20 |
| 7 | 3423-delnp-2013-Correspondence-others.pdf | 2013-08-20 |
| 8 | 3423-delnp-2013-Claims.pdf | 2013-08-20 |
| 9 | Power of Attorney [10-06-2016(online)].pdf | 2016-06-10 |
| 10 | Form 6 [10-06-2016(online)].pdf | 2016-06-10 |
| 11 | Assignment [10-06-2016(online)].pdf | 2016-06-10 |
| 12 | 3423-delnp-2013-GPA-(13-06-2016).pdf | 2016-06-13 |
| 13 | 3423-delnp-2013-Correspondence Others-(13-06-2016).pdf | 2016-06-13 |
| 14 | 3423-delnp-2013-Assignment-(13-06-2016).pdf | 2016-06-13 |
| 15 | 3423-DELNP-2013-FER.pdf | 2018-01-30 |
| 16 | 3423-DELNP-2013-AbandonedLetter.pdf | 2019-01-25 |
| 1 | Searchstrategy_3423-DELNP-2013_30-01-2018.pdf |